沉淀池和水解酸化池的设计计算
- 格式:pdf
- 大小:300.49 KB
- 文档页数:6
沉淀池设计计算沉淀池设计计算一、基本要求1、沉淀池设计工作总体指标:(1)池坝总高:H=4.00m(2)池坝总容积:V=20m32、沉淀池设计有关工作:(1)池容及池坝形状设计;(2)底部 + 池坝砼混凝土设计;(3)水力及湿度设计;(4)内外表面抹面设计。
二、池容及池坝形状设计1、池容及池坝形状:(1)池容: V=20m3(2)池坝形状:池容V=20m3,池坝总高H=4.00m,成椭圆形;(3)池容深:池坝靠底部离水面高度为0.50m,池坝靠底部离水面高度为H-0.50m=3.50m,故池容深=3.50m.2、池容宽度及池坝内砼砌筑量计算:以池容宽度δ为变量,求解池容宽度δ.椭圆形池容体积: V=πr1r2h其中,r1为长径,r2为短径,h为池容深短径取池容宽度δ,则长径可求得: r1=(Vδ)/(πh)池坝内砼砌筑量可求得:V=2πr1h+2πr2h+(r22-r12)/2其中,r2=δ即, V=2πr1h+2πδh+(δ22-r12)/2结合V=20m3 及H=4.00m,求解池容宽度δ,我们得到:δ=2.81m故,池坝总容积V=20m3,池容深=3.50m,池容宽度δ=2.81m.三、底部 + 池坝砼混凝土设计1、底部砼混凝土设计:(1)离池底高度:H1=0.50m(2)底部容积:V1=VH1/H=200.50/4.00=2.50m3(3)底部砼混凝土用量:V1/0.35=7.14m3(4)底部砼混凝土标准:C20;2、池坝内砼混凝土设计:(1)池坝容积:V=20m3(2)池坝内砼混凝土用量:V/0.35=57.14m3(3)池坝内砼混凝土标准:C25;3、池坝外砼混凝土设计:(1)池坝外砼混凝土用量:V/0.65=30.77m3(2)离池坝外砼混凝土标准:C20;四、水力及湿度设计1、底部 + 池坝砼混凝土抗渗等级设计:(1)底部砼混凝土:抗渗等级i=5,抗渗系数Ki=0.30m/d(2)池坝内砼混凝土:抗渗等级i=8,抗渗系数Ki=0.24m/d (3)池坝外砼混凝土:抗渗等级i=5,抗渗系数Ki=0.30m/d 2、湿度设计:以池坝外砼混凝土抗渗等级i=5,抗渗系数Ki=0.30m/d为标准,计算此工程的湿度。
沉淀池的设计计算沉淀池是一种常用的水处理设备,通过引导水流使其中的杂质、悬浮固体和悬浮颗粒沉降到底部,从而达到去除污染物的目的。
沉淀池的设计需要考虑多个因素,包括水流速度、水流量、污染物颗粒大小等。
下面将详细介绍沉淀池的设计计算。
首先,需要确定沉淀池的设计参数。
设计参数包括沉淀池的尺寸、水流量和水流速度等。
确定这些参数需要考虑水处理系统的要求和实际情况。
1.沉淀池的尺寸:沉淀池的尺寸取决于水流量和水流速度。
一般来说,沉淀池的长度应为水流长度的3-4倍,宽度应为长度的1-1.5倍,深度应为宽度的0.5-0.6倍。
根据具体的水处理要求可以对这些比例进行调整。
2.水流量:水流量是指单位时间内通过沉淀池的水量。
水流量可以根据需要的水处理能力来确定。
水处理能力是指单位时间内处理水的能力,通常以每小时处理的水量来表示,单位为m3/h。
3.水流速度:水流速度是指水流通过沉淀池时的流速,通常以米/秒为单位。
水流速度的选择应根据污染物的密度和颗粒大小来确定。
一般来说,水流速度应使污染物能够在沉淀池内沉降到底部。
进行沉淀池设计计算时,需要考虑水流速度对沉淀效果的影响。
过高的水流速度会导致悬浮颗粒无法沉降,而过低的水流速度则会导致沉淀池体积增大。
下面是一个沉淀池设计的具体计算示例:假设需要设计一个沉淀池来处理废水,废水的水流量为100m3/h。
根据实际情况,可选择沉淀池尺寸为长10m、宽5m、深度2m。
首先计算废水在沉淀池中的停留时间。
停留时间是指废水在沉淀池中停留的平均时间,通常以小时为单位。
停留时间=沉淀池体积/水流量停留时间=(10*5*2)/100停留时间=1小时停留时间应根据实际情况来确定,可以根据废水的处理要求进行调整。
接下来计算水流速度。
可以根据停留时间和沉淀池的尺寸来计算。
水流速度=污水流量/沉淀池横截面积水流速度=100/(10*5)水流速度=2m/s最后根据水流速度的选择,可以根据污染物的密度和颗粒大小来确定。
水解酸化池计算书1.1设计基础数据1.1.1设计规模本工程建设总规模为4.0万m3/d,一期建设规模为2.0万m3/d,设2组,单组处理能力为1.0万m3/d,Kz=1.49。
1.1.2设计依据中华人民共和国国家环境保护标准《水解酸化反应器污水处理工程技术规范》(征求意见稿)1.2设计计算1.2.1尺寸计算池容V= Q·HRT(平均停留时间HRT取7h)=10000÷24×7=2916m³有效水深h取5.5m,则单格池子表面积为;A=V/h=2916÷5.5=530m2设池宽L取24m,则池宽B=A/L=530÷24=23.02,取B=24m;则水解酸化池相关设计参数为:L=24m、B=24m;V=24×24×5.5=3168m³,HRT=3168÷(10000×24)=7.60h。
1.2.2上升流速核算v=Q/A=V/(H·HRT)=H/HRT=5.5÷7.6=0.72m/h(符合要求)本设计单体:单组水解池酸化池有效容积为3014.4m3,水力停留时间7.24h,上升流速0.76m/h。
符合规范要求。
1.2.3配水器采用配水器分级均匀配水,各格水解池的配水器采用DN300的玻璃钢管分别与混凝絮凝初沉池出水管相连。
经二级配水器分出四根DN200的玻璃钢配水管分别与三级配水器相连,经三级配水器采用DN75的PE管进行均匀配水。
1.2.4出水收集计算出水采用钢板三角形堰,设三角形堰板角度为90°,堰上水位深度为0.022m,则:单齿流量q=1.4H2.5=0.0001005m³/s,齿个数n=Q/q=1.49×10000÷86400÷0.0001005max=1716则共设16条三角出水堰,每条长18m,每条堰设齿119个,单齿宽150mm,靠池壁一侧堰板宽75mm,核算三角出水堰长L=150×119+75×2=18000mm,总齿数n=119×16=1904个。
1 前言SBR工艺早在20世纪初已有应用,由于人工管理的困难和烦琐未于推广应用。
此法集进水、曝气、沉淀在一个池子中完成。
一般由多个池子构成一组,各池工作状态轮流变换运行,单池由撇水器间歇出水,故又称为序批式活性污泥法。
该工艺将传统的曝气池、沉淀池由空间上的分布改为时间上的分布,形成一体化的集约构筑物,并利于实现紧凑的模块布置,最大的优点是节省占地。
另外,可以减少污泥回流量,有节能效果。
典型的SBR工艺沉淀时停止进水,静止沉淀可以获得较高的沉淀效率和较好的水质。
由SBR发展演变的又有CASS和CAST等工艺,在除磷脱氮及自动控制等方面有新的特点。
但是,SBR工艺对自动化控制要求很高,并需要大量的电控阀门和机械撇水器,稍有故障将不能运行,一般必须引进全套进口设备。
由于一池有多种功能,相关设备不得已而闲置,曝气头的数量和鼓风机的能力必须稍大。
池子总体容积也不减小。
另外,由于撇水深度通常有 1.2—2米,出水的水位必须按最低撇水水位设计,故总的水力高程较一般工艺要高1米左右,能耗将有所提高。
SBR工艺一般适用于中小规模、土地紧张、具有引进设备条件的场合。
我国自九十年代中期开始,国家建设部属市政设计研究院和上海、北京、天津等市政设计研究院,开始了SBR工艺技术的研究和应用,但大部分处于试验研究和小型污水处理厂的应用阶段。
目前,只有几座城市污水处理厂采用SBR法工艺处理城市混合污水,其处理效果较好,如:昆明市日处理污水量15万吨的第三污水处理厂,其工艺为SBR法ICEAS技术,自投产以来,运行正常,出水水质稳定,达到了设计标准。
天津经济技术开发区污水处理厂所采用的DAT-IAT工艺是一种SBR法的变形工艺和中国目前最大的SBR法城市污水处理厂。
该工艺为方案的确定是根据天津市政工程设计研究院和开发区、以及国内有关污水处理专家共同完成的,经过对国内外污水厂的考察并充分论证,认为SBR法DAT-IAT工艺能够克服天津开发区工业废水比重大、水质水量变化幅度大的水质特征,其处理后的水质能够满足国家的排放标准。
各种沉淀池设计计算沉淀池是用于将悬浮物质沉淀下来并从水中清除的设备。
它是水处理过程中的关键设备之一,被广泛应用于自来水厂、污水处理厂、工业废水处理等领域。
本文将介绍几种常见的沉淀池设计计算方法。
1.理论沉淀时间计算理论沉淀时间是指水在沉淀池中停留的时间,通常以小时为单位。
根据悬浮物质的沉降速度来计算理论沉淀时间,可以使用斯托克斯定律:V = (gd^2(ρp-ρf))/(18μ)其中,V是沉降速度,g是重力加速度,d是颗粒的等效直径,ρp是颗粒的密度,ρf是液体的密度,μ是液体的黏度。
根据所需的沉淀效果,可以根据V计算出理论沉淀时间。
2.设计池体尺寸池体尺寸的设计主要包括沉淀池的水面面积和深度。
水面面积的设计通常根据所需的处理能力来确定。
常用的计算方法有:A=Q/(VS)其中,A是池体的水面面积,Q是流量,VS是水面上游速度。
根据经验值,流速通常为0.15-0.3m/s。
沉淀池的深度会影响水在池中的停留时间,一般情况下,深度在1.5-4米之间。
较高的深度可以增加水在池中的停留时间,提高沉淀效果。
3.污泥容量计算污泥容量是指沉淀池中可以存放的污泥的量。
可以通过计算沉淀池的有效体积来确定污泥容量。
沉淀池的有效体积可以通过计算沉淀池的总体积减去污泥底板的体积来得到。
V=A×H其中,V是沉淀池的总体积,A是水面面积,H是深度。
沉淀池中的污泥一般采用泥底流出方式排除。
泥底板的体积可以通过计算泥底板的面积与高度来得到。
4.污泥泵排泥时间计算污泥泵排泥时间是指从沉淀池中排泥的时间,通常以分钟为单位。
污泥泵排泥时间可以通过计算泥底板上沉淀的污泥的总质量与泵的排泥能力来得到。
T=M/(Qp)其中,T是排泥时间,M是泥底板上沉淀的污泥的质量,Qp是泵的排泥能力。
以上是几种常见的沉淀池设计计算方法,通过计算沉淀时间、池体尺寸、污泥容量和污泥泵排泥时间等参数,可以实现沉淀池的合理设计,提高水处理效果。
对于具体的设计,还需要考虑水质特征、处理工艺和设备的选择等因素。
免费的目录1水解酸化池设计计算 (1)1.1水解池的容积 (1)1.4.1堰长设计 (2)1.4.2出水堰的形式及尺寸 (2)1.4.3堰上水头h.................... 错误!未定义书签。
11.4.4集水水槽宽B (3)1.4.5集水槽深度 (3)1.4.6进水堰简略图 (4)1水解酸化池设计计算1.1水解池的容积 水解池的容积VQHRT K V Z =式中:V ——水解池容积,m 3;z K ——总变化系数,1.5;Q ——设计流量,m 3/h ;HRT ——水力停留时间,h ,取6h ;则345655.1m V =⨯⨯=印染废水中水解池,分为4格,每格的长为2m ,宽为2米,设备中有效水深高度为3m ,则每格水解池容积为16m 3,4格的水解池体积为48m 3。
1.2水解池上升流速校核已知反应器高度为:m H 4=;反应器的高度与上升流速之间的关系如下:HRTHHRTA V A Q ===ν 式中: ν——上升流速(m/h );Q ——设计流量,m 3/h ;V ——水解池容积,m 3;A ——反应器表面积,m 2;HRT ——水力停留时间,h ,取6h ;则)/(67.064h m ==ν水解反应器的上升流速h m /8.1~5.0=ν,ν符合设计要求。
1.3配水方式采用总管进水,管径为DN100,池底分支式配水,支管为DN50,支管上均匀排布小孔为出水口,支管距离池底100mm ,均匀布置在池底。
1.4进水堰设计已知每格沉淀池进水流量s m hm Q /00035.036004/533'=⨯=; 1.4.1堰长设计取出水堰负荷)/(2.0'm s L q ⋅=(根据《城市污水厂处理设施设计计算》P377中记载:取出水堰负荷不宜大于)/(7.1m s L ⋅)。
''qQ L =式中:L ——堰长m ;'q ——出水堰负荷,)/(m s L ⋅,取0.2)/(m s L ⋅;'Q ——设计流量,m 3/s ;则75.12.0100000035.0''=⨯==qQ L m ,取堰长m L 2=。
沉淀池设计计算1、清水区流量Q总取实际值表面负荷V(一般取12m3/(m2.h)~25 m3/(m2.h))斜管结构占用面积按4%计清水池面积F=(1+4%)Q总/V2、集水槽每个小矩形堰流量q流量系数m取0.43堰宽b取0.05m堰上水头H=(q/mb(2g)0.5)1.5集水槽宽取b’堰口负荷V 一般取7L/(m.s)进水流量Q总(单位:m3/s)单个集水槽长度L集水槽数量n=Q总/VL单个集水槽流量q=Q总/n末端临界水深h k=(q2/gb’2)^(1/3)集水槽起端水深h=1.73h k集水槽水头损失:h-h k3、池体高度⑴超高H1=0.4m 根据室外给排水设计规范⑵斜管沉淀池清水区高度H2=1.0m⑶斜管倾角α长度L 斜管高度H3=L.SINαα一般取值60°⑷斜管沉淀池布水区高度H4=1.5m⑸污泥回流比R1(0.5%~4%),污泥浓缩时间t n=8h 流量Q总清水区面积取F污泥浓缩高度H5=R1Q总t n/F(6) 贮泥区高度H6=0.95m(7) 总高H=H1+H2+H3+H4+H5+H6混合室计算1、混合室长、宽:L 混合池底面积s 水深:H+0.2(混合池高度比沉淀池高0.2m)流量Q总S=Q总/(H+0.2)L=S0.5停留时间t=S(H+0.2)/Q总2、最小水力梯度G(一般取500~1000)水温T(15℃)停留时间t水的粘度μ0.00114pa.s最小吸收功率p=μG2Q T t/1000搅拌机总机械效率η1搅拌机传动效率η2旋转轴所需电机功率N=P/η1/η23、池体边长L池体当量直径:D0=(4L.L/3.14)^(1/2)搅拌器直径D=(1/3~2/3)D0搅拌器外缘速度V(1m/s~5m/s)转速n=60v/3.14D搅拌机距池底H=(0.5~1.0)D4、搅拌器排液量Q=k q nD3(k q桨液流量准数取0.77)n:搅拌器转速D:搅拌器直径体积循环次数:Z=Qt/vt:混合时间v:混合池有效容积絮凝室面积1、絮凝渠水深H+100 流量Q总反应时间t(6min~10min)F=tQ总/(H+100)2、絮凝回流比R (一般取10)导流筒内设计流量:Qn=1/2(R+1) Q总3、导流筒内流速V取0.6m/s导流筒直径D=(4Q总/3.14V)^(1/2)4、导流筒下部喇叭口高度H 角度αα一般取60°导流筒下缘直径D’=D+2Hcotα5、导流筒上缘以上部分流速V (一般取0.25m/s)导流筒上缘距水面高度H=Qn/3.14VD’5、搅拌机功率搅拌机提升水量Qt=Qn 机械效率η(一般取0.75)提升扬程Ht (一般取0.15m)γ水的密度γ=1000kg/m3N絮=Qt.Ht. γ/102η。
净(制)构筑物根据人饮工程设计规模Q =6000m ³/d ,为自流引水处理,运行时间为24小时/天,日处理水量约6000 m ³,每小时水处理能力为250 m ³/h 。
水厂建两组净水建筑物,每组日处理水量约3000 m ³,每小时水处理能力为125 m ³/h 。
水厂建净水建筑物两组四座,单组净化能力Q =125m ³/h 。
水源水质化验结果表明,浑浊度、大肠菌群、细菌总数三项指标超标。
为保证人民生活饮水卫生达国标GB5749-85要求,拟定净水构筑物工艺流程为:进水→旋流孔室反应→斜管沉淀→重力式无阀滤池→清水池。
现只计算一座(1500 m ³)的净水结构:一.穿孔旋流孔室式反应池设计参数:反应池采用6格,反应时间20分钟,池高度拟定为3.7m ,V 进口=1.0m/s ,V6=0.2(m/s )。
反应池总容积W=QT/60=62.5×20/60=20.83(m ³)反应池面积F=W/H=20.83/2.5=8.332(㎡)单格池面积f =F/n =8.332/6=1.389(㎡)设计拟定为正8边形内切圆直径为1.3m 的单个反应池的面积为1.4㎡,满足设计要求。
各单池进孔口流速=1.0+0.2-0.2×T t n )12.00.1(122-+ =1.2-0.2T t n241+ 第一格进口管径采用0.15mtn =n Tn '' 式中n ''——第n 格序数n =6格t1=3.33(min ) t2=6.67(min )t3=10(min ) t4=13.33(min )t5=16.67(min) t6=20(min)V1=1.2-0.2×sqrt((1+24×3.33/20))=0.75(m/s)V2=1.2-0.2×sqrt((1+24×6.67/20))=0.6(m/s)同理可求得:V3=0.48(m/s) V4=0.38(m/s)V5=0.28(m/s) V6=0.2(m/s)各格进口尺寸,1—6格拟定为正8边形由流量公式得:Q=62.5m3/h=0.01736 m³/s据公式Fn=Q/Vn计算得:F1=0.01736/0.75=0.0231(㎡)实际采用孔口尺寸:b×h=0.11×0.22=0.0242(㎡)F2=0.01736/0.6=0.0289(㎡)实际采用孔口尺寸:b×h=0.12×0.24=0.0288(㎡)同理得:F3=0.0363(㎡)实际采用孔口尺寸:b×h=0.14×0.27=0.0378(㎡)F4=0.0462(㎡)实际采用孔口尺寸:b×h=0.16×0.29=0.0464(㎡)F5=0.0613(㎡)实际采用孔口尺寸:b×h=0.18×0.34=0.0612(㎡)F6=0.0868(㎡)实际采用孔口尺寸:b×h=0.21×0.42=0.0882(㎡)GT值计算,要求梯度值GT在104—105之间由公式G式中h=1.06 V2n/2g为孔口水头损失经计算得:H进口=0.054 h1=0.03 h2=0.019 h3=0.012 h4=0.008 h5=0.004则h=h进口+h1+h2……h5=0.111(m)G2010029.160111.05004⨯⨯⨯⨯-=21.2(L/s)(G=20~60s-1)GT=21.2×1500=31800≈3.18×104在104—105之间,故能满足要求。
各类沉淀池设计参数设计计算
一、平流沉淀池
1、设计原则:
既要考虑水流运行的规律,也要确定结构的形式与尺寸,以保证沉淀池的清洁有效性,沉降池淤积过程的一致性,沉降池的投资与维护活动的实施。
2、设计参数:
(1)沉淀池的数量:根据污水处理工艺需求确定沉淀池的数量,如需要两级沉淀,则应设两个沉淀池;
(2)沉淀池的流量:根据沉淀池的有效容积,污水排放量,设定沉淀池的流量;
(3)沉淀池的形式:一般采用水平流平流沉淀池,也可采用狭窄流缝沉淀池,当特殊条件及污水浓度较高时,可采用水平流四段式沉淀池;
(4)沉淀池的容量:沉淀池的容量应考虑污水流量、进水水质、沉淀物浓度等因素,容量应保证沉淀时间大于1小时;
(5)池体深度:池体深度应满足在沉淀物沉淀时间内,池体可以充分混合,一般应不小于3.5~4.0m;
(6)池体布局:池体布局与流量有关,一般在流量较大时,应采用分流布局,以达到良好的混合效果;
二、辐流沉淀池
1、设计原则:
辐流沉淀池原理是利用辐射流,以改变水流的流向和流速,使受到抛散和回流的作用。
水解池设计计算1.1水解池的容积水解池的容积VQHRTK V Z =式中:V ——水解池容积,m 3;z K ——总变化系数,1.5;Q ——设计流量,m 3/h ;HRT ——水力停留时间,h 取6h ;则345655.1m V =⨯⨯=印染废水中水解池,分为4格,每格的长为2m ,宽为2米,设备中有效水深高度为3m ,则每格水解池容积为16m 3,4格的水解池体积为48m 3。
1.2水解池上升流速校核已知反应器高度为:m H 4=;反应器的高度与上升流速之间的关系如下:HRTH HRTA V A Q ===ν式中:ν——上升流速(m/h );Q ——设计流量,m 3/h ;V ——水解池容积,m 3;A ——反应器表面积,m 2;HRT ——水力停留时间,h ,取6h ;则)/(67.064h m ==ν水解反应器的上升流速h m /8.1~5.0=ν,ν符合设计要求。
1.3配水方式采用总管进水,管径为DN100,池底分支式配水,支管为DN50,支管上均匀排布小孔为出水口,支管距离池底100mm ,均匀布置在池底。
1.4进水堰设计已知每格沉淀池进水流量s m h m Q /00035.036004/533'=⨯=;1.4.1堰长设计取出水堰负荷)/(2.0'm s L q ⋅=(根据《城市污水厂处理设施设计计算》P377中记载:取出水堰负荷不宜大于)/(7.1m s L ⋅)。
''qQ L =式中:L ——堰长m ;'q ——出水堰负荷,)/(m s L ⋅,取0.2)/(m s L ⋅;'Q ——设计流量,m 3/s ;则75.12.010*******.0''=⨯==qQ L m ,取堰长m L 2=。
1.4.2出水堰的形式及尺寸出水收集器采用UPVC 自制90º三角堰出水。
直接查第二版《给排水设计手册》第一册常用资料P683页,当设计水量为Q =5m 3/h 时,过堰水深为63mm ,每米堰板设6个堰口,过堰流速为s m /395.11= 。
沉淀池的设计计算法沉淀池(Settling tank)是一个重要的水处理设备,用于去除悬浮物以及颗粒物质。
它通常被广泛应用于污水处理厂和水处理工程中。
沉淀池的设计和计算法是确保其有效运行的关键。
下面将详细介绍沉淀池的设计和计算法。
1.沉淀池尺寸:沉淀池的尺寸主要取决于进水速度、水流量和所需的停留时间。
设计时需要确定所需的停留时间,通常建议在30分钟到2小时之间。
停留时间的选择将会影响沉淀池的尺寸。
停留时间增加可以提高悬浮物和颗粒物质的沉降效果,但也会增加沉淀池的尺寸。
因此,在实际设计中,需要综合考虑水处理要求和经济性。
2. 进水速度:沉淀池的进水速度也是一个重要参数。
一般情况下,进水速度不能超过水流的沉降速度,以确保悬浮物可以沉淀下来。
根据Stokes公式,可以通过下式计算水流的沉降速度:V=(g*d^2*(ρ-ρw))/(18*μ)其中,V是沉降速度,g是重力加速度,d是颗粒物质的直径,ρ是颗粒物质的密度,ρw是水的密度,μ是水的粘度。
设计时,进水速度应小于沉降速度。
3. 池底速度:沉淀池的池底速度应足够小,以防止悬浮物再次悬浮起来。
一般来说,池底速度应小于1 cm/s。
可以通过下式计算池底的速度:Vb=Q/(A*H)其中,Vb是池底速度,Q是水的流量,A是池底面积,H是沉淀池的深度。
设计时,可以根据池底速度来确定沉淀池的面积。
4.池底斜度:沉淀池的池底应具有适当的斜度,以便收集沉淀下来的物质并排出。
一般来说,斜度的设计应根据所使用的污水流量和停留时间来确定。
通常建议斜度为1:2到1:3,以确保沉淀物顺利排出。
以上是沉淀池设计时需要考虑的主要因素。
在实际设计中,为了确保沉淀池的有效运行,还需要对汇水坑、沉降区域、底部排出口等进行设计,并进行适当的尺寸计算和结构设计。
总结一下,沉淀池设计和计算法包括确定停留时间、进水速度、池底速度和池底斜度等重要参数。
在设计过程中,需要综合考虑水处理要求、经济性以及相关的水流动力学参数。
水解酸化池体的计算(1)水解(酸化)池有效池容V有效是根据污水在池内的水力停留时间计算的。
水解(酸化)池内水力停留时间需根据污水可生化性、进水有机物浓度、当地的平均气温情况综合而定,一般为 2.5-4.5h.考虑综合情况,本工程设计中水力停留时间取 T = 4 h,本工程设计流量 Q = 400 m3/d =16.67 m3/h,取 T = 4 h,则有效池容为:水解酸化池的有效容积 V有效 = QT式中 V有效——水解酸化池的有效容积,m3 ,Q----进入水解酸化池的废水平均流量,m3/h ;T----废水在水解酸化池中的水力停留时间, h本工程 Q = 16.67 m3/h,T = 4 h,代入公式后:V有效 = 16.67 × 4 = 66.68 m3 ,对于水解酸化反应器,为了保持其处理的高效率,必须保持池内足够多的活性污泥,同时要使进入反应器的废水尽量快地与活性污泥混合,增加活性污泥与进水有机物的接触,这就要求上升流速越高越好。
但过高的上升流速又会破坏活性污泥层对进水中SS的生物截留作用,并对活性污泥床进行冲刷,从而将活性污泥带入反应器的出水系统中,使活性污泥流失并使出水效果变差,所以保持合适的上升流速是必要的。
根据实际工程经验,水解酸化池内上升流速V上升一般控制在0.8-1.8 m/h 较合适。
本工程的上升流速V上升取 0.8 m/h ,所以水解酸化池的有效高度为:H1 = V上升 × T = 0.8 × 4 = 3.2 m为了保证污水进入池内后能与活性污泥层快速均匀地混合,所以本设计在池体下部专门设有多槽布水区。
每条布水槽的截面为上宽下窄的梯形,其高度为0.4 m ,下部水力流速为 1.4 m/h ,上部水力流速为 0.8 m/h 。
池内实际有效高度为 H有效 = H1 + 0.4 = 3.2 + 0.4 = 3.6 m ,加上池内超高取 0.4 m ,水解池实际总高度为 H = H有效 + 0.4 = 3.6 + 0.4 = 4 m 。
水解酸化池的设计计算
(1)水解池的容积V
32.2*20.8*5229Z V K HRT m ===
式中 V ——水解池容积,3m
Z K ——总变化系数, 2.2z K =
Q ——设计流量,3/m h ,33500/20.8/Q m d m h == HRT ——水力停留时间,取5HRT h =
乳品废水中设计的水解池,分为2格。
设每格池宽为3m ,水深为4m ,按长宽比2:1设计,则每组水解池池长为2*36m =,则每组水解池的容积为32*6*3*4144m =。
(2)水解池上升流速核算
反应器的高度为:4H m =,反应器的高度与上升流速之间的关系为: 40.8/5
Q V H V m h A HRTA HRT ===== 式中
v ——上升流速,/m h Q ——设计流量,3/m h
V ——水解池容积,3m
A ——反应器表面积,2m
HRT ——水力停留时间,取5HRT h =
水解反应器的上升流速0.5~0.8/v m h =,v 符合设计要求。
(3)配水方式
采用穿孔管布水器(分支式配水方式),配水支管出水口距池底200mm ,位
于服务面积的中心,出水管孔径为20mm。
(4)出水收集
出水采用钢板矩形堰。
(5)排泥系统设计
采用静压排泥装置,沿矩形池纵向多点排泥,排泥点设在污泥区中上部。
污泥排放采用定时排泥,每日1-2次,另外,由于反应器底部可能会积累颗粒物质和小砂砺,需在水解池底部设排泥管。
3.3水解酸化池 3.3.2预去除率表3-2 调节池预去除率表3.3.3池体积算最大设计流量:Q max =180.5m 3/h1.有效容积V :V=Q max t=180.5×5=902.5m 3 t :停留时间,取 5 h 。
取池有效高度H=5.5m ,其中超高0.5m ,则有效水深h=5m 。
池面积2VA==180.5m h取池宽B=7m ,则池长AL==25.8m B2.上升流速校核:h 5v===1m /HRT 5h (在0.8-1.8m/h 内) 3.3.4布水配水系统1)配水方式:本设计采用大阻力配水系统,为了配水均匀一般对称布置,各支管出水口向下句池底约20cm ,位于所服务面积的中心。
查《曝气生物滤池污水处理新技术及工程实例》其设计参数如下: 管式大阻力配水系统设计参数表2)干管管径的设计计算 Q max =0.05m/s去干管流速为1.4m/s,则干管横切面积为:20.050.0361.4Q S m v ===所以管径0.214mm D ==m 取D=220mm校核:22440.05 1.32/0.22 3.14Q Q v m s S D π⨯====⨯ 在1.0~2.5m/s 范围内 《给排水设计手册》第一册选用DN=350mm 的钢管 3) 布水支管的设计计算去布水支管的中心间距为0.45m ,则支管的间距数为18400.45n ==个支管数为(40-1)错误!未找到引用源。
2=78根 每根支管的进口流量0.1160.0014978q ==m 3/s 所以采用管径为DN30mm 的布水支管,则流速为22q 440.00149v=2.09/S 0.033.14q m s D π⨯===⨯ 介于1.5~2.5m/s 之间 每根支管的长度为:140.526.522B d l m --⨯=== 4)出水孔的设计计算:一般孔径在9—12mm 之间,本设计选取12mm 孔径的出水孔。
沉淀池设计计算主要的设计计算有:(1)沉淀区有效水深2h2h q t =⋅ (2-15)式中 q — 表面负荷,m 3/(m 2·h);(单位时间内通过沉淀池单位表面积的流量)t — 停留时间,h 。
(2)沉淀区总面积Amax 3600Q A q⨯= (2-16) 式中 m a x Q — 最大设计流量,m 3/s 。
(3)沉淀区有效容积V 112V A h =⋅ A 指的是沉淀区总面积,h 2指的是沉淀区有效水深或 1max V Q t =⋅ (2-18)(4)沉淀区长度Lt L υ6.3= (2-19)式中 υ— 最大设计流量时的水平流速,mm/s 。
按表面负荷设计平流池时,可按水平流速进行校核。
最大水平流速:初沉池7mm/s ,二沉池5 mm/s 。
(5)沉淀区总宽BLA B = (A 指的是沉淀区总面积,L 是沉淀区长度 )(6)沉淀池座数或分格数nbB n = (B 沉淀区总宽度) 式中 b — 每座或每格沉淀池的宽度,m 。
沉淀池每格宽度(或导流墙间距)宜为3~8M ,(7)污泥区容积W污泥区容积应根据每日沉下的污泥量和污泥储存周期决定,计算公式为:T P C C Q W ⋅--=)100(100)(10γ (2-22)或 1000SNT W = (2-23) 式中 Q —设计流量, m 3/d ;C 0、C 1—进、出水中的悬浮物浓度, kg/m 3; γ—污泥密度,污泥主要为有机物且含水量水率大于95%时,取1000 kg/m 3;P —污泥含水率,一般取95%~97%;T —两次排泥的时间间隔;S —每人每天产生的污泥量,L/(人·d);N —设计人口数。
根据污泥区容积进一步确定、核算污泥斗的尺寸。
(8)沉淀池总高度H4321h h h h H +++= (2-24)式中 h 1 —超高,采用0.3m ;h 2—沉淀区高度,m ;h 3—缓冲高度,m ;一般取0.5m 。