生物力学 物质的粘弹性
- 格式:ppt
- 大小:1.21 MB
- 文档页数:2
粘弹性材料和流变性质在日常生活和科学研究中,我们常常遇到一些物质的性质奇特、令人惊奇。
比如说,某些物质看起来像液体,但是它们可以变形成固体,并且可以保持着不同形状一段时间。
这些物质被称为粘弹性材料。
粘弹性材料的流变性质也是一个十分值得关注的话题。
一、什么是粘弹性材料粘弹性材料是一类有着特殊流变性质的物质,它们能够像液体一样变形流动,也能像弹性固体一样保持形状。
粘弹性材料的这种奇特性质主要来自其微观结构。
粘弹性材料一般由多种分子混合而成,其中一些分子负责让物质保持固体状态,而另一些分子则负责让物质流动。
这样,当外力施加到粘弹性材料上时,固体分子会阻止材料过度变形,从而使其保持形状;而流动分子则会“蜂拥而至”,让物质在外力作用下产生变形。
由于粘弹性材料的这种特殊结构和性质,它们被广泛应用于橡胶、黏合剂、化妆品、食品等领域。
二、粘弹性材料的流变性质粘弹性材料的流变性质十分丰富多彩,下面我们来介绍一些常见的性质。
1. 黏度黏度是指材料抵抗剪切变形的能力大小,也就是材料内部粘附、分子间作用力的大小。
当增加剪切力时,黏度也会随之增加。
粘度与材料的粘弹性直接相关,比如说在花露水制作中,为了瓶盖能够装上可以吸管的器具,需要通过确定适当的粘度来调整液体流动的物理特性。
2. 弹性模量弹性模量是指材料在外力作用下弹性形变的程度。
具有弹性形变的物质通常在外力停止作用后,能够恢复到原来的形状。
弹性模量可以用来表征粘弹性材料的回弹特性。
3. 流变应力流变应力是指材料在外力作用下发生剪切形变时所承受的应力大小。
在粘弹性材料中,流变应力与剪切速率、温度和黏度等因素有关。
比如说,当黏度很高时,流变应力会随着剪切速率的提高而显著下降。
4. 塑性塑性是指材料在外力作用下能够永久形变的特性。
相比之下,弹性形变则更加短暂和易于恢复。
在粘弹性材料中,塑性可以出现在黏度较低的情况下,例如一些液态聚合物。
5. 泊松比泊松比是指材料在一维压缩或拉伸形变时沿着垂直方向的形变程度。
生物软组织力学特性及超弹性模型生物软齟织力学待性属于生物粘弹性固体力学的研究范峙,己广泛应用于生狗怵的基础研允.如机肉讥皮肤国' 心肌阿及布横阿等.为ia袒工程握供了大盘的生物力学数据.宙于生命体结构与功能的复杂性和特殊性.便软组织在变形时表现岀各向杲性、非线性*粘弹性,墜性等特点(珂・其力学模型主要有粘弹性模型利趙弹性摸型.粘弹件锁魁吧研朮生物轮组织的…个早期榄型*理论成筋,c广泛应用到肌罔、闸帯、柏顺、戌|庆、粘贬朋血倚竽轶殂织的生韌力学研咒」山同吋•诫翦地粘押件理论研兗为超禅性模型的发展幵拓了思齬・尽管软组织的力学行为表现出与时间相黄的特性•但崔好应变卒范鬧内(即准静态条件卜[・展魅可将其觇为超弹性体-自上个世紀80年代以来.各圜学者対生物软组织的翘艸峙和为进苗了广泛地研究・程理论利临氐研冗方而血取得了氏足地逬燧・本章首先介细主物软组织力学性能的研宛冇法和歆组织变形时的力学特征.在介绍趙弹性应变能函数王曲,肯龙从连续介质力学出狀.介貂有限变形理论「在这一部分渓及有限变形时的桶种应山/陶变表达方式;隹介绍粗弹性模型吋.就简单的荐向局性应变能碉毀开始・邃歩引入横向同性超弹性模塑・最后提出前卿録腺准静歩轴向力学件能研託方江口因为木文卞要研究家殒前制艘腺在低疵变率下的撞忡力学忤施・故未研JE材料的粘弹杵櫃型.2 1生物软组织力学特性研究方法生樹软组织不冏于常见的金属或高聚物尊材料.其组织结构貝朵.力学ttttfiffi 处环境和实验方註的雖响较大,研覽具力学性醴的硏究方法構像篇考虫鞠理学与工凰学冇面的知HI.生物力学研眾方法主要包含以下儿个主要步悄问:(1)研眾宦砌須纵的i松在学和细观组织结构.以便于理W0FS对镇的几何构翹及对力学性能的滋响.(2)测定问趣屮涉及的M料或组织的力学性葩°在该却需屮・III/试样欣材不便、fj效试禅尺• f不足威试佯的离体狀态,塔加了确宦本构方程的难度,但可以枚为春晶的建立示构方用的粽学厢式,而把某此嚳筛鬲待牛.网实验卿俯定"(3)粮抿物理学基本定律和材科本构方程,推导岀微分方程或积分方程:⑷井清组织嶠肓府工作坏境.得到肖盘义的边界荼件;同时.粥解析圧或坡值法求解边界値何邂*⑸进存生理丈验.验证上述边界値问遞的解.在该步購中,釦必便实验与靂论相一魏・简華地说就绘幣戒拒同的假说;(6)将实验结果与相应的理论解进行对比.验证假设是否合理.求得本构方程:(7)探讨理论与丈验的实际应用。
粘弹性材料的力学行为分析粘弹性材料是一类常见的材料,它们表现出粘性和弹性的特性。
力学行为分析是研究这种材料在受力下的变形和响应的科学方法。
本文将介绍粘弹性材料的力学行为分析及其应用。
一、粘弹性材料的定义和本质特征粘弹性材料是指同时具有粘性和弹性的材料。
粘性即材料在受力时会变形并保持变形一段时间,而弹性则指材料在受力后能够恢复其原始形状。
这两种特性在粘弹性材料中同时存在,且相互耦合。
粘弹性材料的本质特征可以通过应力-应变关系来描述。
一般来说,粘弹性材料的应力与应变并非线性关系,并且会随时间发生变化。
最常用的描述粘弹性材料力学行为的方法是弛豫模量和黏滞阻尼。
二、粘弹性材料的力学模型为了更好地研究和分析粘弹性材料的力学行为,学者们提出了许多不同的力学模型。
以下是其中几种常见的模型。
1. 早期模型 - 弹性体和粘性体并联模型:该模型将粘弹性材料视为由弹性体和粘性体在并联时构成。
其基本假设是材料的应变由弹性体和粘性体的应变之和构成。
这种模型简单且易于理解,但在较长时间尺度下的行为无法解释。
2. 麦西斯模型:麦西斯模型是由Maxwell于1867年提出的,该模型认为粘弹性材料可以视为一系列弹性体与粘性体的串联组合。
这种模型可以较好地描述粘弹性材料的短时间行为,但对长时间行为的描述不佳。
3. 都马模型:都马模型是由Voigt和Kelvin于19世纪末提出的,该模型的基本思想是将麦西斯模型的并联和串联结合在一起。
都马模型能够同时描述材料的短时间和长时间行为,但其计算复杂度较高。
三、粘弹性材料的应用由于粘弹性材料独特的力学行为,在许多领域都有广泛的应用。
1. 粘弹性体的缓冲性能:粘弹性材料的粘性特性使其具有优异的缓冲性能。
例如,在汽车领域,粘弹性材料被广泛应用于减震器的制造,能够减少车辆在行驶过程中的震动并提高乘坐舒适度。
2. 粘弹性体的消能性能:粘弹性材料还具有良好的消能特性,能够吸收能量并减少冲击力。
这一特性使得粘弹性材料在结构工程中应用广泛,如地震减震装置的设计等。
第二节骨的力学特性一、骨结构的生物力学特性:(一)骨的成分与结构特点:1、骨组织由有机物和无机物组成。
其中25%~30%是水,其余70%~75%是无机物和有机物。
成人枯骨含1/3有机物(胶原纤维)和2/3无机物(主要是钙和磷等。
)2、骨的有机成分组成网状结构,无机物填充在有机物的网状结构中(象钢筋水泥结构一样)。
3、全身骨分为长骨、短骨、扁骨和不规则骨。
长骨又称管状骨,两端为骨松质(呈海绵状),中间为骨密质。
(骨密质的多孔性程度占5~30%,骨松质占30~90%)。
(二)骨的生物力学特性:1、弹性和坚固性:弹性是由骨中有机物形成的。
坚固性又称硬度或刚性,是由无机物形成的。
(有人认为骨中的骨胶原承受拉应力,钙盐承受压应力)。
2、骨是人体理想的结构材料—质轻而强度大。
(参见P26数据和P27表2-1)。
3、各向异性和应力强度的方向性:各向异性是指骨在不同方向上的力学性质不同,(多孔结构所致)。
应力强度的方向性表现在骨密质与骨松质刚性的差别和各向异性使骨对应力的反应在不同方向上各不相同。
4、耐冲击力和耐持续力差:骨对冲击力的抵抗和持续受力能力较其它材料差。
抗疲劳性能也差。
5、应力对骨结构的影响:外加机械力改变骨结构中的应力。
而应力通常与骨组织之间存在着一种生理平衡。
形式不断变化。
△骨受冲击载荷的特点:骨承受冲击载荷的情况取决于冲击载荷的作用时间和冲击载荷具有的能量。
但短骨、扁骨的耐冲击能力要大于长骨。
实验表明:颅骨的耐冲击能力比长骨高40%左右。
三、骨疲劳(一)骨疲劳的概念:反复作用的循环载荷超过某一生理限度时会使骨组织受到损伤,称为骨疲劳。
(二)骨疲劳的特征:1、疲劳性骨折或永久性弯曲(塑性形变)。
(就象多次弯曲竹杆)2、周期性载荷引起的骨折,开始于应力集中点,形成蚌壳式裂纹。
3、重复载荷的骨疲劳,引起的骨折往往是低载荷的情况。
4、疲劳寿命随载荷增加而减小,随温度升高而减小,随密度的增加而增加。
5、骨的疲劳极限为3.45KN/cm2。
高分子熔体粘弹性的认识班级:0920741 姓名:学号:一、粘弹性的内涵定义:任何兼具粘性与弹性并且强烈以来外力作用时间长短与频率高地的性质。
聚合物分子收到外力作用时,应力落后于应变的现象即滞后现象。
滞后现象的发生是由于橡胶分子链段在运动时受到内摩擦的作用,产生的相位差δ越大,说明链段运动越困难,越是跟不上外力的变化。
这种滞后现象使得每一周期变化需要消耗的功,称为力学损耗,即内耗。
在宏观上表现为降低或者减少振幅,即阻尼。
材料在拉伸回缩循环中,发生滞后现象时,拉伸过程中应变达不到与其应力相对应的平衡值,而回缩时情况正好相反,应变大于与其应力相对应的平衡值。
这种情况下,拉伸时外力对高聚物体系做的功,一方面用来改变分子链段的构象,另一方面用来提供链段运动时克服链段间内摩擦所需要的能量。
回缩时,伸展的分子链重新蜷曲起来,高聚物体系对外做功,但是分子链回缩时的链段运动仍需克服链段间的摩擦阻力。
这样,一个拉伸-回缩循环中,有一部分功被转化为热能损耗掉。
内摩擦阻力越大,滞后现象就越严重,消耗的功也越大,即内耗越大。
聚合物具有的这种特性就叫做聚合物的粘弹性。
很久以来,流动与形变是术语两个范畴的概念,流动是液体材料的属性,而变形是固体(晶体)材料的属性。
液体流动时,表现出粘性行为,产生永久变形,形变不可恢复并耗散掉部分能量。
而固体变形时,表现出弹性行为,其产生的弹性形变在外力撤销时能够恢复,且产生形变时贮存能量,形变回复是时还原能量,材料具有弹性记忆效应。
通常液体流动时遵从牛顿流动定律——材料所受的剪切应力与剪切速率成正比(σ=ηογ。
),且流动过程中总是一个时间过程,只有在一段有限时间内才能观察到材料的流动。
而一般固体变形时村从胡克定律——材料所受的应力与形变量成正比(σ=Εε),其应力、应变之间的相应为瞬时响应。
遵从牛顿流动定律的液体成为牛顿流体,遵从胡克定律的固体称胡克弹性体。
聚合物:宏观力学性能强烈依赖于温度和外力作用时间分子运动在外力作用下,高分子材料的性质就会介于弹性材料和粘性材料之间,高分子材料产生形变时应力可同时依赖于应变和应变速率。
生物物理学中的黏弹性理论生物物理学是关注生命体系中物理过程和机理的学科,其中的黏弹性理论是研究柔软物质(如生物组织、高分子橡胶等材料)在压缩和牵伸应力下的表现与特性的理论。
该理论对于生物体积的改变、细胞形态的变化、组织的稳定性及渗透压调节等生命过程起到了重要作用,而黏弹性理论正是为我们解答这些问题提供了理论支持。
黏弹性理论是一种独立的物理化学理论,它将组织或者样品的宏观物理特性与其微观结构和分子行为联系起来。
所谓的黏弹性是指材料在受到外部变形作用时,会表现出两种不同但紧密相关的响应:一是本体应力;二是黏滞(或剪切)应力。
本体应力是很快反应性的,而黏滞(或剪切)应力是缓慢响应的,并且在形变结束后仍然存在。
黏弹性材料的这种特性被称为“记忆效应”,因为它在形变后可以恢复为初始状态。
黏弹性理论有两个基本模型,即Maxwell模型和Kelvin模型,它们都可以用来描述体内高分子的黏弹性行为。
Maxwell模型通过组合一个黏性元件和一个弹性元件实现物质的黏弹性特性。
在这个模型中,弹性元件代表高分子链之间相互连续的的弹性介质,而黏性元件则表示高分子链在受到剪切应力时的相互滑动作用。
相反,Kelvin模型包括一个弹性元件和一系列的黏性元件,其中弹性元件和黏性元件是通过一个阻尼器连接在一起的。
每个黏性元件力学特性不同,因此Kelvin模型更好地描述了默认地在高分子链之间结合,但是相互之间有分离机制的情况。
生物体中有许多结构和生命现象都可以用黏弹性理论来解释。
例如,在组织的形态建模中,黏弹性理论可以用来描述细胞在微环境中的变形过程。
特别是,在组织生长过程中,存储于组织胶原网格中的流体与生长因子可能会对组织的力学行为产生显著影响。
此外,对于细胞摆动和贴壁行为,在非牛顿神经系统的情况下,黏弹性效应可以合理地解释这些生理现象。
黏弹性理论的应用不仅局限于生物医学领域,还应用于食品补充品和生物材料等方面,为这些领域的发展提供了支持。
黏弹性流体引言黏弹性流体是一种特殊的流体,具有介于固体和液体之间的性质。
其黏性使其能够流动,而其弹性使其能够恢复形状。
本文将介绍黏弹性流体的基本概念、性质以及在工程和科学领域中的应用。
基本概念黏性和弹性黏弹性流体的特性主要由黏性和弹性两个方面决定。
黏性是指流体抵抗形变和流动的能力,它使得流体能够流动并保持流动状态。
而弹性是指流体在受到应力后能够恢复原来的形状。
黏弹性流体的特殊之处在于其黏性和弹性之间的协调和平衡。
黏弹性流体的分类黏弹性流体可以分为线性黏弹性流体和非线性黏弹性流体两类。
线性黏弹性流体的应力和应变之间的关系具有线性性质,如胶水和某些塑料。
非线性黏弹性流体的应力和应变之间的关系则不是线性的,常见的例子有血液和胶体溶液。
黏弹性流体的性质流变学流变学是研究物质流动和变形行为的学科。
在黏弹性流体中,流变学描述了应力与变形速率之间的关系。
黏弹性流体的应力可以通过应力应变关系来描述,其中应力与应变率呈指数关系。
这种非线性关系表明黏弹性流体在流动过程中不同位置的变形速率不同。
粘度粘度是衡量黏弹性流体黏性的物理量。
它是指流体内部分子间作用力的大小和分子运动的速度之间的关系。
粘度越大,流体越黏稠;粘度越小,流体越稀薄。
黏弹性流体的粘度通常是变化的,随着应变率的增加而减小,这种现象称为剪切变稀。
刚性模量和阻尼比刚性模量是指黏弹性流体承受外力时的刚性程度。
它是流体中分子与分子之间相互作用力的大小。
阻尼比则衡量了流体内部能量耗散的大小。
阻尼比越大,流体的能量耗散越大,其刚性也相对较高。
黏弹性流体的应用工程领域在工程领域,黏弹性流体的应用非常广泛。
比如,黏弹性流体在润滑剂中的应用可以减少机械设备的摩擦和磨损,提高工作效率和寿命。
此外,黏弹性流体在混凝土工程中被用作掺和剂,以改善混凝土的流动性和抗压强度。
医学领域黏弹性流体在医学领域也有重要的应用。
例如,黏弹性流体被用来制造假肢和矫形器,以帮助残疾人恢复运动功能。