4.2 平行线分线段成比例教案(九年级上册)
- 格式:doc
- 大小:101.06 KB
- 文档页数:7
4.2平行线分线段成比例一、教学目标1.知识目标:①了解平行线分线段成比例这个基本事实产生的过程.②掌握由平行线分线段成比例所得的推论.③会用平行线分线段成比例的事实和推论解决相关的计算和证明问题.2.能力目标:掌握推理证明的方法,发展演绎推理能力二、教学过程分析1.复习提问(1)什么叫比例线段?答:四条线段a、b、c、d中,如果a:b=c:d,那么这四条线段a、b、c、d叫做成比例的线段,简称比例线段.(2)比例的基本性质?答:1.如果a:b =c:d,那么ad =bc.2.如果ad =bc,那么a:b =c:d.3.等比性质2.导入新课:1.思考:两条直线m,n被一组平行线l1,l2,l3所截,同学们能对应找出m,n上被截成哪几条线段吗?l1l2 ABDEm n生思考,给出答案 如何理解对应线段? 2. 做一做在图3-6中,小方格的边长均为1,直线l 1 ∥ l 2∥ l 3,分别交直线m ,n 与格点A 1,A 2,A 3,B 1,B 2,B 3.图3-6(1)计算 的值,你有什么发现?(2)将2l 向下平移到如图3-7的位置,直线m,n 与2l 的交点分别为21,B A 你在问题(1)中发现结论还成立吗?如果将2l 平移到其它位置呢?(3)在平面上任意作三条平行线,用它们截两条直线,截得的线段成比例吗?12122323B B B B A A A A 与3.分组讨论,得出结论 平行线分线段成比例定理:两条直线被一组平行线所截,所得的对应线段成比例. 定理的符号语言 ∵l 1∥l 2∥l 3l 1l2l 3A BCD EFm n练习:1.已知两条直线被三条平行线所截,截得线段的长度如图所示,求 x 的值.AB DE BC EF AB DE AC DF BC EF AC DF 上上下下上上全全下下全全AB BC DEEF左左右右2.如图,已知直线 a ∥b ∥c ,分别交直线 m ,n 于点 A ,C ,E ,B ,D ,F ,AC = 4,CE = 6,BD = 3,求 BF 的长. 4.想一想(一)如果把图1中l 1 , l 2两条直线相交,交点A 刚落到l 3上,如图2所得的对应线段的比会相等吗?依据是什么?得出结论:(推论)平行于三角形一边的直线与其他两边(或两边的延长线)相交,截得的对应线段成比例.符号语言:∵DE ∥BC(二)如果把图1中l 1 , l 2两条直线相交,交点A 刚落到l 4上,如CEAEBD AD =∴AD AE BD CEAB AC AB AC==或或图2(2)所得的对应线段的比会相等吗?依据是什得出结论:八字型 ∵DE ∥BC ACAE ABAD =∴熟悉该定理及推论的几种基本图形(课件展示) 5. 例题学习例1 如图,在△ABC 中,E ,F 分别是AB 和AC 上的点,且EF ∥BC 。
浙教版数学九年级上册《4.2 由平行线截得的比例线段》教学设计1一. 教材分析《4.2 由平行线截得的比例线段》这一节主要让学生掌握利用平行线截得的线段之间的比例关系,通过几何图形和线段的组合,引导学生发现和证明线段之间的比例关系,为后面进一步学习相似三角形和相似多边形打下基础。
二. 学情分析九年级的学生已经掌握了平行线的性质,同时也具备了一定的逻辑思维能力和空间想象能力。
但是,对于证明两个线段之间的比例关系,可能还存在一定的困难,因此,在教学过程中,需要通过具体例题,引导学生发现规律,再进行证明。
三. 教学目标1.理解平行线截得线段之间的比例关系。
2.学会利用平行线截得的线段之间的比例关系解决实际问题。
3.培养学生的逻辑思维能力和空间想象能力。
四. 教学重难点1.重点:平行线截得线段之间的比例关系的发现和证明。
2.难点:如何引导学生发现并证明平行线截得线段之间的比例关系。
五. 教学方法1.采用问题驱动法,引导学生发现和证明平行线截得线段之间的比例关系。
2.利用几何画板软件,动态展示平行线截得的线段之间的比例关系,帮助学生直观理解。
3.通过小组合作交流,培养学生的团队协作能力。
六. 教学准备1.教学课件。
2.几何画板软件。
3.练习题。
七. 教学过程1.导入(5分钟)利用几何画板软件,动态展示平行线截得的线段,引导学生关注线段之间的比例关系。
2.呈现(10分钟)呈现一组平行线截得的线段,请学生观察并发现其中的比例关系。
学生可能发现同位角相等,内错角相等等性质。
3.操练(10分钟)请学生利用平行线的性质,证明同位角相等,内错角相等。
通过几何画板软件,引导学生直观理解。
4.巩固(10分钟)请学生利用平行线截得的线段之间的比例关系,解决实际问题。
如:在一条直线上,距离某一点A相等的两条线段AB和AC,求证AB和AC平行。
5.拓展(10分钟)引导学生思考:在空间中,平行线截得的线段之间是否也存在比例关系?请学生举例说明。
浙教版数学九年级上册《4.2 由平行线截得的比例线段》教学设计2一. 教材分析《4.2 由平行线截得的比例线段》是浙教版数学九年级上册第四章第二节的内容。
本节内容是在学生掌握了平行线、射线、线段等基本概念的基础上进行学习的。
本节课的主要内容是让学生了解由平行线截得的比例线段的性质,并学会运用这一性质解决实际问题。
教材通过生活中的实例引入课题,激发学生的学习兴趣,接着引导学生通过观察、操作、归纳等方法发现并证明性质,最后通过练习巩固所学知识。
二. 学情分析九年级的学生已经掌握了平行线、射线、线段等基本概念,具备一定的观察、操作、归纳能力。
但部分学生对平行线的理解可能还不够深入,因此在教学过程中需要教师引导学生进一步理解平行线的性质。
此外,学生对于解决实际问题的能力有待提高,教师在教学过程中应注重培养学生的应用能力。
三. 教学目标1.理解由平行线截得的比例线段的性质。
2.学会运用由平行线截得的比例线段解决实际问题。
3.培养学生的观察能力、操作能力、归纳能力及应用能力。
四. 教学重难点1.重点:由平行线截得的比例线段的性质。
2.难点:运用由平行线截得的比例线段解决实际问题。
五. 教学方法1.引导发现法:教师引导学生观察、操作、归纳,发现由平行线截得的比例线段的性质。
2.实例分析法:教师通过生活中的实例,引导学生理解并运用由平行线截得的比例线段解决实际问题。
3.练习法:教师设计适量练习,让学生巩固所学知识。
六. 教学准备1.教学课件:制作课件,展示教材中的实例及练习题。
2.教学素材:准备一些实际问题,供课堂练习使用。
3.板书设计:设计板书,突出本节课的主要内容。
七. 教学过程1.导入(5分钟)教师通过展示生活中的实例,引导学生观察并思考:由平行线截得的比例线段有哪些性质?2.呈现(10分钟)教师引导学生观察教材中的示意图,让学生通过观察、操作、归纳等方法发现并证明由平行线截得的比例线段的性质。
3.操练(10分钟)教师设计适量练习,让学生运用所学知识解决问题。
平行线分线段成比例定理【教学目标】知识与技能1.使学生在理解的基础上掌握平行线分线段成比例定理及其推论,并会灵活应用.使学生掌握三角形一边平行线的判定定理.过程与方法通过应用,培养识图能力和推理论证能力.情感、态度与价值观通过定理的教学,进一步培养学生类比的数学思想.【教学重难点】教学重点:是平行线分线段成比例定理和推论及其应用. 教学难点:是平行线分线段成比例定理的正确性的说明及推论应用.【导学过程】 【创设情景,引入新课】1. 什么是平行线等分线段定理?2.如图(1)中,AD ∥BE ∥CF,且AB=BC,则的比值是多少?【自主探究】三条距离不相等的平行线截两条直线会有什么结果?【课堂探究】由上面例题我们可以得到:1.平行线分线段成比例定理 :两条直线被一组平行线所截,所得的对应线段成比例说明: (1)画出定理的各种基本图形,对照图形写出相应的结论。
(2)写出其它的对应线段成比例的情况。
对应线段成比例可用下面的语言形象表示:右全左全右上左上全上全上下上下上===,,等等。
(3)由下面的定理的基本图形(1)和(2)得出推论?那么32若==EF DE ,,BC AB ?那么43若==EFDE ,,BC AB2.推论:平行于三角形一边的直线与其他两边相交,截得的对应线段成比例 定理的基本图形和结论:3.例例:如图:在△ABC 中E,F 分别是AB 和CD 上的两点且EF//BC,(1)如果AE=7,EB=5,FC=4那么AF 的长是多少?(2)如果AB=10,AE=6,AF=5那么BE 的长是多少?【当堂训练】(1)已知线段PQ ,在PQ 上求一点D ,使PD :PQ=4:1;(2)已知线段PQ ,在PQ 上求一点D ,使PQ :DQ=4:1A 型基本图形 X 型基本图形(1) (4)(2) (3)。
2023-2024学年北师大版九年级数学上册教案:4.2 平行线分线段成比例一. 教材分析《2023-2024学年北师大版九年级数学上册》第4.2节“平行线分线段成比例”主要介绍了平行线分线段成比例的性质。
通过这一节的学习,学生能够理解并掌握平行线分线段成比例的定理,并能够运用该定理解决实际问题。
本节内容是初中数学的重要知识点,对于学生来说具有较高的难度,需要通过大量的练习来巩固。
二. 学情分析九年级的学生已经掌握了平行线的性质,对于线段的比例也有一定的理解。
但是,将平行线与线段的比例联系起来,对于他们来说还有一定的难度。
因此,在教学过程中,需要通过具体的实例,引导学生理解并掌握平行线分线段成比例的性质。
三. 教学目标1.了解平行线分线段成比例的定理,并能够运用该定理解决实际问题。
2.培养学生的逻辑思维能力和解决问题的能力。
3.提高学生的数学素养,使他们在数学学习上有所突破。
四. 教学重难点1.平行线分线段成比例的定理的理解和运用。
2.如何将平行线与线段的比例联系起来,形成系统性的认识。
五. 教学方法采用问题驱动的教学方法,通过具体的实例,引导学生发现并总结平行线分线段成比例的定理。
同时,结合小组讨论和练习,巩固所学知识,提高学生的实际应用能力。
六. 教学准备1.准备相关的教学材料,如PPT、实例等。
2.准备练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考平行线与线段的比例之间的关系。
例如,假设有一块土地,被两条平行线和一条横线分成四个部分,如何求出每个部分的面积比例。
2.呈现(10分钟)通过具体的实例,呈现平行线分线段成比例的定理。
引导学生发现并总结定理的内容。
3.操练(10分钟)让学生分组讨论,运用平行线分线段成比例的定理解决实际问题。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)给出一些练习题,让学生独立完成,巩固所学知识。
教师选取部分题目进行讲解,分析解题思路。
平行线分线段成比例说课稿4.2平行线分线段成比例(说课稿)各位领导,老师:大家好!今天我说课的题目是九年级数学上册第四章第二节平行线分线段成比例。
根据高效课堂的理念,对于本节课,我采用“四步导学案”教学模式与学生共同探究新知。
下面我就从设计理念、学情分析、教材分析、教学目标分析、教学方法分析、教学过程分析六个方面加以说明。
一、设计理念1.学生的有效研究有赖于教师的有效设计,确立以学生发展为本的理念。
2.关注学生研究的全过程,关注学生研究的有效性,关注教学的针对性,关注课堂师生共同成长的互动性。
二、学情分析在本章前两课时的研究中,学生通过对相似图形的直观感知,体会到可以用对应线段长度的比来描述两个形状相同的平面图形的大小关系。
从而认识了线段的比,成比例线段。
通过对方格纸中成比例线段的探究,了解了合比性质与等比性质,并在探究活动中积累了一定的合作交流的经验,培养了提出问题与解决问题的能力。
同时学生通过对合比性质与等比性质的演绎证明,也进一步发展了逻辑推理能力。
三、教材分析本节课依旧采用前两节在方格纸中探究的方式,引导学生得出平行线分线段成比例及其推论。
平行线分线段成比例是研究相似形的最重要和最基本的理论,是《新课程标准》图形的性质及其证明中列出的九个基本事实之一。
本节进修平行线分线段成比例,呈现的顺序是:特殊-普通-特殊。
教材首先引导学生借助方格纸这一工具,通过观察、计算,由特殊到普通地逐步归纳、猜测,进而明白“平行线分线段成比例”的基本事实;然后把这一基本事实特殊化(应用在三角形中),得到它的一个推论,从而为背面证明相似三角形判定作准备。
四、教学目标分析本节课的教学目标可从以下四个方面阐述:知识技能:理解并掌握平行线分线段成比例的基本事实及其推论,并会灵活应用。
数学思考:培养学生积极的思考、动手、观察的能力,使学生感悟几何知识在生活中的价值。
问题解决:通过应用,培养识图能力和推理论证能力。
情感态度:在进行探索的活动过程中发展学生的探索发现归纳意识并养成合作交流的惯。
课题 4.2 平行线分线段成比例 单元 第四单元 学科数学年级九学习 目标1.理解并掌握平行线分线段成比例的基本事实及其推论,并会灵活应用。
2.通过应用,培养识图能力和推理论证能力。
3.培养学生积极的思考、动手、观察的能力,使学生感悟几何知识在生活中的价值。
重点 平行线分线段成比例定理和推论及其应用。
难点 平行线分线段成比例定理及推论的灵活应用,平行线分线段成比例定理的变式。
教学过程教学环节 教师活动学生活动 设计意图 导入新课教师提问:(1)什么叫比例线段?四条线段 a 、b 、c 、d 中,如果 a :b=c :d ,那么这四条线段a 、b 、c 、d 叫做成比例的线段,简称比例线段.(2)比例的基本性质? 如果a cb d= ,那么ad=bc. 如果ad=bc (a, b, c, d 都不等于0),那么a cb d= 学生思考回答问题。
复习成比例线段的内容,回顾上节课通过方格纸探究成比例线段性质的过程。
讲授新课如下图,小方格的边长均为1,直线l 1 ∥ l 2 ∥ l 3 , 分别交直线m ,n 于格点A 1,A 2, A 3, B 1,B 2, B 3.(1)计算121212122323232313131313A AB B A A B B A A B B 与,与,与A A B B A A B B A A B B的值,你有什么发现?(2)将l 2向下平移到如图的位置,直线m,n 与l 2的交点分别为A 2,B 2,你在问题(1)中发现的结论还成立吗?如果将l 2平移到其他位置呢?学生通过观察、度量、计算、猜测、验证、推理与交流等数学活动,得出结论。
让学生通过观察、度量、计算、猜测、验证、推理与交流等数学活动,达到对平行线分线段成比例定理的意会、感悟。
学生在以前的学习中,尤其是本章前两节的探究也是通过表格中的多边形来完成的。
所以学生有种熟悉(3)在平面上任意作三条平行线,用它们截两条直线,截得的线段成比例吗?试着在纸上画一画!想一想:你能得到什么结论?平行线分线段成比例的基本事实:两条直线被一组平行线所截,所得的对应线段成比例.温馨提示:1. 一组平行线两两平行,被截直线不一定平行;2. 所有的成比例线段是指被截直线上的线段,与这组平行线上的线段无关;几何语言表示:如图,∵l3∥ l4∥ l5AB DE AB DE BC EF∴=,=,=BC EF AC DF AC DF【做一做】如左下图,直线a∥b ∥ c,分别交直线m,n于点A1,A2,A3,B1,B2,B3,过点A1作直线n的平行线,分别交直线b,c于点C2,C3(如右下图). 右下图中有哪些成比例线段?让学生在探究得出结论的基础上,对平行线分线段成比例定理的有进一步的理解。
课题:4.2 平行线分线段成比例
教学目标:
1.经历平行线分线段成比例基本事实及推论的探索过程,掌握这两个定理.
2.会应用定理及推论求线段的长度或证明线段间的关系.
教学重、难点:
重点:平行线分线段成比例定理及推论的掌握与应用.
难点:熟练运用平行线分线段成比例定理及其推论进行计算.
教学过程:
一、创设情境,引入新课
活动内容:回答下列问题.
问题1.线段的比如何计算?
问题2.线段AB、CD、EF、GH成比例是什么意思?
问题3:教师展示绳子
(1)你能快速的将这根绳子分成相等的两根吗?
(2)你能快速的将它分成长度比为1:3的两根吗?
(3)你能快速的将它分成长度比为2:3的两根吗?
处理方式:问题1、2由学生口答完成.(教师注意学生回答问题1时对长度的叙述,回答问题2时四条线段的顺序性是否正确).问题3由学生自告奋勇动手分一分试一试,一学生操作,其他同学进行判断.
设计意图:本环节通过对线段的比及成比例线段的复习,为这节课的探究活动做铺垫.设计问题3,学生对前两种分法都很轻松,到了第3中将会产生疑问或分的不准确,提出这个问题是为了让学生感受到数学对解决生活中问题的必要性.为本节课的学习设下悬念,激发学生的学习兴趣.
二、探究学习,感悟新知
活动一:自主学习 自学指导:
1.学习内容:课本82页全部内容.
2.学习时间:约5分钟.
3.学法指导:(1)小组内同学分工计算下列各组线段的比
1223A A A A = ,1223
B B
B B = , 1213A A A A
= ,12
13B B B B = , 2313A A A A = ,2313
B B B B = .
(2)观察各组线段的比,你们发现了成比例线段吗? (3)若将l 2平移后,成比例线段改变了吗? (4)撤掉方格纸,成比例线段会改变吗?
(5)由此得到了结论:两条 被 所截,所得的 成比例 . 处理方式:生分组自学,分工计算,完成导学案上的学法指导.师巡视参与小组学习,随时点拨计算中出现的问题,提示学生记住这个定理.
设计意图:本环节为了适应学生自学,将课本上的问题更细化,让学生知道怎么学,学什么,从而一步一步按照指导得出定理. 活动二、自学检测
1.展示导学案上的学法指导部分答案
2.如图: ∵ l 1 ∥l 2 ∥ l 3 ∴ AB BC
= , AB
AC = , AB
DE
. = , = .等
处理方式:将一位同学导学案上的学法指导部分的答案借助实物投影投出,全体同学进行批改订正,形成结论.第二问由学生将比例写在黑板上.多名同学相互补充,感受对应线段成比例的不同表示方法.
活动三、合作探究(一)
1.你认为定理中的关键词是?
2.在找出“对应线段”时你有什么好方法与同学们分享?
处理方式:师将平行和对应线段画出来,以示本定理的关键.同时强调这是使用本定理的条件和书写比例时必须注意的问题.各小组各抒己见,说出找对应线段的技巧及比例的书写技巧.
设计意图:本环节主要是深化学生对平行线分线段成比例定理的理解,预防学生在解决问题时只写比例式而忽略了平行线这个条件,再者让学生明确无论是上下比还是左右比,都必须对应.
跟踪训练(一)
1.如图,已知两条直线被三条平行线所截,截得的线段长度如图所示,则x= .
2.如图,直线l1∥l2∥l3,另两条直线分别交l1,l2,l3于点A,B,C及点D,E,F,且AB=3,DE=4,EF=2,则BC= .
处理方式:学生独立完成这两个习题,小组内的同学相互批改.
设计意图:借助这两个小题检测学生对定理的理解,发现定理只对“平行”和“对应”有限制,而与被截直线的位置无关.同时借助于比例式,求线段的长.
活动四、合作探究(二)
提出问题:1.将直线l 5向左平移,使其与l 4相交于A 点(如左图),则上述比例还成立吗? 2. 将直线l 5继续向左平移,使其与l 4相交于B 点(如右图),则上述比例还成立吗?
3.平行线分线段成比例定理与两直线的位置有关系吗?
4.(擦掉多余直线),观察这两个图形,上述比例式还成立吗?你发现了什么?
5.推论: 三角形一边的直线与其它两边相交, .
6. ∵ ,
∴ .
处理方式:学生分组讨论,完成自学提出的问题.师参与学生的讨论,并给出适当的点拨.学生在讨论时指出对应线段,各小组派代表将符号语言板书在黑板上.
三、例题解析,应用新知
例:如图,在△ABC 中,E 、F 分别是AB 和AC 上的点,且
EF ∥BC . (1)如果AE =7,EB =5,FC =4,那么AF 的长是多少? (2)如果AB =10,AE =6,AF =5,那么FC 的长是多少? 处理方式:生思考2分钟,然后试着写出求解过程,生主动去
黑板上板演,小组内的其他同学主动订正,最后师进行评价,给出规范的板书.
设计意图:通过本题的解答,让学生感悟到平行线分线段成比例定理的推论的应用,选择恰
当的比例式,并以此为例,给出规范书写.
跟踪训练(二)
(1)如果AD=15,AB=40,AC=28,那么AE= .
(2)如果AB=5,AD=3,AC=4,那么EC= .
处理方式:两生板演,生分组训练,互相批改.教师及时表扬鼓励.
设计意图:学生已经对例题学习完毕,是否会根据条件和结论写出合适的比例对学生来说是
个挑战,教师也借这两题看看学生对定理的灵活应用情况,及时获得反馈信息,解决学生学
习中的问题.
四、拓展应用,答疑解惑
提出问题:现在你能解决将绳子分为2:3两根这个问题吗?
处理方式:生分组讨论,师巡视,参与小组讨论,倾听他们的见解,并给与启发性点拨,搜
集不同小组的不同答案,待会进行展示.
设计意图:解决课堂开始时的疑问,感受数学在生活中的应用,并会设计n等分线段的方法.
五、回顾反思,提炼升华
“学而不思则罔”,本节课你有哪些收获和疑问,谈谈你的看法.
处理方式:鼓励学生大胆回答畅谈,说出自己所学到的知识及解题技巧和问题解决中的突破
口,让全体同学在知识上,方法上,技巧上均有收获.
设计意图:通过学生总结收获,对本节课的学习内容强化记忆,在解题中形成技巧.
六、达标检测,反馈提高
A组:如图,已知直线l1∥l2∥l3,
(1)在图(1)中,AB=5,BC=7,EF=4,那么DE= .
(2)在图(2)中,DE =6,AB =5,EF =7,那么AC = .
(1) (2)
考查知识点:平行线分线段成比例定理的基本应用 2.如图,已知DE ∥BC ,如果AB =10,AD =6,AE =5,那么EC = .
考查知识点:平行线分线段成比例定理的推论 B 组:
如图,已知在△ABC 中,点E 、D 、F 分别在AB 、AC 和BC 上,DE ∥BC ,DF ∥AB ,试判断成
AE BF
EB FC
立吗? 考查知识点:平行线分线段成比例定理的应用及转化 处理方式:学生独立完成,然后教师将一生的答案投出来,同学们积极发表见解,进行批改订正.
设计意图:通过这三个小题,检测学生对本节课的学习情况,及时反馈,查缺补漏.
板书设计。