高聚物的力学松驰
- 格式:ppt
- 大小:7.78 MB
- 文档页数:98
说课稿聚合物的力学松弛现象各位领导、老师们,你们好!今天我要进行说课的内容是聚合物的力学松弛现象。
我的说课内容包括如下几个部分:一,说教材;二,说教学目的;三,说教学重点难点;四,说教法;五,说学法;六,说教学过程;七,教学效果分析。
一、说教材的地位和作用本节内容《聚合物的力学松弛现象》是化学工业出版社出版的金日光先生主编的第三版高分子物理第七章第一节内容。
高分子物理是研究高分子物质物理性质的科学。
其主要研究内容为聚合物的分子结构、聚合物的分子运动、聚合物的多种物理性质。
其中本节内容是聚合物黏弹性的表现形式。
本节内容前面承接聚合物的微观分子结构和聚合物的分子运动,所以这部分内容是前面微观知识的宏观体现,且为生产过程中聚合物的成型加工垫定了理论基础。
二、说教学目的1. 知识与技能掌握聚合物黏弹性定义、特点、意义;掌握三种力学松弛现象的定义、原因、影响因素、意义等。
2. 过程与方法通过聚合物分子运动的理论学习,掌握将聚合物的宏观现象与聚合物分子运动相结合的学习方法。
3. 情感态度与价值观调整学习态度,理论联系实际,更好的为高分子类企业生产研究服务。
三、说教学重点难点考虑到聚合物与小分子材料的不同,在吃透教材的基础上,我确定了一下教学重点和难点。
教学重点:聚合物黏弹性定义、特点、意义;四种力学松弛现象的定义、原因、影响因素、意义等。
教学难点:聚合物分子运动明显区别与小分子运动、动态力学条件下聚合物的滞后与内耗是一个难点。
为了讲清教材的重、难点,使学生能够达到本节内容设定的教学目标,接下来我再谈一谈教法和学法。
四、说教法我们都知道分子运动是微观的,是肉眼无法观察到的,而聚合物的大分子运动比普通的小分子运动更复杂。
聚合物的力学松弛现象与聚合物的分子运动特点是息息相关的。
因此,基于本章内容的特点,我主要采用以下几种教学方法。
1. 多媒体演示法用多媒体演示聚合物力学松弛过程中大分子的运动情况。
使抽象的事物形象化。
高分子物理——聚合物的转变与松弛不仅具有运动单元的多样性,而且具有运动方式的多样性。
1(1)大尺寸运动单元:分子链。
(2)小尺寸运动单元:链段、链节、支链、侧基等。
2例如:振动、转动、平动、取向等。
1在一定的温度和外力作用下,高分子链的构象从一种平衡态通过分子热运动过渡到另一种与外界相适应的平衡态所需要的时间。
2高聚物分子运动时,由于运动单元所受到内摩擦阻力一般是很大的,这个过程常常是缓慢完成的,因此这个过程叫做“松弛过程”,也叫做“速度过程”。
3运动单元运动时,均需要克服各自的内摩擦阻力;也就是说,分子运动需要一定的时间,不可能瞬间完成,即依赖时间。
4凡与时间有依赖关系的性质,叫做“松弛性质”。
5(1)回缩曲线(2)回缩关系式可以通过后续的蠕变回复,推导如下关系式:Δx(t)=Δxτ-t/ e0式中,Δx是外力除去后t时刻塑料丝增加的长度值(与塑料丝拉伸前的长度相比),Δx是外力除去前塑料丝增加的长度值。
0(3)讨论由上可得:t =τ时,Δx(t)=Δx/e,也就是说,Δx(t)变化到等于Δx的1/e00倍时所需要的时间,叫做松弛时间τ。
τ越小,则Δx(t)越小,故变化(回缩)得快,即松弛过程快和运动快。
τ越大,则Δx(t)越小,故变化(回缩)得慢,即松弛过程慢和运动慢。
综上所述,τ是用来描述松弛过程快慢的物理量。
6(1)低分子物的松弛时间低分子物也具有松弛时间,只不过很短,τ=10--910~10S,即一般认为是瞬时的。
(2)高分子物的松弛时间高分子物具有松弛时间,τ比较大,且是多分散性的。
1(1)定性分析温度升高,则分子热运动能增大并且聚合物内的空隙(自由体积)增大,松弛过程加快,故松弛时间缩短。
也就是说,松弛时间τ与温度T是有一定关系的。
(2)定量分析根据Arrehnius公式,可得:τ=τexp(ΔE/RT) 0式中,ΔE为运动单元的活化能,可通过?τ-1/T直线的斜率求出。
1.应力松弛:在恒定温度和形变保持不变的情况下,聚合物内部的应力随时间的增加而逐渐衰减的现象。
2.氢键:是极性很强的X-H键上的氢原子,与另外一个键上电负性很大的原子Y的孤对电子相互吸引而形成的一种键。
3.等规聚合物:指全同立构和间同的高聚物。
4.等规度:高聚物中含有全同立构和间同立构总的百分数。
5.聚合物的粘弹性:聚合物的形变和发展具有时间依赖性,这种性质介于理想弹性体和理想粘性体之间,称为粘弹性。
1999年1.玻璃化温度:玻璃态与高弹态之间的转变即玻璃化转变,所对应的转变温度。
2.脆点(化)温度:当温度低于某个温度Tb时,玻璃态高聚物不能发展强迫高弹形变,而必定发生脆性断裂,这个温度称为脆化温度。
3.溶解度参数:通常将内聚能密度的平方根定义为溶解度参数d,溶质和溶剂的溶解度参数愈接近,两者愈能相互溶解。
4.柔顺性:高分子链能够不断改变其构象的性质或高分子能够卷曲成无规线团的能力。
5.泊松比:材料横向单位宽度的减少与纵向单位长度的增加之比值。
6.表观粘度:与牛顿粘度定义相类比,将非牛顿流体的粘度定义为剪切应力与剪切速率之比,其值称为表观粘度,即。
2000年1.链段:把由若干个键组成的一段链作为一个独立运动的单元,称为链段。
2.构型:构型是对分子中的最近邻原子间的相对位臵的表征,也就是指分子汇总由化学键所固定的原子在空间的几何排列。
3.构象:由于单键内旋转而产生的分子在空间的不同形态。
4.熔限:结晶高聚物有一个较宽的熔融温度范围,这个温度范围就叫熔限。
5.熔点:高聚物结晶部分完全熔化的温度。
6.剪切粘度:液体内部反抗在切应力作用系发生薄层流动的内摩擦力,称为剪切粘度。
7.高聚物的屈服:聚合物在外力作用下产生的塑性变形。
2001年1.时温等效原理:升高温度和延长时间对分子运动及高聚物的粘弹行为是等效的,可用一个转换因子αT将某一温度下测定的力学数据变成另一温度下的力学数据。
2002年1.高聚物的熔点:比容-温度曲线上熔融终点处对应的温度为高聚物的熔点。
第四章 高聚物的松弛与转变高聚物通过分子运动表现出不同物理状态或宏观性能。
由于温度改变了高聚物在外场作用下的分子运动模式,使其 物理和力学性能发生了显著的变化。
高分子结构↔分子运动↔高分子性能一、高聚物分子运动与力学状态 1、高聚物分子运动的特点 (1)高分子运动单元的多重性如侧基、连节、链段、整个分子链 转变依赖于外部条件。
最基本的运动单元-链段:● 分子链保持质量中心不变,由于主链上单键内旋转所致, 一部分链段相对于另一部分链段的运动。
● 链段大小按统计规律变化,平均20~50个链节组成; ● 链段运动对应着聚合物的玻璃化转变(Tg )。
(2)高分子运动的时间依赖性(松弛行为) 举例:橡胶的弹性、水(与作用时间相关)● 小分子运动速度快,通常观察不到松弛现象; ● 高聚物分子质量大,相互作用强,本体粘度高,分子运动不能瞬间完成 呈现松弛现象; ● 松弛过程:物体从一种平衡状态,通过分子运动,转变为与外场相适应的另一种平衡状态的过程; ● 松弛时间:分子运动完成松弛过程所需要的时间,表征松弛过程快慢地一个物理量; ● 松弛时间谱:多重运动单元。
外力作用使橡皮伸长0L ∆,除去外力,橡皮回缩由快至慢,任一时刻,τteL L -∆=∆0 τ:松弛时间当t =τ时,eL t L 0)(∆=∆若τ很小,如小分子,看不出松弛过程; 若τ很大,0L L ∆≈∆,也看不出松弛过程;只有τ与t 处于同一数量级,才能看出L ∆随时间减小的松弛过程。
(3)高分子运动的温度依赖性随着温度由低到高的变化,高聚物分子中的不同运动单元被激发,使高聚物 呈现不同的力学状态:玻璃态、高弹态、粘流态。
温度升高{ 增加分子运动的动能,}加速所有松弛过程增加分子之间的自由体积,对任何一种松弛过程,松弛时间服从Arrhenius 方程:RTHe∆=0ττ∆H :松弛活化能,R :气体常数,T :绝对温度;当∆H 一定时,松弛时间τ主要取决于T ,如随温度升高, 塑料先变软,后流动。
聚合物的力学松弛咱们说到聚合物,可能很多人脑海里浮现的第一个画面就是塑料袋,或者是那个你早上拿着的手机壳。
说实话,聚合物的生活中无处不在,几乎每样东西都离不开它。
好,今天我们要聊的这个话题,有点特别——“力学松弛”。
听着是不是挺高深的,甚至有点让人想绕道走?但是别担心,我来给你捋一捋,把它讲清楚了,咱们就能轻松理解。
首先呢,什么是力学松弛呢?其实它就是指在外力作用下,聚合物会发生一些形变。
可能你会想:“这不就是塑料被拉长或压缩吗?”是的,但这个过程可比你想象的复杂多了。
聚合物就像个“性格”比较独特的家伙,它不像金属那么直接,给它点力,它就咔嚓一声折了,没那么简单。
它比较有耐性,给它点时间,它就会慢慢适应这个力的变化。
就像你拖延症患者一样,明知道明天的事今天就得做,但还是拖啊拖,最后还是硬着头皮去做。
聚合物也差不多,外界的力来了,它开始“思考”,然后慢慢做出反应。
来,我们再举个例子。
你有没有碰到过塑料瓶压缩一下后,放开又“嘭”一声弹回来?那就是力学松弛在起作用。
其实这也能说明聚合物的特性——它会慢慢地“放松”回原来的状态。
也就是说,聚合物一开始受到外力作用,它会出现形变,但随着时间的推移,这个形变会逐渐减弱,甚至恢复到原来的模样。
你可能会觉得很神奇:“这么复杂的变化,为什么它不直接就回到原形呢?”这个其实跟聚合物的分子结构有关系,分子链就像你背后的网状结构,受到力的作用后,它们会发生松弛,慢慢恢复原状。
所以啊,这个“松弛”的过程,跟你我生活中的“缓慢适应”很像。
有时候你会觉得一件事越来越轻松,越来越容易做了,实际上也是你自己慢慢适应了外部的环境和压力。
比如有些人刚开始做运动,肌肉酸痛得像要散架一样,结果过几天就适应了,没那么痛了,这就是适应力的体现。
而聚合物的松弛过程,就是它对“压力”的反应,就像是给它一段时间,它自己就慢慢放松下来,回到最自然的状态。
很多人可能会好奇了,聚合物力学松弛是不是有固定的规律?这问题有点像问“人为什么总是先想吃甜食”一样,答案有点复杂。
第5章聚合物的转变与松弛5.1高聚物的分子运动特点高聚物的结构比小分子化合物复杂的多,因而其分子运动也非常复杂。
主要有以下几个特点:1、运动单元的多重性。
除了整个分子的运动(即布朗运动)外还有链段、链节、侧基、支链等的运动(称微布朗运动)。
2、运动的时间依赖性。
从一种状态到另一种状态的运动需要克服分子间很强的次价键作用力(即内摩擦),因而需要时间,称为松弛时间,记作。
当时,,因而松弛时间的定义为:变到等于的分之一时所需要的时间。
它反映某运动单元松弛过程的快慢。
由于高分子的运动单元有大有小,不是单一值而是一个分布,称“松弛时间谱”。
3、运动的温度依赖性。
升高温度加快分子运动,缩短了松弛时间。
式中:为活化能;为常数5.2聚合物的热转变与力学状态①线形非晶态聚合物的温度-形变曲线:将一定尺寸的非晶态聚合物在一定应力作用下,以一定速度升高温度,同时测定样品形变随温度的变化,可以得到温度-形变曲线(也称为热-机械曲线)。
如果用模量对温度作图曲线上有两个斜率突变区,分别称为玻璃化转变区和粘弹转变区。
在这两个转变区之间和两侧,聚合物分别呈现三种不同的力学状态,依温度自低到高的顺序分别为:玻璃态,高弹态,粘流态。
两种转变区及三种力学状态的特征及分子运动机理如下:1、玻璃态由于温度较低,分子热运动能低,链段的热运动能不足以克服主链内旋转的势垒,因此,链段处于被“冻结”状态。
只有侧基、链节、短支链等小运动单元的局部振动及键长,键角的变化,因此弹性模量很高(1010~1011dyn/cm2),形变很小(0.1~1%),具有虎克弹性行为,质硬而脆,类似玻璃,因而称为玻璃态。
2、玻璃化转变区这是一个对温度十分敏感的区域,在3~5范围内几乎所有性质都发生突变(例如热膨胀系数、模量、介电常数、折光指数等)。
从分子运动机理看,在此温度链段已开始“解冻”,即链段的运动被激发。
由于链段绕主链轴的旋转使分子的形态不断变化,即由于构象的改变,长链分子可以外力作用下伸展(或卷曲),因此弹性模量迅速下降3~4个数量级,形变迅速增加。
高分子材料的蠕变和松弛行为高分子材料具有大分子链结构和特有的热运动,决定了它具有与低分子材料不同的物理性态。
高分子材料的力学行为最大特点是它具有高弹性和粘弹性。
在外力和能量作用下,比金属材料更为强烈地受到温度和时间等因素的影响,其力学性能变化幅度较大。
高聚物受力产生的变形是通过调整内部分子构象实现的。
由于分子链构象的改变需要时间,因而受力后除普弹性变形外,高聚物的变形强烈地与时间相关,表现为应变落后于应力。
除瞬间的普弹性变形外,高聚物还有慢性的粘性流变,通常称之为粘弹性。
高聚物的粘弹性又可分为静态粘弹性和动态粘弹性两类。
静态粘弹性指蠕变和松弛现象。
与大多数金属材料不同,高聚物在室温下已有明显的蠕变和松弛现象。
本文章主要介绍高聚物的蠕变和应力松弛现象产生的原因、过程,应用以及如何避免其带来的损害。
1 高分子材料蠕变高分子材料的蠕变即在一定温度和较小的恒定外力(拉力、压力或扭力等)作用下、高分子材料的形变随时间的增加而逐渐增大的现象。
1.1 蠕变过程及原理图1-1就是描写这一过程的蠕变曲线,t 1是加荷时间,t 2是释荷时间。
从分子运动和变化的角度来看,蠕变过程包括下面三种形变:当高分子材料受到外力(σ)作用时,分子链内部键长和键角立刻发生变化,这种形变量是很小的,称为普弹形变(1ε)。
当分子链通过链段运动逐渐伸展发生的形变,称为高弹形变(2ε)。
如果分子间没有化学交联,线形高分子间会发生相对滑移,称为粘性流动(3ε)。
这种流动与材料的本体粘度(3η)有关。
在玻璃化温度以下链段运动的松弛时间很长,分子之间的内摩擦阻力很大,主要发生普弹形变。
在玻璃化温度以上,主要发生普弹形变和高弹形变。
当温度升高到材料的粘流温度以上,这三种形变都比较显著。
由于粘性流动是不能回复的,因此对于线形高聚物来说,当外力除去后会留下一部分不能回复的形变,称为永久形变。
图1-1 蠕变曲线图1-2 线型高聚物的蠕变曲线图1-2是线型高聚物在玻璃化温度以上的蠕变曲线和回复曲线,曲线图上标出了各部分形变的情况。