第四章泊松过程2
- 格式:ppt
- 大小:382.50 KB
- 文档页数:21
泊松过程一种累计随机事件发生次数的最基本的独立增量过程。
例如随着时间增长累计某电话交换台收到的呼唤次数,就构成一个泊松过程。
泊松过程是由法国著名数学家泊松(Poisson, Simeon-Denis)(1781—1840)证明的。
1943年C.帕尔姆在电话业务问题的研究中运用了这一过程,后来Α.Я.辛钦于50年代在服务系统的研究中又进一步发展了它。
Poisson过程(Poisson process,大陆译泊松过程、普阿松过程等,台译卜瓦松过程、布瓦松过程、布阿松过程、波以松过程、卜氏过程等),是以法国数学家泊松(1781 - 1840)的名字命名的。
泊松过程是随机过程的一种,是以事件的发生时间来定义的。
我们说一个随机过程N(t) 是一个时间齐次的一维泊松过程,如果它满足以下条件:在两个互斥(不重叠)的区间内所发生的事件的数目是互相独立的随机变量。
在区间内发生的事件的数目的概率分布为:其中λ是一个正数,是固定的参数,通常称为抵达率(arrival rate)或强度(intensity)。
所以,如果给定在时间区间之中事件发生的数目,则随机变数呈现泊松分布,其参数为。
更一般地来说,一个泊松过程是在每个有界的时间区间或在某个空间(例如:一个欧几里得平面或三维的欧几里得空间)中的每一个有界的区域,赋予一个随机的事件数,使得•在一个时间区间或空间区域内的事件数,和另一个互斥(不重叠)的时间区间或空间区域内的事件数,这两个随机变数是独立的。
•在每一个时间区间或空间区域内的事件数是一个随机变数,遵循泊松分布。
(技术上而言,更精确地来说,每一个具有有限测度的集合,都被赋予一个泊松分布的随机变数。
)泊松过程是莱维过程(Lévy process)中最有名的过程之一。
时间齐次的泊松过程也是时间齐次的连续时间Markov过程的例子。
一个时间齐次、一维的泊松过程是一个纯出生过程,是一个出生-死亡过程的最简单例子。
第二讲 泊松过程1.随机过程和有限维分布族现实世界中的随机过程例子:液体中,花粉的不规则运动:布朗运动;股市的股票价格; 到某个时刻的电话呼叫次数;到某个时刻服务器到达的数据流数量,等。
特征:都涉及无限多个随机变量,且依赖于时间。
定义(随机过程) 设有指标集T ,对T t ∈都有随机变量)(t X 与之对应,则称随机变量族}),({T t t X ∈为随机过程。
注 一个随机过程是就是一个二元函数E T t X →⨯Ωω:),(。
固定ω,即考虑某个事件相应的随机变量的值,得到函数R T t X →:),(ω称为样本函数或轨道或一个实现。
映射的值域空间E 称为状态空间。
例 随机游动(离散时间,离散状态)质点在直线上每隔单位时间位置就发生变化,分别以概率p 或概率p -1向正或负向移动一个单位。
如果以n S 记时刻n 质点所处的位置,那么就得到随机过程{,0}n S n ≥。
这里指标集},1,0{ =T ,状态空间},1,0,1,{ -=E 。
如果记n X 为时刻n ,质点的移动,那么{,1}n X n ≥也是随机过程。
两个过程的区别:{}n S 不独立;{}n X 独立; 两个过程的关系:01nn kk S S X==+∑习题 计算n ES 和n DS (设00S =)。
提示 利用∑==nk kn XS 1,其中k X 是时刻k 的移动方式。
习题 设从原点出发,则()/2()/2()/2,2()0,21n k n k n k n n C q p n k iP S k n k i +-+⎧+===⎨+=-⎩。
例 服务器到达的数据流(连续时间,离散状态)在],0[t 内,到达服务器的数据包个数记为)(t N ,那么}0),({≥t t N 也是个随机过程,其指标集}{+∈=R t T ,状态空间},1,0{ =E 。
例 布朗运动(连续时间,连续状态)直线上质点的位移是连续的。
在时刻t 的位置为t X 。
泊松过程
泊松过程是由法国著名数学家泊松(Poisson, Simeon-Denis)(1781—1840)证明的。
1943年C.帕尔姆在电话业务问题的研究中运用了这一过程,后来辛钦于50年代在服务系统的研究中又进一步发展了它。
它是一种累计随机事件发生次数的最基本的独立增量过程。
例如随着时间增长累计某电话交换台收到的呼唤次数的过程。
一般地来说,一个泊松过程是在每个有界的时间区间或在某个空间(例如:一个欧几里得平面或三维的欧几里得空间)中的每一个有界的区域,赋予一个随机的事件数,使得在一个时间区间或空间区域内的事件数,和另一个互斥(不重叠)的时间区间或空间区域内的事件数,这两个随机变数是独立的。
在每一个时间区间或空间区域内的事件数是一个随机变数,遵循泊松分布。
(技术上而言,更精确地来说,每一个具有有限测度的集合,都被赋予一个泊松分布的随机变数。
)泊松过程是莱维过程(Lévy pro cess)中最有名的过程之一。
时间齐次的泊松过程也是时间齐次的连续时间Markov过程的例子。
一个时间齐次、一维的泊松过程是一个纯出生过程,是一个出生——死亡过程的最简单例子。
对泊松过程,通常可取它的每个样本函数都是跃度为1的左(或右)连续阶梯函数。
可以证明,样本函数具有这一性质的、随机连续的独立增量过程必是泊松过程,因而泊松过程是描写随机事件累计发生次数的基本数学模型之一。
直观上,只要随机事件在不相交时间区间是独立发生的,而且在充分小的区间上最多只发生一次,它们的累
计次数就是一个泊松过程。
泊松过程泊松过程是指一种累计随机事件发生次数的最基本的独立增量过程。
例如随着时间增长累计某电话交换台收到的呼唤次数,就构成一个泊松过程。
泊松过程是由法国著名数学家泊松(1781—1840)证明的。
1943年C.帕尔姆在电话业务问题的研究中运用了这一过程,后来Α.Я.辛钦于50年代在服务系统的研究中又进一步发展了它。
泊松过程是随机过程的一种,是以事件的发生时间来定义的。
我们说一个 随机过程 N(t)是一个时间齐次的一维泊松过程,如果它满足以下条件:在两个互斥(不重迭)的区间内所发生的事件的数目是互相独立的随机变量。
在区间[t,t + τ]内发生的事件的数目标机率分布为:其中λ是一个正数,是固定的参数,通常称为抵达率(arrival rate)或强度(intensity)。
所以,如果给定在时间区间[t,t + τ]之中事件发生的数目,则随机变量N(t + τ) - N(t)呈现泊松分布,其参数为λτ。
更一般地来说,一个泊松过程是在每个有界的时间区间或在某个空间(例如:一个欧几里得平面或三维的欧几里得空间)中的每一个有界的区域,赋予一个随机的事件数,使得在一个时间区间或空间区域内的事件数,和另一个互斥(不重迭)的时间区间或空间区域内的事件数,这两个随机变量是独立的。
在每一个时间区间或空间区域内的事件数是一个随机变量,遵循泊松分布。
(技术上而言,更精确地来说,每一个具有有限测度的集合,都被赋予一个泊松分布的随机变量。
) 考虑一个泊松过程,我们将第一个事件到达的时间记为T1。
此外,对于n>1,以Tn记在第n-1个事件与第n个事件之间用去的时间。
序列{Tn,n=1,2,...}称为到达间隔时间列。
Tn(n=1,2,...)是独立同分布的指数随机变量,具有均值1/λ。
Definition of the Poisson processWe describe the situation by the counting process N(t), t > 0, which counts the number of events that have occurred between time 0 and time t. Our model has a single parameter, λ > 0, which isthe average arrival rate per unit time. Before defining the model formally, we make some preliminary calculations based on the following three natural assumptions:• The probability of an event occurring in a short interval of time [t,t+h] is λh+o(h) as h → 0.• The probability of two or more events occurring in interval [t, t + h] is o(h) as h → 0.• The numbers of events occurring in disjoint time intervals are independent.Examples:1.Insurance claims. Insurance companies often model customers’ claims using renewalideas. In this case the interarrival distribution is a crucial element of the calculation ofwhat insurance premium to charge.2.Counter processes. Many devices can be described as counters in that they attempt torecord the occurrence of successive signal pulses impinging on some instrument. Forexample Geiger counters for recording ionization events, or scintillation counters forrecording passage of a subatomic particle.3.Traffic flow. The times at which successive cars pass a monitoring station on a longsingle- lane road can be modelled as a renewal process. Much more generally, any sort of “traffic” can fit a similar model, such as data packets arriving at a server across a network connection. Questions of congestion can be answered using renewal theory and therelated theory of queues.4.Inventory systems. A large department store needs to know how much stock of aparticular item to hold, and a schedule for replenishment. The pattern of demands canoften be modelled as a renewal process.In any of these or other similar situations in which events occur randomly in time at some uniform average rate, an assumption of ‘total randomness’ leads to the Poisson process as a model.。