弦、弧、圆心角、圆周角习题课--华师大版
- 格式:ppt
- 大小:338.50 KB
- 文档页数:14
完整版)圆心角圆周角练习题知识点三:弧、弦、圆心角与圆周角1.定义圆心角为顶点在圆心的角。
2.在同圆或等圆中,弧、弦、圆心角之间的关系:两个圆心角相等,圆心角所对的弧相等(无论是优弧还是劣弧),圆心角所对的弦相等。
3.一个角是圆周角必须满足两个条件:(1)角的顶点在圆上;(2)角的两边都与圆有除顶点外的交点。
4.同一条弧所对的圆周角有两个。
5.圆周角定理:圆周角等于圆心角的一半。
6.圆周角定理的推论:(1)同弦或等弦所对的圆周角相等;(2)半圆或直径所对的圆周角相等;(3)90°的圆周角所对的弦是直径。
需要注意的是,“同弦或等弦”改为“同弧或等弧”结论就不一定成立了,因为一条弦所对的圆周角有两类,它们是相等或互补关系。
7.圆内接四边形定义为所有顶点都在圆上的多边形,圆心即为这个圆内接四边形的交点。
圆内接四边形的对角线相互垂直,且交点为对角线的中点。
夯实基础1.如果两个圆心角相等,则它们所对的弧相等,选项B正确。
2.不正确的语句为③,因为圆不一定是轴对称图形,只有圆上的任何一条直径所在直线才是它的对称轴。
3.错误的说法是D,相等圆心角所对的弦不一定相等。
4.根据圆心角的性质,∠A=2∠B,所以∠A=140°。
5.∠BAC与∠BCD互补,∠BCD与∠CBD相等,所以与∠BAC相等的角有2个,即∠CBD和∠ABD。
6.因为∠CAB为30°,所以∠ABC为60°,由正弦定理可得BC=5√3.7.根据圆周角定理,∠ACB=40°。
8.设∠A=3x,∠B=4x,∠C=6x,则∠D=360°-3x-4x-6x=120°。
9.∠DCE=∠A。
1、如图,AB是⊙O的直径,C,D是BE上的三等分点,∠AOE=60°,求证∠COE=80°。
证明:由三等分点的性质可知,BC=CD=DE,又∠AOE=60°,所以∠AOC=120°。
一.教学内容:弧、弦、圆心角二. 教学目标:1. 使学生理解圆的旋转不变性,理解圆心角、弦心距的概念;2. 使学生掌握圆心角、弧、弦、弦心距之间的相等关系定理及推论,并初步学会运用这些关系解决有关问题;3. 使学生理解并掌握1°的弧的概念4. 培养学生观察、分析、归纳的能力,向学生渗透旋转变换的思想及由特殊到一般的认识规律.三. 教学重点、难点:圆心角、弧、弦、弦心距之间的相等关系是重点;从圆的旋转不变性出发,推出圆心角、弧、弦、弦心距之间的相等关系是难点。
四. 教学过程设计:1. 圆的旋转不变性圆是轴对称图形。
也是中心对称图形。
不论绕圆心旋转多少度,都能够和原来的图形重合。
圆所特有的性质——圆的旋转不变性圆绕圆心旋转任意一个角度α,都能够与原来的图形重合。
2. 圆心角,弦心距的概念.顶点在圆心的角叫做圆心角。
弧AB是∠AOB所对的弧,弦AB既是圆心角∠AOB也是弧AB所对的弦.圆心到弦的距离叫做弦心距。
3. 圆心角、弧、弦、弦心距之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
同样还有:在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦也相等在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都也相等。
4. 1°的弧的概念. (投影出示图7-59)圆心角的度数和它所对的弧的度数相等。
这里指的是角与弧的度数相等,而不是角与弧相等。
即不能写成圆∠AOB=,这是错误的。
【典型例题】例1. 判断题,下列说法正确吗?为什么?(1)如图所示:因为∠AOB=∠A′OB′,所以=.(2)在⊙O和⊙O′中,如果弦AB=A′B′,那么=。
分析:(1)、(2)都是不对的。
在图中,因为不在同圆或等圆中,不能用定理。
对于(2)也缺少了等圆的条件. 可让学生举反例说明。