GMM广义矩估计
- 格式:ppt
- 大小:586.00 KB
- 文档页数:39
generalized method of moments
广义矩估计,即GMM(Generalized method of moments),是基于模型实际参数满足一定矩条件而形成的一种参数估计方法,是矩估计方法的一般化。
只要模型设定正确,则总能找到该模型实际参数满足的若干矩条件而采用GMM 估计。
在随机抽样中,样本统计量将依概率收敛于某个常数。
这个常数又是分布中未知参数的一个函数。
即在不知道分布的情况下,利用样本矩构造方程(包含总体的未知参数),利用这些方程求得总体的未知参数。
广义矩估计是统计学和计量经济学中常用的一种半参数估计方法,Lars Peter Hansen1982年根据Karl Pearson1894年发明的矩
估计(method of moments)发展而来。
GMM的发明是Hansen得到2013年诺贝尔经济学奖的原因之一。
GMM的产生主要使用时机是最小二乘法的严格假设条件不成立时(例:解释变数与误差项有相关性),并且不知道资料的机率分布,以致不能使用最大似然估计时,GMM方法的宽松假设使得它在计量经济学(Econometrics)中得到广泛应用。
GMM估计法具有一致性、渐近正态分布,有效率等性质。
GMM估计讲义广义矩估计GMM估计讲义矩条件一个简单的线性回归模型,yx,,,, , 1.1 tT,1,,ttt由残差的均值等于零可得,Eyx(,,)()0,,E, 1.2 tttt方程1.2是理论上的矩条件,对于数据,它的粗略样本矩条件为:T1(yx,,,)0 1.3 ,ttT,1t直观上,当真实值时,由于理论矩为零,样本矩应该越接近于零越好。
求解1.3,,我们得到的矩估计量, ,T1y,tTt,1ˆ,, 1.4 1T1x,tTt,1x但矩条件并不唯一,在1.2两边同时乘以,由残差与变量无关的假设,我们可以得到t另一个矩条件,Exyxx(,,)()0,,E, 1.5 tttttt相似地,我们得到样本的矩条件,T1(yxx,,,)0 1.6 ,tttT,1t这样,我们可以获得,的另一个矩条件估计量,T1yx,ttTt,1ˆ,, 1.7 1T12x,tTt,1其与OLS估计量一致。
为了满足上述两个矩条件,我们可以使用两个矩条件的加权最小估计,即22Jgg()()(),,,,, 1.8 12TT11g,,,(yxx,g,,,(yx,()),()) ,,2ttt1ttTT,,11ttwwww方程1.8说明两个矩条件是同等重要的。
一般的,我们使用权矩阵,,,,11122122最小化目标函数,22,JwgwggwggwggWg()()()()()()(),,,,,,,,,,,, 1.9 11112122112222 为了保证非负,在需要是正定矩阵。
WgEZ()0,,Z 此外还有其他的矩条件,如,是工具变量向量。
tttt一些问题:1(什么矩条件可以使用,Gallant and Tauchen (1996, ET). 2( 什么工具变量可以使用,Bates and White (1993, ET) and Wooldrige (1994, Handbook of Econometrics, IV)3(怎么选择加权矩阵, W一般程序离散时间经济模型的动态规划行为需要运用Euler 方程:Exbh(,)0,, 2.1 m,1ttn,0x:向量; k,1tn,b:估计的参数向量, l,10klmRRR,,:,已知函数。
广义矩估计gmm法
广义矩估计GMM法是一种用于模型参数估计的非线性最小二乘估计方法。
该方法将问
题的解决方案表示为最小化某种“不匹配度”,这一不匹配度也被称作残差。
这种残差将
被度量来确定无论是模型和数据之间,或者模型和数据之间的匹配程度。
广义矩估计GMM
法是一种一般性回归方法,它对待模型和数据的不匹配来自于一种广义矩矩阵(GMM)中
的曲率,该矩阵有着更复杂、更深层次的特征。
它属于GMM统计,该统计可以被用来比较
并分析不同类之间的差异,并预测各种任务的结果,半监督的、无监督的实值型和分类型
估计也是如此。
许多概念、方法和工具在GMM估计中都具有重要的地位,其中包括n阶差异(nRD)、极值过滤器、梯度下降优化法,以及模拟和分层最优化等。
各种标准和技术应用于估计GMM法中,可以提高模型参数的估计准确性,使回归变得更精确、更稳健。
广义矩估计GMM法提供多种不同的参数估计配置,来处理各种数据情况,这些数据情况包括有标准误
差的数据,有偏差的数据,以及有缺失值的数据等。
它还可以应用于时间序列数据,用来
估计模型参数的随机变动,从而改善模型预测准确性。
总之,广义矩估计GMM法是一种模型参数估计的强大工具,它可以用来估计和拟合各
种数据存在的模型参数。
它也可以应用到时间序列数据上,改善模型预测水平,给出一种
准确稳健的模型参数估计,从而使科学研究得到更优良的结果。
1、广义矩方法(GMM)广义矩方法是基于模型实际参数满足的一些矩条件而形成的一种参数估计方法,是聚集方法的一般化。
GMM的优点:仅需要知道一些矩条件,而不需要知道随机变量的分布密度(如极大似然估计)。
这可能是一个缺陷,因为GMM经常不能对样本中的全部信息进行有效利用。
并且如果如果模型的设定是正确的, 则总能找到该模型实际参数满足的若干矩条件而采用GMM。
广义矩估计选择的矩估计方程个数多于待估参数的个数时, 必须选择参数使它尽可能地与各个矩估计方程配合, 来调和将出现在过度识别系统中的互相冲突的估计。
一种办法就是最小化准则函数。
令θ为参数向量, m(θ)为样本矩条件。
最小化准则函数即使J T = m (θ)′m (θ)最小。
考虑到不同的矩条件所起的作用不同, 人们希望某些矩条件的作用大些、某些矩条件的作用小些, 因此引入了加权矩阵, 它反映了各阶矩在GMM 中的重要程度。
由此问题转化成了使J T = m (θ)′w(θ)m (θ)最小。
这里W (θ) 是一个正定权重矩阵, 它反映了与每一个矩条件相配合的重要性。
GMM 估计量就是使J T最小化时的参数估计量θ, 即θ= argmin [m (θ)′w(θ)m (θ) ]。
其中, m (θ) 为样本矩条件, 是m * 1 维的正交条件。
权重矩阵W (θ) 为m * m 维的正定对称矩阵, θ为L* 1 维向量,L≤m。
为使J T 极小化, 对J T关于θ求导, 得到一阶条件m (θ)′W (θ) m (θ) = 0其中, m (θ) 是m (θ) 关于θ的Jacobian 矩阵。
GMM 估计的核心问题是对加权矩阵的选择问题。
如果选取的矩条件个数恰好等于待估参数的个数, 就属于“恰好识别”( just -ident ified) 的类型, 无论权重矩阵如何选取, 都有最小值0。
如果选取的矩条件个数多于待估参数的个数, 就属于“过度识别”(over-identified)的类型, 这时并不是每个矩条件都能得到满足, 而权重矩阵W决定了各个矩条件的相对重要性。
系统广义矩估计公式一、基本概念。
1. 矩估计(Method of Moments)- 矩估计是基于样本矩来估计总体矩的一种方法。
设总体X的分布函数为F(x;θ),其中θ = (θ_1,θ_2,·s,θ_k)是未知参数向量。
总体的r阶矩μ_r = E(X^r),样本的r阶矩为m_r=(1)/(n)∑_i = 1^nX_i^r。
通过令μ_r=m_r(r = 1,2,·s,k)得到关于θ的方程组,解这个方程组就得到θ的矩估计量。
2. 广义矩估计(Generalized Method of Moments,GMM)- 广义矩估计是矩估计的推广。
它是基于一些矩条件来估计模型参数的方法。
假设存在q个矩条件E[g(X_i,θ)] = 0,其中g(X_i,θ)是X_i和参数θ的函数向量,g(X_i,θ)=(g_1(X_i,θ),g_2(X_i,θ),·s,g_q(X_i,θ))'。
- GMM的目标函数是Q(θ)=n[g_n(θ)]'W_n[g_n(θ)],其中g_n(θ)=(1)/(n)∑_i =1^ng(X_i,θ),W_n是一个正定权重矩阵。
通过最小化Q(θ)得到θ的GMM估计量θ̂。
1. 动态面板数据模型中的应用。
- 考虑动态面板数据模型y_it=α y_i,t - 1+x_it'β+μ_i+ε_it,i = 1,·s,N,t = 1,·s,T,其中y_it是被解释变量,x_it是解释变量向量,μ_i是个体固定效应,ε_it是随机误差项。
- 对于这个模型,一阶差分可以消除个体固定效应μ_i,得到Δ y_it=αΔ y_i,t - 1+Δ x_it'β+Δε_it。
- 系统广义矩估计将水平方程y_it=α y_i,t - 1+x_it'β+μ_i+ε_it和差分方程Δy_it=αΔ y_i,t - 1+Δ x_it'β+Δε_it结合起来进行估计。
广义矩估计(Generalized Method of Moments ,即GMM )一、解释变量内生性检验首先检验解释变量内生性(解释变量内生性的Hausman 检验:使用工具变量法的前提是存在内生解释变量。
Hausman 检验的原假设为:所有解释变量均为外生变量,如果拒绝,则认为存在内生解释变量,要用IV ;反之,如果接受,则认为不存在内生解释变量,应该使用OLS 。
reg ldi lofdiestimates store olsxtivreg ldi (lofdi=l.lofdi ldep lexr)estimates store iv hausman iv ols(在面板数据中使用工具变量,Stata 提供了如下命令来执行2SLS:xtivreg depvar[varlist1] (varlist_2=varlist_iv) (选择项可以为fe ,re 等,表示固定效应、随机效应等。
详见help xtivreg )如果存在内生解释变量,则应该选用工具变量,工具变量个数不少于方程中内生解释变量的个数。
“恰好识别”时用2SLS 。
2SLS 的实质是把内生解释变量分成两部分,即由工具变量所造成的外生的变动部分,以及与扰动项相关的其他部分;然后,把被解释变量对中的这个外生部分进行回归,从而满足OLS 前定变量的要求而得到一致估计量。
t p t q t p 二、异方差与自相关检验在球型扰动项的假定下,2SLS 是最有效的。
但如果扰动项存在异方差或自相关,面板异方差检验:xtgls enc invs exp imp esc mrl,igls panel(het)estimates store heteroxtgls enc invs exp imp esc mrl,iglsestimates store homolocal df = e(N_g) - 1lrtest hetero homo, df(`df')面板自相关:xtserial enc invs exp imp esc mrl则存在一种更有效的方法,即GMM 。
GMM 估计中文讲义2线性模型1212i i i i i i y x x x βεββε=+'''=++ ()0i i E x ε=1i x 是1k ⨯,2i x 是1r ⨯,l k r =+。
如果没有其他约束,β的渐进有效估计量是OLS估计。
现在假设给定一个信息20β=,我们可以把模型写为,11i i i y x βε'=+,()0i i E x ε= 如何估计1β?一种就是OLS 估计。
然而这种方法不是必然有效的,当在()0i i E x ε=方程中有l 个约束,然而1β的维数k l <,这种情况称为过渡识别。
这里有r l k =-比自由参数多的矩约束,我们称r 是过渡约束识别个数。
让(,,,)g y z x β是1l ⨯个方程,参数β为1k ⨯,且k l <,有0(,,,)0i i i Eg y z x β= (1)0β是β的真实值,在上面线性模型中有1(,,)()g y x x y x ββ'=-。
在计量经济学里,这类模型称为矩条件模型。
在统计学中,这称为估计方程。
另外,我们还有一个线性矩条件模型,1i i i y z βε'=+,()0i i E x ε=i z 和i x 的维数都是1k ⨯,且有1l ⨯,k l <,如果k l =则模型是恰好识别,否则是过渡识别。
变量i z 是i x 的一部分或是i x 的函数。
模型(1)可以设置为,0(,,,)()i i i g y z x x y z ββ'=- (2)GMM 估计模型(2)样本均值为11111()(())()n n n i i i i i i n n ng g x y z X y X Z ββββ==='''=-=-∑∑ (3)β的矩估计量就是设置()0n g β=。
对于k l <个方程大于参数的情形,GMM 估计思想就是设置()n g β近可能的接近于零。
gmm广义矩估计GMM(广义矩估计)是一种用于参数估计的统计方法。
它是基于矩的概念发展而来的,通过对观测数据的矩估计,来估计未知参数的值。
GMM广义矩估计在统计学和经济学等领域得到了广泛应用。
在GMM中,我们首先定义一个经验矩,即从观测数据中得到的样本矩。
然后,我们根据理论模型中的矩表达式,得到理论矩。
接下来,我们通过最小化经验矩与理论矩之间的差异,来估计未知参数的值。
GMM广义矩估计的步骤如下:1. 确定理论模型:首先,我们需要确定一个理论模型,该模型描述了观测数据的分布特征。
在经济学中,通常使用概率分布函数来描述变量的分布特征。
2. 确定矩条件:接下来,我们需要确定一组矩条件,即理论模型中的矩表达式。
矩条件是基于理论模型中的变量和参数之间的关系得到的。
3. 计算经验矩:然后,我们从观测数据中计算一组经验矩。
经验矩是观测数据中的样本矩,用于估计理论矩的值。
4. 估计未知参数:通过最小化经验矩与理论矩之间的差异,我们可以得到未知参数的估计值。
这个过程可以使用最小二乘法或其他优化算法来实现。
GMM广义矩估计在经济学中得到了广泛应用。
例如,在计量经济学中,GMM广义矩估计被用于估计经济模型中的参数。
在金融学中,GMM广义矩估计被用于估计资产定价模型中的参数。
在其他领域,GMM广义矩估计也被用于估计其他类型的模型。
GMM广义矩估计具有一些优点。
首先,它是一种非参数估计方法,不需要对概率分布函数做出任何假设。
这使得GMM广义矩估计在处理复杂的数据分布时具有灵活性。
其次,GMM广义矩估计可以处理具有多个未知参数的模型,这使得它在估计复杂模型时具有优势。
此外,GMM广义矩估计还可以通过引入工具变量来解决内生性问题。
然而,GMM广义矩估计也存在一些限制。
首先,它对初始参数值敏感,可能会收敛到局部最优解。
因此,在实际应用中,选择合适的初始参数值非常重要。
其次,GMM广义矩估计对观测数据的分布特征要求较高,如果数据不符合理论模型的假设,估计结果可能不准确。
广义矩估计原理
广义矩估计原理(Generalized Method of Moments,GMM)是
一种统计推断方法,用于估计具有多个未知参数的经济模型。
广义矩估计原理基于矩条件,在矩条件下,模型中的理论矩与实际观测到的矩之间存在一个关系。
通过最大化理论矩与实际矩之间的差异,可以估计模型的未知参数。
具体而言,广义矩估计原理可以通过以下步骤进行推断:
1. 确定一个合适的经济模型,包含多个未知参数。
2. 根据经济理论,得到模型中的理论矩。
3. 收集实际观测数据,并计算实际观测到的矩。
4. 定义一个矩条件,即理论矩与实际矩之间的差异。
这个差异被称为矩条件方程。
5. 通过最小化矩条件方程,可以得到未知参数的估计值。
6. 使用估计的参数值,可以进行经济模型的预测、推断等分析。
广义矩估计原理在实际应用中广泛使用,特别是在经济学、金融学等领域。
它可以用于估计各种经济模型,包括线性模型、非线性模型、计量经济模型等。
同时,GMM方法还可以处理
存在内生性、测量误差等问题的模型估计。