六年级上册数学知识点归纳整理
- 格式:docx
- 大小:20.53 KB
- 文档页数:5
小学六年级上册数学知识点概念归纳与整理第一单元分数乘法(一)、分数乘法的意义。
1、分数乘整数:分数乘整数的意义与整数乘法的意义相同,确实是求几个相同加数和得简便运算。
例如:512×6,表示:6个512相加是多少,还表示512的6倍是多少。
2、一个数(小数、分数、整数)乘分数:一个数乘分数的意义与整数乘法的意义不相同,是表示那个数的几分之几是多少。
例如:6×512,表示:6的512是多少。
2 7×512,表示:27的512是多少。
(二)、分数乘法的运算法则:1、整数和分数相乘:整数和分子相乘的积作分子,分母不变。
2、分数和分数相乘:分子相乘的积作分子,分母相乘的积作分母。
3、注意:能约分的先约分,然后再乘,得数必须是最简分数。
当带分数进行乘法运算时,要先把带分数化成假分数再进行运算。
(三)、分数大小的比较:1、一个数(0除外)乘以一个真分数,所得的积小于它本身。
一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。
一个数(0除外)乘以一个带分数,所得的积大于它本身。
2、假如几个不为0的数与不同分数相乘的积相等,那么与大分数相乘的因数反而小,与小分数相乘的因数反而大。
(四)、解决实际问题。
1分数应用题一样解题步行骤。
(1)找出含有分率的关键句。
(2)找出单位“1”的量(3)依照线段图写出等量关系式:单位“1”的量×对应分率=对应量。
(4)依照已知条件和问题列式解答。
2.乘法应用题有关注意概念。
(1)乘法应用题的解题思路:已知一个数,求那个数的几分之几是多少?(2)找单位“1”的方法:从含有分数的关键句中找,注意“的”前“比”后的规则。
当句子中的单位“1”不明显时,把原先的量看做单位“1”。
(3)甲比乙多几分之几表示甲比乙多的数占乙的几分之几,甲比乙少几分之几表示甲比乙少数占乙的几分之几。
(4)在应用题中如:小湖村去年水稻的亩产量是750千克,今年水稻的亩产量是800千克,增产几分之几?题目中的“增产”是多的意思,那么谁比谁多,应该是“多比少多”,“多”的是指800千克,“少”的是指750千克,即800千克比750千克多几分之几,结合应用题的表达方式,能够补充为“今年水稻的亩产量比去年水稻的亩产量多几分之几?”(5)“增加”、“提高”、“增产”等包蕴“多”的意思,“减少”、“下降”、“裁员” 等包蕴“少”的意思,“相当于”、“占”、“是”、“等于”意思相近。
六年级上册数学知识点归纳总结
一、数据处理:
1、统计概念:定义、实例、事物及描述数据的属性;
2、数据表格:使用列标及行标表示数据,并用表格表示统计数据;
3、频率分布:分析、填写、求出频率分布直方图、条形图及饼图;
4、计算指标:计算众数、中位数、四分位数、平均数及方差;
二、概率论:
1、概念和性质:定义、例题及性质;
2、条件概率的计算:计算独立概率及伴随概率;
3、随机变量:定义、基本概念及性质;
4、期望概念:定义、计算及性质;
三、代数:
1、一元一次方程:求解、实例、求根及性质;
2、二元一次方程:解法、图象、判定及解型;
3、二元二次方程:解法、图象、判定及解型;
4、平面直角坐标系:理解、应用及求解;
5、多项式:定义、种类及求系数;
6、函数:概念、关系、求值;
四、几何:
1、基本概念:定义、实例、定理及性质;
2、平面图形:特征、组成、计算及关系;
3、直线:定义、特征及点位关系;
4、三视图:概念、实例及绘制;
5、投影原理:正、透视及绘图;
6、立体图形:概念、特征、表示法及计算;
7、几何运算:子式、距离、角度及锐角定理;。
六年级数学上册知识点总结六年级数学上册主要涵盖了数与代数、空间与图形、数据与概率三个大的知识点。
其中,数与代数包括整数运算、小数运算、分数运算、百分数运算、数的比较和数的表达等内容;空间与图形包括几何图形的认识、图形的性质和图形的变换等内容;数据与概率包括数据的收集整理和数据的呈现、概率与统计等内容。
下面将对这些知识点进行总结。
一、数与代数1. 整数运算六年级上册主要学习整数的加法、减法、乘法、除法以及运算性质和运算法则。
需要注意的是,整数运算中的符号规则和运算顺序,还有绝对值的求法和运算规律。
2. 小数运算六年级数学上册将小数运算落实到数的四则运算中,主要学习小数的加法、减法、乘法和除法。
此外,还会接触到小数与整数之间的运算和关系。
3. 分数运算分数运算是六年级上册数学中的重要知识点,主要学习分数的加法、减法、乘法和除法。
此外,还需要掌握分数的化简和比较大小。
4. 百分数运算百分数是表示数和比例的常见形式,六年级上册会介绍百分数的基本概念和表示法,并学习百分数的转化、运算以及与分数和小数的关系。
5. 数的比较在数与代数部分,还会学习数的比较大小,比如使用大于、小于、等于等符号进行数字的比较,并掌握不等式的性质和解不等式的方法。
6. 数的表达数的表达主要指的是将一些实际问题中的信息用数表示出来,并能够根据数的表达来解决实际问题。
这部分内容主要锻炼学生的应用能力和问题解决能力。
二、空间与图形1. 几何图形的认识六年级上册将介绍和学习一些几何图形的基本概念和性质,如点、线、线段、射线、角、三角形、四边形等。
2. 图形的性质在认识几何图形的基础上,还需要学习图形的性质,包括几何图形的边数、顶点数、对称性、直线对称和中心对称等。
3. 图形的变换图形的变换是六年级上册数学的重要内容,包括平移、旋转、翻转和对称等。
学生需要学习图形变换的定义、性质以及变换规则,并能够灵活运用图形变换进行解题。
三、数据与概率1. 数据的收集整理数据的收集整理是指学生需要学习如何收集和整理数据,包括用表格、图表和图像等形式记录数据,并通过统计和分析数据来解决实际问题。
六年级上册数学知识点归纳整理六年级上册数学知识点主要包括以下内容:
1. 整数
- 整数的概念和性质
- 整数的加减法运算
- 整数的乘法运算
- 整数的除法运算与余数的概念
2. 分数
- 分数的概念和性质
- 分数的加减法运算
- 分数的乘除法运算
- 分数的比较与大小关系
3. 小数
- 小数的概念和性质
- 小数的加减法运算
- 小数的乘除法运算
- 小数的比较与大小关系
- 小数的读法和写法
4. 平面图形
- 点、线、线段、射线、角的概念
- 三角形、四边形、平行四边形、正方形、矩形、菱形和梯形的性质和判断方法
5. 数据与图表
- 数据的收集和整理
- 统计图表(条形图、折线图、饼图)的读取和分析
6. 相似与全等
- 图形的相似和全等的概念
- 相似与全等的判定条件
- 相似与全等的性质和定理
7. 量与单位
- 长度、质量、时间和容量的基本单位和换算
- 用不同单位测量长度、质量、时间和容量
8. 时钟与日历
- 时钟的读写和表示时间的方法
- 日历的读写和计算日期的方法
9. 几何体
- 立体图形的概念和性质(长方体、正方体、圆柱体、圆锥体、圆台和球体)- 立体图形的视图和展开图
以上是六年级上册数学的主要知识点归纳整理,希望能对你有帮助!。
六年级上册数学知识点总结六年级上册数学知识点总结篇一1、一单元分数乘法分数乘整数的意义:就是求几个相同加数和的简便运算。
2、计算法则:分数乘整数,用分数的分子和整数的积做分子,分母不变。
3、一个数乘分数的意义:可以看做是求这个数的几分之几。
4、计算法则:一个数乘分数,用分子×的积做分子,分母相乘的做分母,为了计算的简便可以先约分。
5、整数乘法的交换律,结合律,分配率,对分数同样适用。
6、乘积是一的两个数互为倒数。
7、2单元位置与方向用坐标确定位置:前面的数表示列,后面的表示行上北下南左西右东3单元分数除法分数除法的意义:分数与整数的意义相同。
8、单位1:1.甲是乙的几分之几?甲÷乙2.甲比乙多几分之几?(甲-乙)÷乙3.甲比乙少几分之几?(乙-甲)÷乙路程=速度×时间速度=路程÷时间时间=路程÷速度工作总量=效率×时间工作效率=总量÷时间工作时间=总量÷效率4单元比比的意义:两数相除就叫做两个数的`比比的前项相当于被除数,后项相当于除数,比值相当于商。
9、前项相当于分子,后项相当于分母,比值相当于分数的值。
10、5单元圆圆是一种平面曲线图形。
11、圆中心的点叫圆心,连接圆心和圆上的任意一点叫半径,通过圆心并且两端都在圆上的线段叫直径直径=半径×2圆的周长公式:面积公式:C=πd或C=2πr S=πr的平方6单元百分数便是一个数是另一个数的百分之几的数叫百分数。
12、百分数也叫百分率和百分比。
13、百分数表示的是数量,不能带单位;百分数是分母是100的分数,分母是100的不一定是百分数。
14、把分数化成百分数,通常先把分数化成小数(除不尽时,保留三位小数),再把小数化成百分数;把百分数化成分数,先把百分数改成分母是100的,能约分的要约成最简分数。
15、7单元扇形统计图统计图有:扇形统计图,条形统计图和折线统计图。
小学六年级上册数学知识点总结归纳第一单元位置1、行和列的意义:竖排叫做列,横排叫做行。
2、数对可以表示物体的位置,也可以确定物体的位置。
3、数对表示位置的方法:先表示列,再表示行。
用括号把代表列和行的数字或字母括起来,再用逗号隔开。
例如:(7,9)表示第七列第九行。
4、两个数对,前一个数相同,说明它们所表示物体位置在同一列上。
如:(2,4)和(2,7)都在第2列上。
5、两个数对,后一个数相同,说明它们所表示物体位置在同一行上。
如:(3,6)和(1,6)都在第6行上。
6、物体向左、右平移,行数不变,列数减去或加上平移的各数。
物体向上、下平移,列数不变,行数减去或加上平移的各数。
第二单元分数乘法(一)、分数乘法的意义。
1、分数乘整数:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数和得简便运算。
例如:512×6,表示:6个512相加是多少,还表示512的6倍是多少。
2、一个数(小数、分数、整数)乘分数:一个数乘分数的意义与整数乘法的意义不相同,是表示这个数的几分之几是多少。
例如:6×512,表示:6的512是多少。
2 7×512,表示:27的512是多少。
(二)、分数乘法的计算法则:1、整数和分数相乘:整数和分子相乘的积作分子,分母不变。
2、分数和分数相乘:分子相乘的积作分子,分母相乘的积作分母。
3、注意:能约分的先约分,然后再乘,得数必须是最简分数。
当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
(三)、分数大小的比较:1、一个数(0除外)乘以一个真分数,所得的积小于它本身。
一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。
一个数(0除外)乘以一个带分数,所得的积大于它本身。
2、如果几个不为0的数与不同分数相乘的积相等,那么与大分数相乘的因数反而小,与小分数相乘的因数反而大。
(四)、解决实际问题。
1分数应用题一般解题步行骤。
(1)找出含有分率的关键句。
六年级数学上册知识点归纳小学六年级数学学问点1.1整数和整除的意义1.在数物体的时候,用来表示物体个数的数1,2,3,4,5,……,叫做整数2.在正整数1,2,3,4,5,……,的前面添上“—”号,得到的数—1,—2,—3,—4,—5,??,叫做负整数3.零和正整数统称为自然数4.正整数、负整数和零统称为整数5.整数a除以整数b,假如除得的商正好是整数而没有余数,我们就说a能被b整除,或者说b能整除a。
1.2因数和倍数1.假如整数a能被整数b整除,a就叫做b倍数,b就叫做a的因数3.一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身4.一个数的倍数的个数是无限的,其中最小的倍数是它本身1.3能被2,5整除的数1.个位数字是0,2,4,6,8的数都能被2整除2.在正整数中(除1外),与奇数相邻的两个数是偶数3.在正整数中,与偶数相邻的两个数是奇数4.个位数字是0,5的数都能被5整除5.0是偶数1.4素数、合数与分解素因数1.只含有因数1及本身的整数叫做素数或质数2.除了1及本身还有别的因数,这样的数叫做合数3.1既不是素数也不是合数4.奇数和偶数统称为正整数,素数、合数和1统称为正整数5.每个合数都可以写成几个素数相乘的形式,这几个素数都叫做这个合数的素因数6.把一个合数用素因数相乘的形式表示出来,叫做分解素因数。
7.通常用什么方法分解素因数:树枝分解法,短除法1.5公因数与最大公因数1.几个数公有的因数,叫做这几个数的公因数,其最大的一个叫做这几个数的最大公因数4.假如两个数中,较小数是较大数的因数,那么这两个数的最大公因数较小的数5.假如两个数是互素数,那么这两个数的最大公因数是小学六年级数学复习方法一、要明确复习的目的、任务, 从实际启程复习绝不能搞成简洁的机械重复。
应通过复习系统整理小学阶段所学的数学根底学问,理清学问的重点和关键, 搞清学问间的内在联系, 使学生的四那么计算实力、初步的逻辑思维实力和空间观念在原有的根底上得到进一步的提高。
小学六年级上册数学知识点归纳第一部分数与代数一、分数乘法(一)分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。
(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
3、为了计算简便,能约分的要先约分,再计算。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
(二)规律:(乘法中比较大小时)一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。
一个数(0除外)乘1,积等于这个数。
(三)分数混合运算的运算顺序和整数的运算顺序相同。
(四)整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=ac+bc ac+bc=(a+b)×c二、分数乘法的解决问题(详细见重难点分解)(已知单位“1”的量(用乘法),求单位“1”的几分之几是多少)1、找单位“1”:在分率句中分率的前面; 或“占”、“是”、“比”的后面2、求一个数的几倍:一个数×几倍; 求一个数的几分之几是多少:一个数× 。
3、写数量关系式技巧:(1)“的”相当于“×”(乘号)“占”、“是”、“比”“相当于”相当于“=”(等号)(2)分率前是“的”:单位“1”的量×分率=分率对应量(3)分率前是“多或少”的意思:单位“1”的量×(1±分率)=分率的对应量二、分数除法(一)倒数1、倒数的意义:乘积是1的两个数互为倒数。
强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。
(要说清谁是谁的倒数)。
2、求倒数的方法:(原数与倒数之间不要写等号哦)(1)求分数的倒数:交换分子分母的位置。
(2)求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。
六年级上册数学知识点整理第一章丰富的图形世界1、几何图形从实物中抽象出来的各种图形,包括立体图形和平面图形。
立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。
平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。
2、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
(2)点动成线,线动成面,面动成体。
3、生活中的立体图形圆柱柱球棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……(按名称分) 锥圆锥棱锥4、棱柱及其有关概念:棱:在棱柱中,任何相邻两个面的交线,都叫做棱。
侧棱:相邻两个侧面的交线叫做侧棱。
n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。
5、正方体的平面展开图6、截一个正方体:用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。
7、三视图物体的三视图指主视图、俯视图、左视图。
主视图:从正面看到的图,叫做主视图。
左视图:从左面看到的图,叫做左视图。
俯视图:从上面看到的图,叫做俯视图。
8第二张有理数及其运算A、正数与负数通常用来表示具有相反意义的量。
B、0 既不是正数也不是负数。
0 是正负数的分界。
C、有理数:整数和分数,统称有理数.即所有可以写成分数形式的数(包括正整数、零、负整数、正分数、负分数) (注意:所有的有限小数和无限循环小数都可以化为分数。
)D 数轴。
包含三要素,直线(方向),原点,单位长度(数)。
任意一个有理数,都可以用数轴上的一点表示,但第二章有理数及其运算知识点A、正数与负数通常用来表示具有相反意义的量。
B、0 既不是正数也不是负数。
0 是正负数的分界。
C、有理数:整数和分数,统称有理数.即所有可以写成分数形式的数(包括正整数、零、负整数、正分数、负分数) (注意:所有的有限小数和无限循环小数都可以化为分数。
六年级上册数学知识点归纳
一、整数
1. 正整数、负整数、零
2. 整数的大小比较
3. 整数的加法、减法、乘法、除法运算
4. 整数的混合运算
二、分数
1. 分数的概念
2. 分数的大小比较
3. 分数的加法、减法、乘法、除法运算
4. 分数的化简和约分
5. 分数的混合运算
三、小数
1. 小数的概念
2. 小数的读法和写法
3. 小数的大小比较
4. 小数的加法、减法、乘法、除法运算
5. 小数与分数的转换
6. 小数的四舍五入和近似计算
四、图形的认识
1. 点、线、面的概念
2. 常见的平面图形:点、线、射线、线段、角、三角形、四边形、正方形、长方形、平行四边形、梯形、圆、半圆
3. 图形的相似和全等
4. 图形的轴对称和中心对称
五、面积和周长
1. 长方形和正方形的面积和周长
2. 直角三角形和普通三角形的面积
3. 平行四边形和梯形的面积
4. 圆的面积和周长
六、时间和日期
1. 时、分、秒的概念
2. 12小时制和24小时制
3. 分钟和小时的换算
4. 日、星期、月、年的概念
5. 闰年和平年的判断
6. 年、月、日之间的关系
7. 时间的加法和减法运算
七、长度、质量和容积
1. 厘米、米、千米的换算
2. 克、千克、吨的换算
3. 毫升、升、立方米的换算
八、数据的处理
1. 统计图和统计表的认识
2. 描述数据的集中趋势:众数、中位数、平均数
3. 数据的整理和归纳。
六年级数学上册知识点整理归纳完整版六年级上册数学知识点第一单元分数乘法一)分数乘法意义1.分数乘整数的意义与整数乘法相同,即求几个相同加数的和的简便运算。
例如:3/4 × 7 表示求7个3/4的和是多少?2.一个数乘分数的意义是求一个数的几分之几是多少。
例如:5 × 2/3 表示求5的2/3是多少?二)分数乘法计算法则1.分数乘整数的运算法则是:分子与整数相乘,分母不变。
例如:2/3 × 4 = 8/32.分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。
例如:2/3 × 1/2 = 2/6 = 1/3三)积与因数的关系一个数(除外)乘大于1的数,积大于这个数。
a ×b = c,当b。
1时,c。
a。
一个数(除外)乘小于1的数,积小于这个数。
a ×b = c,当b < 1时,c < a(b ≠ 0)。
一个数(除外)乘等于1的数,积等于这个数。
a ×b = c,当b = 1时,c = a。
四)分数乘法混合运算1.分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。
整数乘法运算定律同样适用于分数乘法,运算定律可使计算更简便。
其中包括乘法交换律、乘法结合律和乘法分配律。
倒数的意义是指乘积为1的两个数互为倒数。
需要注意的是,倒数是两个数的关系,它们互相依存,不能单独存在。
判断两个数是否互为倒数的唯一标准是它们相乘的积是否为1.求倒数的方法包括求分数、整数、带分数和小数的倒数。
1的倒数是它本身,而0没有倒数,因为任何数乘以0的积都是0,且不能作分母。
任意数a(a≠0)的倒数为1/a,非零整数a的倒数为a/1,分数的倒数是倒数的分数。
真分数的倒数是假分数,真分数的倒数大于1,也大于它本身,而假分数的倒数小于或等于1,带分数的倒数小于1.分数乘法可用于解决各种问题。
例如,要求一个数的几分之几是多少,可以用单位“1”的量与分数相乘。
六年级上册数学知识点总结一、数与代数1. 分数的基本概念- 理解分数的意义,分子、分母和分数线的表示。
- 掌握分数的读法和写法。
- 了解真分数、假分数和带分数的区别。
2. 分数的四则运算- 分数的加法和减法:同分母分数相加减,分母不变,分子相加减;异分母分数相加减,先找公共分母,再进行计算。
- 分数的乘法:分子乘分子,分母乘分母,结果化简为最简分数。
- 分数的除法:除以一个分数等于乘以这个分数的倒数。
- 混合运算:按照先乘除后加减的顺序进行计算,括号内的运算优先。
3. 小数的基本概念- 理解小数的意义,小数点的表示。
- 掌握小数的读法和写法。
4. 小数的四则运算- 小数的加法和减法:对齐小数点进行加减。
- 小数的乘法:按整数乘法规则计算,然后根据小数位数确定小数点位置。
- 小数的除法:除数变为倒数,按分数除法规则进行计算。
5. 比例与百分数- 理解比例的概念,掌握比例的表示方法。
- 学会解比例,即根据已知比例关系求解未知数。
- 理解百分数的意义,掌握百分数的读法和写法。
- 学会将百分数转换为分数或小数。
6. 代数初步- 理解用字母表示数的概念。
- 学会列代数式,如 a+b、2a 等。
- 掌握等式的基本性质,如等式两边同时加减同一个数或同一个代数式,等式仍然成立。
二、几何1. 平面图形的认识- 认识正方形、长方形、三角形、圆等基本图形。
- 理解图形的对称性,能够识别轴对称图形。
2. 面积的计算- 掌握长方形和正方形的面积公式:面积 = 长× 宽。
- 学会计算三角形的面积:面积 = 底× 高÷ 2。
- 了解圆的面积公式:面积= π × 半径²。
3. 体积的计算- 掌握长方体和正方体的体积公式:体积 = 长× 宽× 高。
- 了解圆柱体的体积公式:体积 = 底面积× 高。
4. 角度的初步认识- 理解角的概念,学会用量角器测量和作图。
六年级数学上册知识点归纳总结
一、数与式
1.实数:正数、负数、零
2.有理数:分数、整数
3.数的分类:自然数、整数、分数、分数的分母为零的无意义数、真分数
4.式子:真式、假式
5.有理数的加减法:用整除法和扩展分数法
6.有理数的乘除法:用倒数的乘除法
7.同位数相减:将被减数拆分成和减数位数相同的多个加数,然后分别减
8.数轴:正负半轴、两个单位
新增
九、位置关系
1.平行:两条线段长度相等,夹角为0°,模式固定且一致。
2.垂直:两条线段长度相等,夹角为90°,模式固定且一致。
3.对称轴:两个物体镜面对称模式固定且一致。
4.连续:有向和无向两种,通过一系列点组成的形状,模式不定。
5.平行四边形:比较运算的固定位置变换,模式固定且一致。
六年级上册数学知识点总结六年级上册数学知识点总结(7篇)总结是事后对某一时期、某一项目或某些工作进行回顾和分析,从而做出带有规律性的结论,它可以促使我们思考,因此我们要做好归纳,写好总结。
总结你想好怎么写了吗?以下是小编精心整理的六年级上册数学知识点总结,欢迎大家借鉴与参考,希望对大家有所帮助。
六年级上册数学知识点总结1一、分数除法的意义和分数除以整数知识点一:分数除法的意义整数除法的意义:已知两个因数的积与其中一个因数,求另一个因数的运算。
知识点二:分数除以整数的计算方法把一个数平均分成整数份,求其中的几份就是求这个数的几分之几是多少。
分数除以整数(0除外)的计算方法:(1)用分子和整数相除的商做分子,分母不变。
(2)分数除以整数,等于分数乘这个整数的倒数。
二、一个数除以分数知识点一:一个数除以分数的计算方法一个数除以分数,等于这个数乘分数的倒数。
知识点二:分数除法的统一计算法则甲数除以乙数(0除外),等于甲数乘乙数的倒数。
知识点三:商与被除数的大小关系一个数(0除外)除以小于1的数,商大于被除数,除以1,商等于被除数,除以大于1的数,商小于被除数。
0除以任何数商都为0。
三、分数除法的混合运算知识点一:分数除加、除减的运算顺序除加、除减混合运算,如果没有括号,先算除法,后算加减。
知识点二:连除的计算方法分数连除,可以分步转化为乘法计算,也可以一次都转化为乘法再计算,能约分的要约分。
知识点三:不含括号的分数混合运算的运算顺序在一个分数混合运算的算式里,如果只含有同一级运算,按照从左到右的顺序计算;如果含有两级运算,先算第二级运算,再算第一级运算。
知识点四:含有括号的分数混和运算的运算顺序在一个分数混合运算的算式里,如果既有小括号又有中括号,要先算小括号里面的,再算中括号里面的。
知识点五:整数的运算定律在分数混和运算中的运用分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。
小学六年级上册数学重要知识点第一单元:位置与方向用数对表示位置 如:第三列第二行 表示为(3,2)。
一般情况下先列后行表示为(第几列,第几行)第二单元:分数乘法1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
(几个几是多少) (如:75×4表示4个75是多少,也可以表示75的4倍是多少。
) 2、一个数乘分数的意义就是求这个数的几分之几是多少。
(谁的几分之几是多少) (如:6×43表示6的43是多少;65×52表示65的52是多少。
) 3、分数乘法的计算法则:分子相乘的积作分子,分母相乘的积作分母。
(能约分的先约分) 4、一个数乘以比1小的数,积就小于这个数。
(如: 5×21﹤ 5 ); 一个数乘以1,积等于这个数。
(如: 54×1 ﹦ 54);一个数乘以大于1的数,积就大于这个数。
(如: 53×45 ﹥ 53)。
5、倒数 意义:乘积是1的两个数,互为倒数。
(1的倒数是1,0没有倒数)法则:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。
第三单元:分数除法1、分数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中的一个因数,求另一个因数的运算。
2、分数除法的计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。
3、一个数除以真分数,商大于这个数。
( 如: 4÷21﹥ 4 ); 一个数除以大于1的假分数,商小于这个数。
( 如: 3÷23﹤ 3 )。
4、两个数相除又叫做两个数的比。
在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。
比的前项除以后项所得的商,叫做比值。
比值通常用分数表示,也可以用小数或整数表示。
根据分数与除法的关系,两个数的比也可以写成分数形式。
(如:3:2也可以写成23,仍读作“3比2”)如: 2 : 3 = 2 ÷ 3 =36、比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
小学六年级数学上册知识点总结一、数与运算1. 整数- 大数的读写与比较- 整数的四则运算- 整数的倍数与因数- 质数与合数- 奇数与偶数- 整数的性质和运算规律2. 分数- 分数的意义和性质- 真分数与假分数- 分数的四则运算- 分数与整数的互化- 分数的比较和排序- 混合数和带分数3. 小数- 小数的意义和性质- 小数的四则运算- 小数与整数、分数的互化- 用小数表示实际问题4. 比例与百分数- 比例的概念和基本性质- 比例式的解法- 百分数的意义和应用- 百分数与分数、小数的互化- 利率和利息的计算二、几何1. 平面图形- 平行线和垂线的性质- 角的概念和分类- 三角形的性质和分类- 四边形的性质和分类- 圆的性质和圆周角2. 图形的变换- 平移、旋转和翻转的概念- 对称图形的识别和绘制3. 图形的测量- 周长和面积的计算(正方形、长方形、三角形、平行四边形、梯形、圆)- 体积的计算(长方体和立方体)三、统计与概率1. 统计- 数据的收集和整理- 频数和频率的概念- 条形图、折线图和饼图的绘制和解读2. 概率- 可能性的认识- 简单事件的概率计算四、解决问题1. 应用题- 解决与生活实际相关的数学问题- 分析问题和找出等量关系- 利用方程和不等式解决问题2. 数学思维- 逻辑推理和证明- 数学问题的多种解法五、综合实践1. 数学活动- 参与数学游戏和竞赛- 数学知识的综合运用2. 数学探究- 发现生活中的数学问题- 进行小组合作探究以上总结了小学六年级数学上册的主要知识点。
学生应通过练习和复习,确保对每个知识点都有深刻的理解和掌握。
教师和家长可以根据这份总结来辅导和检查学生的学习情况。
数学六年级上册知识点归纳总结一、分数乘法1. 分数乘法的意义:乘法的意义是求几个相同加数的和的简便运算,分数乘法的意义与整数乘法的意义相同。
2. 分数乘法的计算法则:分子乘分子作为分子,分母乘分母作为分母。
3. 分数乘法的运算定律:乘法交换律、乘法结合律、乘法分配律。
4. 整数乘法的运算定律在分数乘法中的应用。
二、分数除法1. 分数除法的意义:把一个数平均分成几份,求其中的一份是多少,这是分数除法的意义。
2. 分数除法的计算法则:除以一个数等于乘以这个数的倒数。
3. 分数除法的运算定律:除法交换律、除法结合律、除法分配律。
4. 商不变的规律:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。
三、比和比例1. 比的意义:两个数的比表示两个数相除的关系。
2. 比例的意义:表示两个比相等的式子叫做比例。
3. 比的基本性质:比的前项和后项同时扩大或缩小相同的倍数(0除外),比值不变。
4. 比例的基本性质:在比例里,两个内项的积是最小的合数,两个外项的积是最大的合数。
5. 解比例的方法:根据比例的基本性质,用已知的比例去除以未知的比,从而求出未知的数值。
四、百分数1. 百分数的意义:百分数是表示一个数是另一个数的百分之几的数,也叫做百分率或百分比。
2. 百分数的计算方法:把百分数化成分数,再按照分数的计算方法进行计算。
如45%可化为45/100,再根据分数乘法的计算法则进行计算。
3. 折扣的意义:折扣是实际售价占原价的百分之几,折扣的计算公式是:现价=原价×折扣率。
4. 成数的意义:农业收成,通常用成数、百分数来表示,如“七成”表示十分之七。
5. 税率和利率的意义:税率是国家对征税对象征收的比例;利率是利息与本金的比值。
一、圆的特征1、圆是平面内封闭曲线围成的平面图形。
2、圆的特征:外形美观,易滚动。
3、圆心O:圆中心的点叫做圆心.圆心一般用字母O表示。
圆多次对折之后,折痕的相交于圆的中心即圆心。
圆心确定圆的位置。
半径r:连接圆心到圆上任意一点的线段叫做半径。
在同一个圆里,有无数条半径,且所有的半径都相等。
半径确定圆的大小。
直径d:通过圆心且两端都在圆上的线段叫做直径。
在同一个圆里,有无数条直径,且所有的直径都相等。
直径是圆内最长的线段。
同圆或等圆内直径是半径的2倍:d=2r 或r=d÷24、等圆:半径相等的圆叫做同心圆,等圆通过平移可以完全重合。
同心圆:圆心重合、半径不等的两个圆叫做同心圆。
5、圆是轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。
折痕所在的直线叫做对称轴。
有一条对称轴的图形:半圆、扇形、等腰梯形、等腰三角形、角。
有二条对称轴的图形:长方形有三条对称轴的图形:等边三角形有四条对称轴的图形:正方形有无条对称轴的图形:圆,圆环6、画圆(1)圆规两脚间的距离是圆的半径。
(2)画圆步骤:定半径、定圆心、旋转一周。
二、圆的周长:围成圆的曲线的长度叫做圆的周长,周长用字母C表示。
1、圆的周长总是直径的三倍多一些。
2、圆周率:圆的周长与直径的比值是一个固定值,叫做圆周率,用字母π表示。
即:圆周率π= 周长÷直径≈3.14所以,圆的周长(c)=直径(d)×圆周率(π)—周长公式:c=πd, c=2πr圆周率π是一个无限不循环小数,3.14是近似值。
3、周长的变化的规律:半径扩大多少倍直径也扩大多少倍,周长扩大的倍数与半径、直径扩大的倍数相同。
4、半圆周长=圆周长一半+直径= πr+d三、圆的面积s1、圆面积公式的推导如图把一个圆沿直径等分成若干份,剪开拼成长方形,份数越多拼成的图像越接近长方形。
圆的半径=长方形的宽圆的周长的一半=长方形的长长方形面积=长×宽所以:圆的面积=圆的周长的一半(πr)×圆的半径(r)S圆=πr×r=πr22、几种图形,在面积相等的情况下,圆的周长最短,而长方形的周长最长;反之,在周长相等的情况下,圆的面积则最大,而长方形的面积则最小。
小学六年级数学上册知识点归纳一、整数的概念与应用整数是由正整数、负整数和0组成的数集。
在日常生活中,整数可以用来表示温度、海拔、债务等概念。
整数的加法、减法和乘法运算遵循相应的规则,例如同号相加得正,异号相加得负,负数相乘得正等。
二、分数的概念与运算分数由分子和分母组成,表示一个整体被分成若干等分中的一部分。
分数的加法、减法和乘法运算分别遵循相应的规则。
例如,两个分数相加时需要化为相同的分母,分数与整数相乘时需要将整数转化为分数。
三、小数的概念与运算小数是指有限小数和无限循环小数,可以通过小数点的位置表达数的大小关系。
小数的加法、减法和乘法运算遵循相应的规则。
例如,两个小数相加时需要对齐小数点,小数与整数相乘时结果的小数点位置与整数的位数有关。
四、几何图形的认识与性质几何图形包括点、线、面等基本图形,如直线、射线、线段、角、三角形、四边形等。
不同几何图形有不同的性质,如平行线的性质、三角形的分类、四边形的特点等。
五、图表的理解与分析图表是将数据以图形形式展示出来,包括条形图、折线图、饼图等。
通过观察图表可以了解数据的分布和变化规律,进而做出相应的分析和判断。
六、时间与日历的计算日历是记录时间的工具,了解日历的结构可以帮助我们进行日期的计算。
在计算时间时,需要掌握年、月、日、时、分、秒等单位之间的换算关系,同时注意闰年和平年的区别。
七、长度、面积与体积的计算长度是物体的长短,可以通过直尺、卷尺等工具进行测量。
面积是指平面图形所围成的空间的大小,可以通过面积公式进行计算。
体积是指立体图形所包含的空间大小,也可以根据相应的公式进行计算。
八、数据的整理、统计与应用数据的整理和统计是对一组数据进行收集、整理、分析和表示的过程。
通过整理数据可以得到频数表、频率表等,利用统计方法可以对数据进行分析和应用,如平均数、中位数、众数等。
九、问题解决与推理能力的培养数学学习不仅仅是记住知识点,更重要的是培养问题解决和推理能力。
六年级上册数学知识点归纳整理
知识整理是数学学习的关键,那么六年级上册数学知识点整理有哪些呢?下面是由小编为大家整理的“六年级上册数学知识点归纳整理”,仅供参考,欢迎大家阅读。
六年级上册数学知识点归纳整理
第一单元圆
1、使学生认识圆的特征:圆的半径、直径、圆心。
认识在同圆内半径和直径的关系。
知道圆是轴对称图形,有无数条对称轴,而这些对称轴都过圆心。
知道生活中有了圆才使我们的生活更美好。
2、认识同心圆、等圆。
知道圆的位置由圆心决定,圆的大小由半径或直径决定。
等圆的半径相等,位置不同;而同心圆的半径不同,位置相同。
3、使学生知道圆的周长和圆周率的含义,掌握圆的周长的计算公式,能够正确地计算圆的周长.介绍祖冲之在圆周率研究上的成就,渗透爱国主义教育。
在运用上,要能根据圆的周长算直径或半径,会算半圆的周长:圆的周长×1/2+直径。
会求组合图形的周长。
4、了解圆的面积的含义,经历圆面积计算公式的推导过程,掌握圆面积计算公式。
5、能正确运用圆的面积公式计算圆的面积,并能运用圆面积知识解决一些简单实际的问题。
会灵活运用圆的面积公式。
已知圆的周长会算圆的面积,会求组合图形的面积。
会算圆环的面积,并且知道在周长相等的情况下,正方形、长方形、圆三种图形中,圆的面积最大。
6、在估一估和探究圆面积公式的活动中,体会“化曲为直”的思想,初步感受极限思想。
第二单元百分数的应用
本单元重点讲解百分数在生活中的应用,知识点为:
1、知道百分数的意义:表示一个数是另一个数的百分之几的数,叫做百分数。
百分数也叫做百分率或百分比。
百分数通常不写成分数形式,而用百分号“%”表示;百分数有时也定义为分母是100的分数,
但百分数与分数是有区别的:分数既可表示具体的量,又可表示两个数量间的倍比关系;然而百分数只能表示两个数量间的倍比关系;所以是不名数,也就是不能带单位的数。
2、在具体情景中理解“增加百分之几”或“减少百分之几”的意义,加深对百分数意义的理解。
3、能解决有关“增加百分之几”或“减少百分之几”的实际问题,提高运用数学解决实际问题的能力,体会百分数与现实生活的密切联系。
4、知道出勤率、出粉率、成活率等百分数的意义及在实际生活中的应用,会计算这种百分数。
5、知道成数、打折的含义。
表示一个数是另一个数十分之几、百分之几的数,叫做成数。
打折就是按原价的百分之几十、十分之几出售。
八五折就是按原价的85%出售。
成数和折扣数不能用小数表示。
6、能解决“比一个数增加百分之几的数是多少”或“比一个数减少百分之几的数是多少”的实际问题。
7、进一步加强对百分数的意义的理解,并能根据百分数的意义列方程解决实际问题,会解含有百分数的方程。
8、能利用百分数的有关知识,解决一些与储蓄有关的实际问题,提高解决实际问题的能力。
知道利息是本金存入银行过一段时间取出后多出来的钱;本金是存入银行的钱;利率就是某段时间中利息占本金的百分比;利息税是国家银行规定的针对利息收入的税收。
会计算利息。
利息=本金×利率×时间
9、结合储蓄等活动,学习合理理财,逐步养成不乱花钱的好习惯。
第三单元图形的变换
1、通过观察、操作、想象,知道一个简单图形是怎样经过平移或旋转制作复杂图形的过程,体验图形的变换,发展空间观念。
并能借助方格纸上的操作和分析,有条理地表达图形的平移或旋转的'变换过程。
2、能利用七巧板在方格纸上变换各种图形。
能运用图形的变换在方格纸上设计美丽的图案,进一步体会平移、旋转和轴对称在设计图
案中的作用。
3、欣赏图案,感受图形世界的神奇。
通过生活中有趣而美丽的图案,认识数学的美,体会图形世界神奇。
第四单元比的认识
1、能从具体情境中抽象出比的过程,理解比的意义。
2、能正确读写比,会求比值,理解比与除法、分数的关系。
3、能利用比的知识解释一些简单的生活问题,感受比在生活中的广泛存在。
4、理解化简比的必要性,能运用商不变的性质或分数的基本性质化简比,并能解决一些简单的实际问题。
5、能运用比的意义解决按照一定的比进行分配的实际问题,提高解决实际问题的能力。
拓展能力:能用求比值的方法化简比。
第五单元统计
1、知道复式条形统计图、复式折线统计图的特点,理解单式与复式统计图的异同,并能在有纵轴、横轴的图上用复式条形统计图、复式折线统计图表示相应的数据,体会数据的作用。
2、能看懂复式条形统计图,并能根据复式条形统计图中的有关数据作简单的分析,判断和预测。
3、会进行数据的收集与整理。
并通过数据分析发现问题,从而决定用什么什么统计图来描述数据。
第六单元观察物体
1、能正确辨认从不同方向(正面、側面、上面)观察到的立体图形(5个小正方体组合)的形状,并能画出草图。
2、能根据从正面、側面、上面观察到的平面图形还原立体图形,进一步体会从三个方面观察就可以确定立体图形的形状,能根据给定的两个方向观察到的平面图形的形状,确定搭成这个立体图形所需要的正方体的数量范围。
3、给合生活实际,经历分别将眼睛、视线与观察的范围抽象为点、线、区域的过程,感受观察范围随观察点、观察角度的变化而变化,
并能利用所学的知识解释生活中的一些现象。
拓展阅读:小学六年级数学复习方法
要明确复习的目的、任务, 从实际出发
复习绝不能搞成简单的机械重复。
应通过复习系统整理小学阶段所学的数学基础知识,理清知识的重点和关键, 搞清知识间的内在联系, 使学生的四则计算能力、初步的逻辑思维能力和空间观念在原有的基础上得到进一步的提高。
通过复习,学生能系统地掌握有关整数、小数、分数、百分数、比和比例、简易方程等基础知识, 并能正确、迅速地进行整数、小数和分教的四则计算, 提高计算能力。
进一步掌握一常用的计量单位, 能够比较熟练地计算一些几何形体的周长、面积和体积, 并能进行简单你土地丈量和土石方计算, 培养学生的空间观念。
能够掌握所学的常见的数量关系和解}答应用题的方法, 提高学生用算术方法和列方程解应用题的能力,培养学生逻辑思维能力科解决实际间题的能力。
复习前一定要结合本班学生的实际确定重点, 选取的教学方法进行复习。
每节课都要有明确的复习目的、要求和主攻方向,这样才能提高复习质量。
确定复习的重点及范围
复习不是简单地重复以前所学的知识, 教师必须重视授课的内容, 对已学的知识进行系统的整理, 复习时,要注意发挥学生的主体作用,调动学生学习的积极性, 启发他们自学, 自己归纳整理所学的知识, 使知识系统化。
或启发学生质疑间难, 由教师引导学生释疑,以促进学生深入理解知识。
下面是十个复习重点:
1.整数和小数的意义、读写法, 计量单位和名数的互化。
2.整数、小数、分数的四则混合运算。
3.平面图形的概念、周长和面积。
4.简易方程。
5.数的整除和珠算。
6.分数、百分数的意义和性质及繁分数的化简。
7.立体图形的表面积和体积。
8.比和比例。
9.各类应用题的解法及列方程解应用题。
10.统计表和统计图。
采用灵活的复习方法
在复习时必须注意发挥学生的主动性。
促使学生独立思考。
复习不应只是让学生把已学的数学知识简单地再现。
这样会助长学生死记硬背,应当注意促进学生融会贯通和灵活运用所学的知识。
1.对比分析法。
对于学生容易棍淆的一些概念、定义、公式和法则, 要让学生在理解的基础上逐渐掌握。
并通过对比分析,帮助学生了解它们之间的联系与区别,从而加深记忆。
2.独立阅读法。
复习的知识都是已经学过的,教师可选择若干段有联系的教材, 让学生独立阅读,教师就关键性的伺题组织讨论, 抓住重点或学生不懂之处扼要地进行讲解, 扩散学生的思维, 培养学生独立分析间题的能力。
3.分类整理法。
纵观小学数学的应用题内容,形式多种多样。
在教材中的编排也较为分散, 特别是几何知识, 内容抽象, 概念多, 公式多, 计算繁。
因此,我们在复习时必须分类进行整理。
使知识系统化、条理化。
找出各种知识的本质特征,培养学生的逻辑思维能力。
4.归纳综合法。
小学数学内容繁多,知识面广。
每部分的内容大多涉及其他部分的知识,横向联系面大,知识的迁移性较强。
复习时应由易到难,由一般到特殊,由基本到灵活,充分运用知识的迁移规律,进行综合性的复习。
5.有侧重点地进行复习。
随时掌握学生的学习情况,发现学生中的知识缺陷,根据具体情况及时予以补救。
要有针对性、有重点地进行复习、完善学生的知识。