Stata 11 GMM 广义矩估计
- 格式:pdf
- 大小:529.43 KB
- 文档页数:29
GMM 估计中文讲义2线性模型1212i i i i i i y x x x βεββε=+'''=++ ()0i i E x ε=1i x 是1k ⨯,2i x 是1r ⨯,l k r =+。
如果没有其他约束,β的渐进有效估计量是OLS估计。
现在假设给定一个信息20β=,我们可以把模型写为,11i i i y x βε'=+,()0i i E x ε= 如何估计1β?一种就是OLS 估计。
然而这种方法不是必然有效的,当在()0i i E x ε=方程中有l 个约束,然而1β的维数k l <,这种情况称为过渡识别。
这里有r l k =-比自由参数多的矩约束,我们称r 是过渡约束识别个数。
让(,,,)g y z x β是1l ⨯个方程,参数β为1k ⨯,且k l <,有0(,,,)0i i i Eg y z x β= (1)0β是β的真实值,在上面线性模型中有1(,,)()g y x x y x ββ'=-。
在计量经济学里,这类模型称为矩条件模型。
在统计学中,这称为估计方程。
另外,我们还有一个线性矩条件模型,1i i i y z βε'=+,()0i i E x ε=i z 和i x 的维数都是1k ⨯,且有1l ⨯,k l <,如果k l =则模型是恰好识别,否则是过渡识别。
变量i z 是i x 的一部分或是i x 的函数。
模型(1)可以设置为,0(,,,)()i i i g y z x x y z ββ'=- (2)GMM 估计模型(2)样本均值为11111()(())()n n n i i i i i i n n ng g x y z X y X Z ββββ==='''=-=-∑∑ (3)β的矩估计量就是设置()0n g β=。
对于k l <个方程大于参数的情形,GMM 估计思想就是设置()n g β近可能的接近于零。
gmm估计方法stataGMM 估计方法是一种参数估计方法,它是广义矩估计法的一种特殊形式。
GMM 估计方法通过构造题目中的未知参数的样本矩来估计参数,这种方法可以通过软件 Stata 实现。
在 Stata 中进行 GMM 估计方法,首先需要使用 gmm 命令进行设置。
gmm 命令的基本设置格式如下:gmm depvar (instrum:list varlist) [, option]其中,depvar 是被解释变量,instrum 是工具变量,option 表示其他设置选项。
GMM 估计方法的两个重要参数是工具变量和矩阵权重矩阵。
在Stata 中,可以使用ivregress 命令来生成工具变量。
同时,Stata 还提供了弱工具变量下的优化算法,用户可以通过 ivreg2 命令进行设置。
在进行 GMM 估计方法之前,需要先确定样本矩的形式,并确定权重矩阵的构造方式。
对于 GMM 估计方法的权重矩阵,可以使用被广泛引用的认可的经验记述变量或等权重矩阵来构建。
根据样本数据的特征,选择一种合适的矩阵会产生更精确的估计结果。
在实际应用中,GMM 估计方法可以用于计算模型的峰值位置、变化趋势及其他未知参数。
这种方法在金融学、计量经济学、卫生经济学、国际贸易和宏观经济政策等领域得到广泛应用。
在 Stata 中,通过对gmm 命令中 option 等参数进行设置,可以轻松完成 GMM 估计方法的计算。
总之,GMM 估计方法是一种重要的参数估计方法,Stata 软件的GMM 模块提供了实现该方法的便利性。
无论是在学术研究还是实践应用中,这种方法都拥有广泛应用前景。
GMM估计讲义广义矩估计GMM估计讲义矩条件一个简单的线性回归模型,yx,,,, , 1.1 tT,1,,ttt由残差的均值等于零可得,Eyx(,,)()0,,E, 1.2 tttt方程1.2是理论上的矩条件,对于数据,它的粗略样本矩条件为:T1(yx,,,)0 1.3 ,ttT,1t直观上,当真实值时,由于理论矩为零,样本矩应该越接近于零越好。
求解1.3,,我们得到的矩估计量, ,T1y,tTt,1ˆ,, 1.4 1T1x,tTt,1x但矩条件并不唯一,在1.2两边同时乘以,由残差与变量无关的假设,我们可以得到t另一个矩条件,Exyxx(,,)()0,,E, 1.5 tttttt相似地,我们得到样本的矩条件,T1(yxx,,,)0 1.6 ,tttT,1t这样,我们可以获得,的另一个矩条件估计量,T1yx,ttTt,1ˆ,, 1.7 1T12x,tTt,1其与OLS估计量一致。
为了满足上述两个矩条件,我们可以使用两个矩条件的加权最小估计,即22Jgg()()(),,,,, 1.8 12TT11g,,,(yxx,g,,,(yx,()),()) ,,2ttt1ttTT,,11ttwwww方程1.8说明两个矩条件是同等重要的。
一般的,我们使用权矩阵,,,,11122122最小化目标函数,22,JwgwggwggwggWg()()()()()()(),,,,,,,,,,,, 1.9 11112122112222 为了保证非负,在需要是正定矩阵。
WgEZ()0,,Z 此外还有其他的矩条件,如,是工具变量向量。
tttt一些问题:1(什么矩条件可以使用,Gallant and Tauchen (1996, ET). 2( 什么工具变量可以使用,Bates and White (1993, ET) and Wooldrige (1994, Handbook of Econometrics, IV)3(怎么选择加权矩阵, W一般程序离散时间经济模型的动态规划行为需要运用Euler 方程:Exbh(,)0,, 2.1 m,1ttn,0x:向量; k,1tn,b:估计的参数向量, l,10klmRRR,,:,已知函数。
广义矩估计gmm法
广义矩估计GMM法是一种用于模型参数估计的非线性最小二乘估计方法。
该方法将问
题的解决方案表示为最小化某种“不匹配度”,这一不匹配度也被称作残差。
这种残差将
被度量来确定无论是模型和数据之间,或者模型和数据之间的匹配程度。
广义矩估计GMM
法是一种一般性回归方法,它对待模型和数据的不匹配来自于一种广义矩矩阵(GMM)中
的曲率,该矩阵有着更复杂、更深层次的特征。
它属于GMM统计,该统计可以被用来比较
并分析不同类之间的差异,并预测各种任务的结果,半监督的、无监督的实值型和分类型
估计也是如此。
许多概念、方法和工具在GMM估计中都具有重要的地位,其中包括n阶差异(nRD)、极值过滤器、梯度下降优化法,以及模拟和分层最优化等。
各种标准和技术应用于估计GMM法中,可以提高模型参数的估计准确性,使回归变得更精确、更稳健。
广义矩估计GMM法提供多种不同的参数估计配置,来处理各种数据情况,这些数据情况包括有标准误
差的数据,有偏差的数据,以及有缺失值的数据等。
它还可以应用于时间序列数据,用来
估计模型参数的随机变动,从而改善模型预测准确性。
总之,广义矩估计GMM法是一种模型参数估计的强大工具,它可以用来估计和拟合各
种数据存在的模型参数。
它也可以应用到时间序列数据上,改善模型预测水平,给出一种
准确稳健的模型参数估计,从而使科学研究得到更优良的结果。
stata中gmm模型条件-回复Stata中GMM模型条件GMM,即广义矩估计,是一种统计方法,通过最大化一组矩条件,估计参数的值。
在Stata中,GMM模型常用于解决经济学和金融学中的一些问题,例如处理内生性问题、估计经济模型的参数等。
在本文中,将逐步回答关于Stata中GMM模型的条件问题。
第一步:数据准备在使用GMM模型之前,首先需要准备数据。
假设我们有一个包含自变量、因变量和仪器变量的数据集。
自变量是用来解释因变量的变量,而仪器变量是用来解决内生性问题的变量。
确保数据集存储在Stata的工作区中,并确保数据集命名无重复。
第二步:GMM的基本概念在开始使用GMM模型之前,了解一些基本概念是非常重要的。
GMM 模型通过最大化一组矩条件来估计参数的值。
通常情况下,这组矩条件由期望的样本矩(sample moments)和理论模型的矩(theoretical moments)组成。
第三步:指定理论模型在使用GMM模型之前,需要指定理论模型。
理论模型是根据实际问题构建的模型,用于解释因果关系。
在Stata中,可以使用一阶(first order)或二阶(second order)条件来指定理论模型。
第四步:选择一组仪器变量仪器变量在GMM模型中起着非常重要的作用,能够帮助解决内生性问题。
选择一组适当的仪器变量可以提高模型的效果。
在Stata中,可以使用ivregress命令来估计GMM模型,该命令允许用户指定仪器变量。
第五步:计算样本矩在GMM模型中,样本矩是通过数据集计算得出的。
样本矩用来将理论模型的参数与实际数据相联系。
在Stata中,可以使用egen命令来计算样本矩。
例如,如果我们想要计算平均值的样本矩,可以使用以下代码:egen mean_x = mean(x)第六步:计算理论模型的矩除了样本矩,还需要计算理论模型的矩。
理论模型的矩是基于理论模型的参数和样本数据计算得出的。
在Stata中,可以使用predict命令来计算理论模型的矩。
广义矩估计stata命令一、引言在统计学中,矩估计是一种常用的参数估计方法。
它的基本思想是利用样本矩去估计总体矩,从而得到总体参数的估计值。
广义矩估计是矩估计的一种扩展形式,它可以通过更多的矩条件来估计参数。
在实际应用中,广义矩估计可以更好地适应不同的数据分布和模型。
二、广义矩估计的基本原理广义矩估计的基本原理是利用样本矩和总体矩之间的关系,通过最小化样本矩与总体矩之间的差异来估计参数。
在实际应用中,广义矩估计可以通过不同的矩条件来估计参数,从而适应不同的数据分布和模型。
三、广义矩估计在Stata中的应用Stata是一种常用的统计软件,它提供了广义矩估计的命令。
在Stata中,广义矩估计的命令为gmm。
该命令可以通过指定不同的矩条件来估计参数。
例如,可以通过指定一阶矩条件来估计线性回归模型的参数,也可以通过指定高阶矩条件来估计非线性模型的参数。
四、广义矩估计在实际应用中的例子广义矩估计在实际应用中有着广泛的应用。
例如,在金融领域中,广义矩估计可以用于估计股票价格的波动率。
在医学领域中,广义矩估计可以用于估计药物的剂量反应关系。
在经济学领域中,广义矩估计可以用于估计劳动力市场的供求关系。
五、总结广义矩估计是一种常用的参数估计方法,它可以通过更多的矩条件来估计参数,从而适应不同的数据分布和模型。
在Stata中,广义矩估计的命令为gmm,可以通过指定不同的矩条件来估计参数。
在实际应用中,广义矩估计有着广泛的应用,可以用于估计股票价格的波动率、药物的剂量反应关系以及劳动力市场的供求关系等。
GMM 估计中文讲义2线性模型1i x 是1k ⨯,2i x 是1r ⨯,l k r =+。
如果没有其他约束,β的渐进有效估计量是OLS估计。
现在假设给定一个信息20β=,我们可以把模型写为,11i i i y x βε'=+,()0i i E x ε= 如何估计1β?一种就是OLS 估计。
然而这种方法不是必然有效的,当在()0i i E x ε=方程中有l 个约束,然而1β的维数k l <,这种情况称为过渡识别。
这里有r l k =-比自由参数多的矩约束,我们称r 是过渡约束识别个数。
让(,,,)g y z x β是1l ⨯个方程,参数β为1k ⨯,且k l <,有0(,,,)0i i i Eg y z x β= (1)0β是β的真实值,在上面线性模型中有1(,,)()g y x x y x ββ'=-。
在计量经济学里,这类模型称为矩条件模型。
在统计学中,这称为估计方程。
另外,我们还有一个线性矩条件模型,1i i i y z βε'=+,()0i i E x ε=i z 和i x 的维数都是1k ⨯,且有1l ⨯,k l <,如果k l =则模型是恰好识别,否则是过渡识别。
变量i z 是i x 的一部分或是i x 的函数。
模型(1)可以设置为,0(,,,)()i i i g y z x x y z ββ'=- (2)GMM 估计模型(2)样本均值为11111()(())()n n n i i i i i i n n ng g x y z X y X Z ββββ==='''=-=-∑∑ (3)β的矩估计量就是设置()0n g β=。
对于k l <个方程大于参数的情形,GMM 估计思想就是设置()n g β近可能的接近于零。
对于l l ⨯加权矩阵W 0n >,让这是向量()n g β长度的非负测度。
例如,如果W n I =,则有2()()()()n n n n n n J g g g ββββ'=⋅=⋅。
gmm的stata操作
GMM的Stata操作
广义矩估计(GMM)是一种常用的统计方法,它可以用来估计参数,检验假设和进行预测。
在Stata中,GMM可以通过使用ivregress命令来实现。
在本文中,我们将介绍如何使用Stata进行GMM操作。
首先,我们需要准备数据。
假设我们有一个包含自变量x和因变量y 的数据集。
我们还需要一个工具变量z,它与x相关,但与y不相关。
我们的目标是估计x对y的影响。
接下来,我们需要使用ivregress命令来进行GMM操作。
该命令的语法如下:
ivregress gmm (y = x) (x = z), robust
其中,gmm表示我们要进行广义矩估计,(y = x)表示我们要估计y对x的影响,(x = z)表示我们要使用z作为工具变量,robust表示我们要进行异方差稳健性检验。
执行该命令后,Stata将输出估计结果。
我们可以使用estat命令来查
看更多的统计信息。
例如,我们可以使用estat overid命令来进行工具变量有效性检验。
除了ivregress命令外,Stata还提供了其他一些命令来进行GMM操作。
例如,xtivreg命令可以用于面板数据,gmm命令可以用于非线性模型。
总之,GMM是一种非常有用的统计方法,可以用于估计参数,检验假设和进行预测。
在Stata中,我们可以使用ivregress命令来进行GMM操作。
stata中gmm模型条件
在Stata中使用广义矩估计(Generalized Method of Moments, GMM)模型,你需要满足以下条件:
1. 工具变量和误差项的无相关性:在GMM估计中,工具变量(instrumental variables)必须与误差项无关。
这意味着工具变量必须与
内生解释变量相关,但与误差项无关。
2. 矩条件的满足:GMM估计使用了一组矩条件,这些条件是模型设定正确时的期望性质。
这些矩条件定义了模型参数应该满足的条件,通过最小化实际矩与模型预测的矩之间的偏差来估计参数。
3. 样本数据的完整性:你需要有足够的数据来估计模型,并且数据不应包含缺失值或异常值。
4. 模型设定的正确性:你应确保所选择的模型与你的数据和分析目标相匹配。
模型的设定应反映你的理论或假设,并且应能够解释你要分析的现象。
5. 工具变量的有效性:你应选择与内生解释变量相关,但与误差项无关的工具变量。
这有助于减少估计的偏差和标准误。
6. 样本的同质性或代表性:GMM估计在处理不同类型或不同子群体的样本时可能不稳定。
因此,应确保你的样本具有同质性或代表性,以获得更可靠的结果。
为了满足这些条件,你可能需要进行一些预备性分析和诊断检验。
例如,你可以进行相关性分析以检查工具变量与误差项之间的相关性,进行样本同质性或代表性的检验,以及进行模型设定诊断以验证模型的正确性。