《弧、弦、圆心角》的教学实录
- 格式:docx
- 大小:13.90 KB
- 文档页数:8
24.1.3 弧、弦、圆心角教学内容:人教版九年级上册24.1.3弧、弦、圆心角 教学目标:1.理解圆心角的概念和圆的旋转不变性。
2.利用圆的旋转不变性,发现圆中弧、弦、圆心角关系,并能正确推理和应用。
3.通过观察、比较、推理、归纳等活动,发展推理能力以及概括问题的能力。
4.培养学生探索数学问题的积极态度和科学的方法。
教学重点:探索圆心角、弧、弦之间关系定理,并利用其解决相关问题。
教学难点:定理中条件的理解及定理的探索。
教学过程:一.情景引入:1. 圆是中心对称图形吗?它的对称中心在哪里?把圆绕圆心旋转任意一个角度呢?(课件演示)结论:圆是中心对称图形,圆心就是它的对称中心。
不仅如此,把圆绕圆心旋转任意一个角度,所得图形都与原图形重合。
2. 定义:像∠这样顶点在圆心的角叫做圆心角。
3. 认识:圆心角∠所对的弧是、弦是,它们在⊙O 中是一一对应的。
二.探究新知:1. 课件演示:在圆形的纸片上画一个圆心角∠,并把它切下,把∠绕圆心O 旋转一个角度到∠A ′′位置,同时在该圆形纸上记下。
(在这个过程中你能发现哪些等量关系?)2. 命题:如图2在⊙O 中,若∠=∠A ′′,则=A ′B ′, = .(想一想,如何证明这个命题?)(教学说明:学生通过观察发现△≌△A ′′,从而得到=A ′B ′, 于是与重合,则 =)3. 形成结论:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
4. 变式:如果把上述命题中的条件“∠=∠A ′′”改为“=A ′B ′或=”,那么可以得到怎样的结论呢?5. 归纳:同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,它们所对应的其余各组量也相等。
OAB图1OABA'B'图26、例题解析例1:如图5:在⊙o 中, = ;∠=60°。
求证:∠∠∠.分析:由 = ,得到,再由∠60°,得到△是等边三角形,,所以∠∠∠.变式训练:把“求证:∠∠∠”改为“求∠的度数”。
24.1.3 弧、弦、圆心角1.在实际操作中发现圆的旋转不变性.2.结合图形了解圆心角的概念,学会辨别圆心角.3.能发现圆心角、弦、弧之间的关系,并会初步运用这些关系解决有关的问题.一、情境导入人类为了获得健康和长寿,经过不断的实践探索,到十九世纪末才提出“生命在于运动”的口号.要健康长寿,更重要的是每天要摄取均衡的营养包括蛋白质、糖类、脂肪、维生素、矿物质、纤维和水.根据中国营养学会公布的“中国居民平衡膳食指南”,每人每日摄取量如图.你能求出各扇形的圆心角吗?二、合作探究探究点一:圆心角【类型一】圆心角的识别如图所示的圆中,下列各角是圆心角的是( )A.∠ABCB.∠AOBC.∠OABD.∠OCB解析:根据圆心角的概念,∠ABC、∠OAB、∠OCB的顶点分别是B、A、C,都不是圆心O,因此都不是圆心角.只有B中的∠AOB的顶点在圆心,是圆心角.故选B.方法总结:确定一个角是否是圆心角,只要看这个角的顶点是否在圆心上,顶点在圆心上的角就是圆心角,否则不是.探究点二:圆心角的性质 【类型一】利用圆心角的性质求角如图,已知:AB 是⊙O 的直径,C 、D 是BE ︵的三等分点,∠AOE =60°,则∠COE 的大小是( )A .40°B .60°C .80°D .120°解析:∵C 、D 是BE ︵的三等分点,∴BC ︵=CD ︵=DE ︵,∴∠BOC =∠COD =∠DOE.∵∠AOE =60°,∴∠BOC =∠COD =∠DOE =13×(180°-60°)=40°,∴∠COE =80°.故选C. 方法总结:在同圆或等圆中,如果两个圆心角,两条弧,两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.探究点三:圆心角、弦、弧之间的关系 【类型一】结合三角形内角和求角如图所示,在⊙O 中,AB ︵=AC ︵,∠B =70°,则∠A =________.解析:由AB ︵=AC ︵,得这两条弧所对的弦AB =AC ,所以∠B =∠C.因为∠B =70°,所以∠C =70°.由三角形的内角和定理可得∠A 的度数为40°.故答案为40°.方法总结:在应用弧、弦、圆心角之间的关系定理时,注意根据具体的需要选择有关部分,本题只需由两弧相等,得到两弦相等就可以了. 【类型二】弧相等的简单证明如图所示,已知AB 是⊙O 的直径,M ,N 分别是OA ,OB 的中点,CM ⊥AB ,DN ⊥AB ,垂足分别为M ,N.求证:AC ︵=BD ︵.解析:根据圆心角、弧、弦、弦心距之间的关系,可先证明它们所对的圆心角相等或它们所对的弦相等.证法1:如图所示,连接OC ,OD ,则OC =OD.∵OA =OB.又M ,N 分别是OA ,OB 的中点,∴OM =ON.又∵CM ⊥AB ,DN ⊥AB ,∴∠CMO =∠DNO =90°.∴Rt △CMO ≌Rt △DNO.∴∠1=∠2.∴AC ︵=BD ︵.证法2:如图①所示,分别延长CM ,DN 交⊙O 于点E ,F.∵OM =12OA ,ON =12OB ,OA =OB ,∴OM =ON.又∵OM ⊥CE ,ON ⊥DF ,∴CE =DF ,∴CE ︵=DF ︵.又∵AC ︵=12CE ︵,BD ︵=12DF ︵.∴AC ︵=BD ︵. 图①图②证法3:如图②所示,连接AC ,BD.由证法1,知CM =DN.又∵AM =BN ,∠AMC =∠BND =90°,∴△AMC ≌△BND.∴AC =BD ,∴AC ︵=BD ︵.方法归纳:在同圆或等圆中,要证明圆心角、弧、弦、弦心距这四组量中的某一组量相等,通常是转化成证明另外三组量中的某一组量相等.三、板书设计教学过程中,强调弧、弦、圆心角及弦心距之间的关系,只要确定一组等量关系,其他三组也随之确定了.学生励志寄语:同学们,通过这节课的学习,你们学到了哪些知识?要珍惜时间好好学习,要明白时间就像日历一样,撕掉一张就不会再回来。
24.1.3《弧弦圆心角》教学设计教学目标1.理解圆心角,弦心距的概念;2用圆心角和旋转的知识探索在同圆或等圆中,假如两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等,最后应用它解决一些具体问题.重难点、关键1.重点:掌握在同圆或等圆中,相等的圆心角所对的弧相等,•所对弦也相等及其两个推论和它们的应用.2.难点与关键:探索定理和推导及其应用.教学过程一.展示教学目标二.复习引入:圆是中心对称图形吗?它的对称中心在哪里?三、探索新知1.学生自学教材,理解两个概念圆心角,弦心距。
2.探究活动一:在⊙O中,将圆心角∠AOB绕圆心O旋转到∠AOB’的位置,你能发现哪些相等的量,为什么?小结:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等。
思考:上述结论中,能否将“在同圆或等圆中”去掉,为什么?3.探究活动二:⑴.在⊙O中,AB=CD,那么∠AOB=∠A′OB′ AB= A’B’成立吗?⑵. 在⊙O中,AB= A’B’,那么∠AOB=∠A′OB′AB=CD成立吗?4.课堂小结:弧弦圆心角关系定理及推论:⑴、在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.⑵、在同圆或等圆中,相等的弧所对的圆心角_____,所对的弦________;⑶、在同圆或等圆中,相等的弦所对的圆心角______,所对的弧_________.5定理巩固使用:填一填如图,AB、CD是⊙O的两条弦.(1)假如AB=CD,那么___________,_________________.(2)假如AB= CD,那么____________,_____________.(3)如果∠AOB=∠COD,那么_____________,_________.(4)如果AB=CD,OE⊥AB于E,OF⊥CD于F,OE与OF相等吗?为什么?四.学以致用1.例题讲解如图,在⊙O中,AB=AC ,∠ACB=60°,求证:∠AOB= ∠BOC=∠AO C·CA BDEFO2.巩固练习 ⑴、如图,在⊙O 中,AB=AC ,∠C=75°,求∠A 的度数。
《弧、弦、圆心角》教案3★新课标要求一、知识与技能1.了解圆心角的概念:掌握在同圆或等圆中,圆心角、弦、弧中有一个量的两个值相等就可以推出其它两个量的相对应的两个值就相等,及其它们在解题中的应用.2.用圆心角和旋转的知识探索在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等,最后应用它解决一些具体问题.二、过程与方法结合图形,理解定理,用心体会圆的旋转过程,体会知识的发生过程.三、情感、态度与价值观1.通过图形的旋转,体验在操作过程中得出结论的过程.2.积极参与交流,并积极发表意见.3.养成动手操作的习惯,善于在操作过程中发现规律并总结规律.★教学重点定理:在同圆或等圆中,相等的圆心角所对的弧相等,•所对弦也相等及其两个推论和它们的应用.★教学难点探索定理和推导定理,运用弧、弦、圆心角之间的相等关系进行证明或计算.★教学方法通过教具的展示,让学生体会知识的发生过程,给学生思考的时间,充分发挥学生的主动性,启发其探索新知.★教学过程一、引入新课教师指导学生,准备好将事先做好的一个圆形纸片,为课堂操作做准备.1.将纸片沿圆的直径对折,我们发现折痕两旁的部分完全重合,说明圆是一个轴对称图形.2.将圆形纸片的圆心固定,然后绕圆心将圆旋转180°,发现纸片与原来的部分重合,说明圆是一个中心对称图形.3.同样按步骤2将纸片旋转一个任意的角度,纸片能与原来图形重合吗?我们发现将圆绕圆心旋转任意的角度后,仍然与原来的图形重合,这说明圆是一个特殊的中心对称图形,它绕中心旋转任意的角度都能与原来的图形重合,我们把圆的这个性质叫做圆的旋转不变性.本节课我们就利用圆的旋转不变性来探索一个新的知识点.二、进行新课如图所示,∠AOB的顶点在圆心,像这样顶点在圆心的角叫做圆心角.老师活动:请同学们按下列要求作图并回答问题:如图所示的⊙O中,分别作相等的圆心角∠AOB•和∠A′OB′将圆心角∠AOB绕圆心O 旋转到∠A′OB′的位置,你能发现哪些等量关系?为什么?=,AB=A′B′.学生活动:发现:AB A B''理由:∵半径OA与O′A′重合,且∠AOB=∠A′OB′.∴半径OB与OB′重合.∵点A与点A′重合,点B与点B′重合,∴AB与A B''重合,弦AB与弦A′B′重合.=,AB=A′B′.∴AB A B''因此,在同一个圆中,相等的圆心角所对的弧相等,所对的弦相等.在等圆中,相等的圆心角是否也有所对的弧相等,所对的弦相等呢?•请同学们现在动手做一做.老师活动:如图1,在⊙O和⊙O′中,•分别作相等的圆心角∠AOB和∠A′O′B′得到如图2,滚动一个圆,使O与O′重合,固定圆心,将其中的一个圆旋转一个角度,使得OA与O′A′重合.你能发现哪些等量关系?说一说你的理由?=,AB=A′B′.学生活动:我能发现:AB A B''因此,我们可以得到下面的定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.同样,还可以得到:在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,•所对的弦也相等.在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,•所对的弧也相等.例题如图,MN是⊙O的直径,弦AB、CD•相交于MN•上的一点P,•∠APM=∠CPM.(1)由以上条件,你认为AB和CD大小关系是什么,请说明理由.(2)若交点P在⊙O的外部,上述结论是否成立?若成立,加以证明;若不成立,请说明理由.分析:(1)要说明AB=CD,只要证明AB、CD所对的圆心角相等,•只要说明它们的一半相等.(2)上述结论仍然成立,它的证明思路与上面的题目是一模一样的.解:(1)AB=CD.理由:过O作OE、OF分别垂直于AB、CD,垂足分别为E、F.∵∠APM=∠CPM,∴∠1=∠2,OE=OF.连结OD、OB且OB=OD.则Rt△OFD≌Rt△OEB.∴DF=BE.根据垂径定理可得:AB=CD.(2)作OE⊥AB,OF⊥CD,垂足为E、F.∵∠APM=∠CPN且OP=OP,∠PEO=∠PFO=90°,∴Rt△OPE≌Rt△OPF.∴OE=OF.连结OA、OB、OC、OD.易证Rt△OBE≌Rt△ODF,Rt△OAE≌Rt△OCF.∴∠1+∠2=∠3+∠4.∴AB=CD.三、课堂练习四、课堂总结指出要点:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.反过来,我们也能得到:在同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,它们所对应的其余各组量也相等.要求能够运用这些定理进行说理或计算.。
初中数学《弧弦和圆心角》教案作课类别课题 24.1.3弧、弦、圆心角课型新授教学媒体多媒体教学目标知识技能 1.通过观察实验,使学生了解圆心角的概念.2.掌握在同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,就可以推出它们所对应的其余各组量也相等,以及它们在解题中的应用.过程方法通过复习旋转的知识,产生圆心角的概念,然后用圆心角和旋转的知识探索在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等,最后应用它解决一些具体问题,进一步理解和体会研究几何图形的各种方法.情感态度激发学生观察、探究、发现数学问题的兴趣和欲望. 教学重点在同圆或等圆中,相等的圆心角所对的弧相等,•所对弦也相等及其两个推论和它们的应用.教学难点探索定理和推导及其应用.教学过程设计教学程序及教学内容师生行为设计意图一、导语这节课我们继续研究圆的性质,请同学们完成下题.1.已知△OAB,如图所示,作出绕O点旋转30、45、60的图形.2.圆是中心对称图形吗?将圆旋转任意角度后会出现什么情况?我们学过的几何图形中既是中心对称图形,又是轴对称图形的是?二、探究新知(一)、圆心角定义在纸上任意画一个圆,任意画出两条不在同一条直线上的半径,构成一个角,这样的角就是圆心角.如图所示,AOB的顶点在圆心,像这样,顶点在圆心的角叫做圆心角.(二)、圆心角、弧、弦之间的关系定理1.按下列要求作图并回答问题:如图所示的⊙O中,分别作相等的圆心角AOB•和A•OB•将圆心角AOB绕圆心O旋转到A‵OB‵的位置,你能发现哪些等量关系?为什么?得到:在同一个圆中,相等的圆心角所对的弧相等,所对的弦相等.2.在等圆中相等的圆心角是否也有所对的弧相等,所对的弦相等呢?综合1、2,我们可以得到关于圆心角、弧、弦之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.3.分析定理:去掉“在同圆或等圆中”这个条件,行吗?4.定理拓展:○1在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角,•所对的弦也分别相等吗?○2在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角,•所对的弧也分别相等吗?综上得到在同圆或等圆中,相等的弧所对的圆心角相等,所对的弦也相等.在同圆或等圆中,相等的弦所对的弧相等,所对的圆心角也相等.综上所述,同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,就可以推出它们所对应的其余各组量也相等.(三)、定理应用1.课本例12.如图,在⊙O中,AB、CD是两条弦,OEAB,OFCD,垂足分别为EF.(1)如果AOB=COD,那么OE与OF的大小有什么关系?为什么?(2)如果OE=OF,那么与的大小有什么关系?AB与CD的大小有什么关系?•为什么?AOB与COD呢?三、课堂训练完成课本83页练习补充:如图3和图4,MN是⊙O的直径,弦AB、CD•相交于MN•上的一点P,•APM=CPM.(1)由以上条件,你认为AB和CD大小关系是什么,请说明理由.(2)若交点P在⊙O的外部,上述结论是否成立?若成立,加以证明;若不成立,请说明理由.四、小结归纳1.圆心角概念.2.在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,•则它们所对应的其余各组量都分别相等,及它们的应用.五、作业设计作业:复习巩固作业和综合运用为全体学生必做;拓广探索为成绩中上等学生必做. 教师布置学生画图,复习旋转知识,为探究本节课定理作铺垫学生通过画图复习旋转知识,明白绕O点旋转,O点就是旋转中心,旋转30,就是旋转角是30学生画一个圆,按教师要求操作,观察,思考,交流,教师给出圆心角定义,学生按照要求作图,并观察图形,结合圆的旋转不变性和相关知识进行思考,尝试得出关系定理,再进行严格的几何证明.学生思考,类比同圆中得到的结论进行探究,猜想,并验证学生思考,明白该前提条件的不可缺性,师生分析,进一步理解定理.教师引导学生类比定理独立用类似的方法进行探究,得到推论学生审题,理清题中的数量关系,由本节课知识思考解决方法.教师组织学生进行练习,教师巡回检查,集体交流评价,教师指导学生写出解答过程,体会方法,总结规律.让学生尝试归纳,总结,发言,体会,反思,教师点评汇总通过学生亲自动手操作发现圆的旋转不变性,为后续探究打下基础通过该问题引起学生思考,进行探究,发现关系定理,初步感知培养学生的分析能力,解题能力.为继续探究其推论奠定基础.感受类比思想,类比中全面透彻地理解和掌握关系定理和它的推论,并进行推广,得到其他几个定理,完整的把握所学知识.给出一般叙述,以其更好的应用.培养学生解决问题的意识和能力,体会转化思想,化未知为已知,从而解决本题.运用所学知识进行应用,巩固知识,形成做题技巧让学生通过练习进一步理解,培养学生的应用意识和能力归纳提升,加强学习反思,帮助学生养成系统整理知识的习惯巩固深化提高板书设计课题圆心角、弧、弦之间的关系定理关系定理应用1. 2. 归纳教学反思。
《弧、弦、圆心角》教学设计方案(第一课时)一、教学目标:1. 理解弧、弦、圆心角的概念和关系。
2. 掌握圆心角与弧、弦的关系公式。
3. 能够运用所学知识解决简单的实际问题。
二、教学重难点:1. 教学重点:理解弧、弦、圆心角的概念,掌握圆心角与弧、弦的关系。
2. 教学难点:将理论知识与实际问题相结合,学会运用所学知识解决实际问题。
三、教学准备:1. 准备教学用具:黑板、粉笔、圆规、量角器等。
2. 制作课件:包括概念图、例题和练习题。
3. 了解学生已有知识基础,设计适当的教学活动,帮助学生建立新知识与已有知识之间的联系。
4. 针对教学难点,设计一些具有启发性的教学活动,如小组讨论、案例分析等,帮助学生理解和应用所学知识。
四、教学过程:1. 引入课题通过展示一些生活中与圆有关的图片,让学生观察并思考这些图片中哪些地方用到了圆弧、弦和圆心角的知识。
引导学生思考圆弧、弦和圆心角之间的关系,并引出本节课的课题。
2. 探索新知通过观察、测量和计算等方式,让学生探究圆弧、弦和圆心角之间的关系。
教师可准备一些材料,如不同大小、不同位置的圆、尺子、量角器等,让学生自己动手操作,探索其中的规律。
探究活动一:测量不同大小圆的圆弧、弦和圆心角,并记录数据。
通过数据分析,发现圆弧、弦和圆心角之间的关系。
探究活动二:制作一个半径为定值的一组同心圆,并依次取AB为一条弦,通过观察和测量可以发现哪些规律?探究活动三:通过计算弧长和半径的比值与弦长的关系,进一步理解圆心角、弧长和弦长之间的关系。
3. 课堂互动在探究过程中,鼓励学生提出自己的问题和观点,教师进行解答和指导。
同时,也可以让学生相互讨论,交流自己的想法和经验,促进学生的思考和表达能力。
4. 课堂小结在课堂结束前,教师对本节课所学的知识进行总结,并强调圆弧、弦和圆心角之间的联系和应用。
让学生回顾本节课的主要内容,加深对本节课的理解和掌握。
5. 作业布置课后布置一些与本节课相关的练习题和思考题,让学生进一步巩固和应用所学的知识,同时也可以培养学生的独立思考和解决问题的能力。
《弧、弦、圆心角》的教学实录
关于《弧、弦、圆心角》的教学实录
教学过程:
活动1:一、等圆、同圆的理解
1、学生动手操作:拿出准备好的圆形纸片,然后把它们重叠起来
师:同学们,拿出我们准备的圆形纸片,然后把它们重叠起来你有什么发现?
2、交流:
师:把两个圆放在一起,就是把圆重叠在一起,它们的大小一样吗?
生1:大小一样
生2:形状一样
生3:两个圆可以完全重合
3、归纳:
师:我们把能够完全重合的圆叫做等圆。
师:如何理解同圆?
生:同圆指的是同一个圆。
师:好,正确
二、引入
师:今天这节课老师将和同学们一起探讨在同圆或等圆中弧、弦、圆心角之间的关系。
活动2:(一)复习问题:
师:什么是弧、弦[
在黑板画圆、作出弧、弦,引导学生观察]
生1:弧是指圆上任意两点间的部分
生2:弦是指连接圆上任意两点所得线段
师:很好,这两位同学回答正确
(二)圆心角的认识
1、观察图片
(1)找角,观察角的特征
师:图中有一个角,你看到了吗?请你说出这个角
生:有一个角,是AOB
(2)归纳总结得出圆心角的概念
教师出示圆形纸片(画有一个圆心角)
师:请同学们观察,找到这个角的顶点。
生1:这个角的顶点在圆心
生2:角的两边在圆上
生3:角的顶点在圆心,两边在圆上
师:角的顶点在圆心
归纳:
师:我们把顶点在圆心的角叫做圆心角。
2、巩固学生对圆心角的理解
问题:
师:找出图中的圆心角,并说明理由
生1:是圆心角,因为它的顶点在圆心并且两边与圆各有一个交点。
生2:不是圆心角,因为它的顶点不在圆心
生3:不是圆心角,因为它的两边与圆没有交点
活动3:弧、弦、圆心角关系的探究
引述:认识了弧、弦、圆心角,接下来我们就可在以同一个圆或等圆中探究它们的关系了。
1、圆的旋转不变性理解
问题:
师:圆是轴对称图形吗对称轴是什么圆是中心对称图形吗对称中心是什么
生1:圆是轴对称图形,对称轴是圆直径所在的直线
生2:圆是中心对称图形,对称中心是圆心
生3:圆是轴对称图形又是中心对称图形
师:如果将圆旋转任意一个角度,所得图形还能和原图形重合吗?
学生动手操作
生1:将圆旋转30度角,所得图形还能与原图形重合
生2:将圆旋转60度角,所得图形还能与原图形重合
生3:将圆旋转90度角,所得图形还能与原图形重合
生4:将圆旋转任意一个角度,所得图形还能和原图形重合
师:好
归纳:
师:圆绕圆心旋转任意一个角度都能与原图形重合。
这种特性称作圆的旋转不变性
2、探究(教材82页)
(1)审题:
师:请学生读题[全班同学一起读]
(2)教师演示图片
师:根据旋转的性质,在圆O中有一个圆心角AOB,将圆心角AOB 绕圆心O旋转一个角度得AOB,显然AOB=AOB,我们连接圆上的四个点得弦AB和弦AB,同时两个圆心角的两条边与圆各有一个交点,于是就有弧AB和弧AB
(3)学生探究;
师:对照图形,你们发现那些等量关系为什么
3、交流
(1)请学生写出等量关系
(2)解说为什么
生1:射线OA与射线OA重合,OB与OB重合,OA=OA,OB=OB,因为同圆的半径相等,
生2:点A与A重合,B与B重合,因此弦AB与弦AB重合,弧AB与弧AB重合。
即AB=AB,弧AB=弧AB
生3:AOB=AOB,因为它们重合
师:很好
4、归纳
师:在这次探究活动中,我们已知的有那些得出的.结论又有那些
生1:已知的是在同一个圆中,有两个圆心角相等,得出的结论是它们所对的两条弧也相等
生2:已知的是在同一个圆中,有两个圆心角相等它们所对的两条弦也相等
师:已知条件中的圆心角与所得结论中的弧、弦有怎样的位置关系?
生1:它们的位置是相对的
师:怎样用简洁的语言描述通过这次探究活动你所得到的结论?
生:在同圆中,相等的圆心角所对的弧相等,所对的弦也相等。
师:在等圆或同圆中,相等的圆心角所对的弧相等,所对的弦也相等。
5、质疑:问题:
师:如果是在两个等圆中,也有两个圆心角相等,是否也有这样的结论?
教师演示图片,提出问题:
师:两个圆心角能够完全重合,说明了什么?
生:两个圆心角相等
师:你又发现了那些相等关系?
生1:这两个圆心角所对的弧相等,
生2:这两个圆心角所对的弧相等,所对的弦相等。
6、总结:问题:
师:在等圆中,如果有两个圆心角相等,它们所对的弧、弦也相等。
所以,对于我们刚才得到的结论可以做怎样的补充?
生:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
说明:
师:在这个结论中有三组等量关系,分别是哪三组?
生1:两个圆心角相等、两条弧相等、两条弦相等
生2;两条弧相等、两个圆心角相等、两条弦相等
生3:两条弦相等、两个圆心角相等、两条弧相等
师:在同圆或等圆中,这三组量中只要有一组量相等,它们所对应的其余各组两也相等。
即:
在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角,所对的弦也。
在同圆或等远中,如果两条弦相等,那么它们所对的圆心角,所对的弧也。
师;请同学们完成推论中的空格
活动4
问题:如图:AB、CD是⊙的两条弦。
(1)如果AB=CD,那么,。
(2)如果AB=CD,那么,。
(3)如果,AOB=COD那么,。
师:请同学们完成以上的空格
问题:如果AB=CD,OE┴AB与E,OF┴CD与F,OE与OF相等吗为什么
师:OE是圆心O到弦AB的距离,所以把这条线段叫做弦心距。
师:已知这两条弦相等,它们到圆心的距离相等吗(OE=OF吗) 生1:相等
生2;不知道
师;为什么?
生1:通过证明三角形全等可得。
生2:
总结:
师:在同圆或等圆中,如果两条弦相等,那么它们到圆心的距离相等,即与其对应的弦心距相等
问题:例题1如图在⊙O中,AB=AC,ACB=60,求证AOB=BOC=AOC。
(1)学生合作讨论:确定方法和过程
生:要求证三个圆心角相等,可以通过求证它们所对的弦或弧相等。
已知AB=AC,ACB=60度,所以三角形是等边三角形,所以AB=BC=AC
(2)学生交流:写出解题过程
活动5:问题:
师:通过本节课的学习,你有什么收获?
生1:我认识了圆心角和弦心距
生2:我知道了弧、弦、圆心角之间的关系。
即三组量中只需知道其中一组量具有相等关系,其余三组都有相等
师:通过本节课的学习,我们认识了圆心角,同时,我们还知道了弧、弦、圆心角、弦心距四者之间的关系。
布置作业:。