双星系统专题
- 格式:ppt
- 大小:501.50 KB
- 文档页数:2
双星运动1. 引言双星系统是宇宙中一种相当常见的天体系统,由两颗恒星共同绕着彼此公转而形成。
双星系统可以分为密接双星和分离双星两种类型。
密接双星指两颗恒星距离非常接近,以致它们的外层大气相互作用,而分离双星指两颗恒星之间的距离足够大以至它们几乎不受到彼此作用力的影响。
双星运动是研究双星系统中恒星之间相互影响和运动规律的重要课题之一。
2. 双星运动的基本概念双星系统中的两颗恒星会围绕着彼此的质心共同旋转,形成双星运动。
在双星系统中,通常存在两种主要的运动方式:绕心运动和相对运动。
绕心运动是指两颗恒星围绕着双星系统质心进行的公转运动,而相对运动则是指两颗恒星之间相互的运动。
3. 双星系统的分类双星系统根据恒星之间的距离和质量比例可以进行多种分类。
根据恒星之间的距离可以将双星系统分为密接双星和分离双星。
密接双星的轨道周期通常比较短,而分离双星的轨道周期则较长。
根据质量比例可以将双星系统分为等质量双星和不等质量双星。
4. 双星系统的动力学双星系统中的恒星会受到彼此之间的万有引力作用力以及惯性力的影响而进行运动。
在密接双星系统中,恒星之间的质量传递和星球间的质量损失都会对系统的动力学性质产生重要影响。
在分离双星系统中,体现出恒星之间的引力相互作用力的影响会比较微弱。
5. 双星系统的演化双星系统的演化是一个复杂且多样的过程。
在双星系统中,恒星之间的相互作用会导致系统的演化。
密接双星系统中,会产生恒星膨胀和质量传递等现象,而分离双星系统中,恒星可能会逐渐远离或者趋向于融合。
6. 结论双星运动作为天文学中一个重要的研究领域,对于理解宇宙中恒星系统的形成和演化具有重要意义。
通过对双星系统中恒星间运动规律和相互作用的研究,可以更深入地了解宇宙中的物质运动和结构演化。
双星运动的研究不仅有助于加深我们对宇宙的认识,同时也为未来探索宇宙中更多的天体系统提供了重要参考。
微专题4双星系统和卫星变轨问题类型一对双星系统的理解1.双星模型如图所示,宇宙中有相距较近、质量可以相比的两个星球,它们离其他星球都较远,因此其他星球对它们的万有引力可以忽略不计.在这种情况下,它们将围绕它们连线上的某一固定点做周期相同的匀速圆周运动,这种结构叫作“双星”.2.双星模型的特点(1)两星的运行轨道为同心圆,圆心是它们之间连线上的某一点.(2)两星的向心力大小相等,由它们间的万有引力提供.(3)两星的运动周期、角速度都相同.(4)两星的运动轨道半径之和等于它们之间的距离,即r1+r2=L.【例1】(多选)图甲是一对相互环绕旋转的质量不等的双黑洞系统,其示意图如图乙所示.双黑洞A、B在相互之间的万有引力的作用下,绕其连线上的O点做匀速圆周运动,若双黑洞的质量之比m A∶m B=n∶1,则()A.黑洞A、B做圆周运动的角速度之比为1∶1B.黑洞A、B做圆周运动的向心力大小之比为n2∶1C.黑洞A、B做圆周运动的半径之比为1∶nD.黑洞A、B做圆周运动的线速度之比为1∶n2[解析]由于二者绕连线上同一点做匀速圆周运动,二者角速度相等,又由彼此间的万有引力提供向心力,二者做圆周运动的向心力之比为1∶1,故有m A r A ω2=m B r B ω2,解得r A r B =m B m A =1n ,故A 、C 正确,B 错误;由线速度与角速度的关系可知,当角速度相同时,二者做圆周运动的线速度与半径成正比,故二者线速度之比为1∶n ,故D 错误.[答案] AC【例2】 如图所示,质量分别为m 和M 的两个星球A和B 在引力作用下都绕O 点做匀速圆周运动,星球A 和B 两者中心之间距离为L .已知A 、B 的中心和O 三点始终共线,A和B 分别在O 的两侧,引力常量为G .(1)求A 星球做圆周运动的半径R 和B 星球做圆周运动的半径r ;(2)求两星球做圆周运动的周期;(3)如果把星球A 质量的12搬运到B 星球上,并保持A 和B 两者中心之间距离仍为L .则组成新的稳定双星后星球A 半径和周期如何变化?[解析] (1)令A 星的轨道半径为R ,B 星的轨道半径为r ,则由题意有L =r +R两星做圆周运动时的向心力由万有引力提供,则有G mM L 2=mR 4π2T 2G mM L 2=Mr 4π2T 2,可得R r =M m ,又因为L =R +r所以可以解得R =M M +m L ,r =m M +mL ; (2)根据(1)可以得到G mM L 2=m 4π2T 2R ,R =M M +mL 两式联立解得T =4π2L 3(M +m )G =2π L 3G (M +m ); (3)根据R =M M +m L ,知M 变大,R 变大 根据T = 4π2L 3(M +m )G =2π L 3G (m +M ),知周期不变. [答案] (1)M M +m L m M +mL(2)2πL3G(M+m)(3)半径变大周期不变[针对训练1]宇宙中,两颗靠得比较近的恒星,只受到彼此之间的万有引力作用互相绕转,称之为双星系统.设某双星系统中A、B两星绕其连线上的O点做匀速圆周运动,如图所示.若A星轨道半径较大,则() A.星球A的质量大于B的质量B.星球A的线速度大于B的线速度C.星球A的角速度大于B的角速度D.星球A的周期大于B的周期解析:选B.根据万有引力提供向心力有m Aω2r A=m Bω2r B,因为r A>r B,所以m A<m B,即A的质量一定小于B的质量,故A错误;双星角速度相等,则周期相等,根据v=ωr可知,v A>v B,故B正确,C、D错误.[针对训练2](多选)经长期观测,人们在宇宙中已经发现了“双星系统”,“双星系统”由两颗相距较近的恒星组成,每个恒星的大小远小于两个星体之间的距离,而且双星系统一般远离其他天体.两颗星球组成的双星A、B,A、B 的质量分别为m1、m2,在相互之间的万有引力作用下,绕连线上的O点做周期相同的匀速圆周运动.现测得两颗星之间的距离为L,质量之比为m1∶m2=3∶2.则可知()A.A与B做圆周运动的角速度之比为2∶3B.A与B做圆周运动的线速度之比为2∶3C.A做圆周运动的半径为2 5LD.B做圆周运动的半径为2 5L解析:选BC.双星靠相互间的万有引力提供向心力,相等的时间内转过相同的角度,则角速度相等,故A错误;向心力大小相等,有:m1ω2r1=m2ω2r2,即m1r1=m2r2,因为质量之比为m1∶m2=3∶2,则轨道半径之比r1∶r2=2∶3,所以A做圆周运动的半径为25L,B做圆周运动的半径为35L,故C正确,D错误;根据v=ωr,角速度相等,双星的线速度比等于半径比为2∶3,故B正确.类型二卫星变轨问题卫星在运动中的“变轨”有两种情况:离心运动和向心运动.当万有引力恰好提供卫星所需的向心力,即G Mm r 2=m v 2r 时,卫星做匀速圆周运动;当某时刻速度发生突变,所需的向心力也会发生突变,而突变瞬间万有引力不变.(1)制动变轨:卫星的速率变小时,使得万有引力大于所需向心力,即G Mm r 2>m v 2r ,卫星做近心运动,轨道半径将变小.所以要使卫星的轨道半径变小,需开动反冲发动机使卫星做减速运动.(2)加速变轨:卫星的速率变大时,使得万有引力小于所需向心力,即G Mm r 2<m v 2r,卫星做离心运动,轨道半径将变大.所以要使卫星的轨道半径变大,需开动反冲发动机使卫星做加速运动.【例3】 北京时间2022年5月10日01时56分,搭载天舟四号货运飞船的长征七号遥五运载火箭,在我国文昌航天发射场点火发射,约10 min 后,飞船与火箭成功分离,进入预定轨道.2时23分,飞船的太阳能帆板顺利展开工作,发射取得圆满成功.后续,天舟四号货运飞船与在轨运行的空间站组合体进行交会对接.若对接前两者在同一轨道上运动,下列说法正确的是( )A .对接前天舟四号的运行速率大于空间站组合体的运行速率B .对接前天舟四号的向心加速度小于空间站组合体的向心加速度C .天舟四号通过加速可实现与空间站组合体在原轨道上对接D .天舟四号先减速后加速可实现与空间站组合体在原轨道上对接[解析] 对接前两者在同一轨道上运动,由万有引力提供向心力可知G Mm r 2=m v 2r =ma ,解得v =G M r ,a =G M r 2 ,同一轨道,运行速率、向心加速度相等,A 、B 错误;飞船与空间站组合体在同一轨道上,此时飞船受到的万有引力等于向心力,若让飞船加速,则所需要的向心力变大,万有引力不变,所以飞船做离心运动,不能实现对接,C 错误;天舟四号先减速做近心运动,进入较低的轨道,后加速做离心运动,轨道半径变大,可以实现对接,D 正确.[答案] D【例4】 (多选)2022年3月23日,“天宫课堂”进行了第二次授课活动.授课过程中信号顺畅不卡顿,主要是利用天链系列地球同步轨道卫星进行数据中继来实现的.如图所示,天链卫星的发射过程可以简化如下:卫星先在近地圆形轨道Ⅰ上运动,到达轨道的A 点时点火变轨进入椭圆轨道Ⅱ,到达轨道的远地点B 时,再次点火进入圆形同步轨道Ⅲ绕地球做匀速圆周运动.设地球半径为R ,地球表面的重力加速度为g 0,卫星质量保持不变,则下列说法正确的是( )A .卫星在轨道Ⅰ和轨道Ⅲ运动的周期均与地球自转周期相同B .卫星在轨道Ⅱ和轨道Ⅲ运动经过B 点的加速度大小相同C .卫星在轨道Ⅲ上的运行速率小于g 0RD .卫星在轨道Ⅰ向轨道Ⅱ变轨时,火箭需在A 点点火向前喷气[解析] 同步轨道Ⅲ属于同步卫星轨道,与地球自转周期保持相同,轨道Ⅰ属于近地卫星轨道,与地球自转周期不相同,A 错误;根据万有引力充当合外力可知G Mm r 2 =ma ,所以卫星在轨道Ⅱ和轨道Ⅲ运动经过B 点的加速度相同,B正确;在地面上,则有G Mm R 2 =mg 0,对于轨道卫星,则有G Mm r 2 =m v 2r ,可解得v =g 0R 2r ,C 正确;卫星在轨道Ⅰ向轨道Ⅱ变轨时做离心运动,需要加速,故火箭需在A 点点火向后喷气,D 错误.[答案] BC[针对训练3] 一人造卫星绕地球做匀速圆周运动,假如该卫星变轨后仍做匀速圆周运动,速度大小减小为原来的12 ,则变轨前后卫星的( ) A .周期之比为1∶8B .角速度大小之比为2∶1C .向心加速度大小之比为4∶1D .轨道半径之比为1∶2解析:选A.根据万有引力充当卫星绕地球运动的向心力:G Mm r 2 =m v 2r ,卫星的线速度v = GM r ,由题知,速度大小减小为原来的12 ,则轨道半径增大到原来的4倍,即变轨前后轨道半径之比为1∶4;卫星的角速度ω=v r =GMr 3 ,可得变轨前后角速度大小之比为8∶1;卫星的向心加速度a =v 2r =GM r 2 ,可得变轨前后向心加速度大小之比为16∶1;卫星的周期T =2πω ,可得变轨前后周期之比为1∶8,故B 、C 、D 错误,A 正确.[针对训练4] 如图所示,一颗人造卫星原来在椭圆轨道1绕地球运行,在P 点变轨后进入轨道2做匀速圆周运动.下列说法正确的是( )A .不论在轨道1还是在轨道2运行,卫星在P 点的速度都相同B .不论在轨道1还是在轨道2运行,卫星在P 点的加速度都相同C .卫星在轨道1的任何位置都具有相同加速度D .卫星在轨道2的任何位置都具有相同速度解析:选B.从轨道1变轨到轨道2,需要加速做离心运动,A 错误;根据公式G Mm R 2 =ma 可得a =G M R 2 ,故只要到地心距离相同,加速度大小就相同,由于卫星在椭圆轨道1运动,到地心距离、引力的方向均在变化,所以运行过程的加速度在变,B 正确,C 错误;卫星在轨道2做匀速圆周运动,过程中的速度方向时刻在变,所以不同位置处速度不同,D 错误.[A 级——合格考达标练]1.如图所示,一颗人造卫星原来在椭圆轨道1绕地球运行,在P 点变轨后进入轨道2做匀速圆周运动.下列说法正确的是( )A .不论在轨道1还是在轨道2运行,卫星在P 点的速度都相同B .不论在轨道1还是在轨道2运行,卫星在P 点的加速度都相同C .卫星在轨道1的任何位置都具有相同加速度D .卫星在轨道2的任何位置都具有相同速度解析:选B.从轨道1变轨到2,需要加速逃逸,A 错误;根据公式G Mm R 2=ma 可得a =G M R 2,故只要到地心距离相同,加速度则相同,由于卫星在轨道1做椭圆运动,到地心距离、引力的方向均在变化,所以运行过程的加速度在变,B 正确,C 错误;卫星在轨道2做匀速圆周运动,过程中的速度方向时刻在变,所以不同位置处速度不同,D 错误.2.如图所示,a 、b 、c 是在地球大气层外圆形轨道上运行的3颗人造卫星,下列说法正确的是( )A .b 、c 的线速度大小相等,且大于a 的线速度B .a 卫星由于某种原因,轨道半径缓慢减小,其线速度将变大C .c 加速可以追上同一轨道上的b ,b 减速可以等候同一轨道上的cD .b 、c 向心加速度相等,且大于a 的向心加速度解析:选 B.人造卫星绕地球做匀速圆周运动,根据万有引力提供向心力,设卫星的质量为m 、轨道半径为r 、地球质量为M ,有G Mm r 2=m v 2r =ma ,解得卫星线速度v =GMr ,由图可知,r a <r b =r c ,则b 、c 的线速度大小相等,且小于a 的线速度,故A 错误;由v =GMr 知,a 卫星由于某种原因,轨道半径缓慢减小,其线速度将变大,故B 正确;c 加速要做离心运动,不可以追上同一轨道上的b ;b 减速要做近心运动,不可以等候同一轨道上的c ,故C 错误;由向心加速度a =GM r 2知,b 、c 的向心加速度大小相等,且小于a 的向心加速度,故D 错误.3.(多选)图为两颗人造卫星绕地球运动的轨道示意图,Ⅰ为圆轨道,Ⅱ为椭圆轨道,AB 为椭圆的长轴,两轨道和地心都在同一平面内,C 、D 为两轨道交点.已知轨道Ⅱ上的卫星运动到C 点时速度方向与AB 平行,则下列说法正确的是( )A .两颗卫星的运动周期相同B .卫星在Ⅰ轨道的速率为v 0,卫星在Ⅱ轨道B 点的速率为v B ,则v 0<v BC .两个轨道上的卫星运动到C 点时的加速度相同D .两个轨道上的卫星运动到C 点时的向心加速度大小相等解析:选AC.由轨道Ⅱ上的卫星运动到C 点时速度方向与AB 平行可知CD 为椭圆短轴的两个端点,由于圆的圆心与椭圆的左焦点重合,则由几何关系可知圆的半径与椭圆的半长轴相等,故由开普勒第三定律可知两卫星运行周期相等,A 正确;设有一个与椭圆相切于B 点、以地球为圆心的圆轨道Ⅲ,卫星在轨道Ⅱ上从B 点进入该圆轨道Ⅲ则需要加速,而由v = GMr 可知卫星在轨道Ⅲ的速度必小于在轨道Ⅰ上的速度,故v 0>v B ,B 错误;卫星在C 点时的加速度(不是向心加速度)由牛顿第二定律有G Mm r 2=ma ,即加速度a =G M r 2与卫星质量无关、与轨道形状无关,C 正确;卫星在轨道Ⅰ上做匀速圆周运动,加速度即为向心加速度;卫星在椭圆轨道Ⅱ上运动,在C点,其加速度沿垂直于速度方向上的分量才是向心加速度,故卫星在轨道Ⅱ上C点的向心加速度小于卫星在轨道Ⅰ上C 点的向心加速度,D错误.4.如图所示,在赤道发射场发射地球同步卫星的过程中,卫星首先进入椭圆轨道Ⅰ,然后在Q点通过改变卫星速度,让卫星进入地球同步轨道Ⅱ,则()A.该卫星在P点的速度大于11.2 km/sB.卫星在轨道Ⅱ上的运行速度大于7.9 km/sC.卫星在Q点需要适当加速,才能够由轨道Ⅰ进入轨道ⅡD.卫星在轨道Ⅱ上经过Q点时的加速度大于在轨道Ⅰ上经过Q点时的加速度解析:选C.11.2 km/s是卫星脱离地球束缚的最小发射速度,由于同步卫星仍然绕地球运动,则在P点的速度小于11.2 km/s,故A错误;7.9 km/s是卫星在地球表面飞行的环绕速度,根据万有引力提供向心力,由GMmr2=mv2r可知v=GMr,卫星在轨道Ⅱ上,半径变大,则运行速度小于7.9 km/s,故B错误;卫星需要加速,让卫星做离心运动,才能由轨道Ⅰ进入轨道Ⅱ,故C正确;根据GMm r2=ma可知a=GMr2,则卫星在轨道Ⅱ上经过Q点时的加速度等于在轨道Ⅰ上经过Q点时的加速度,故D错误.5.宇宙中两颗相距较近的天体称为“双星”,它们以二者连线上的某一点为圆心做匀速圆周运动,而不至因为万有引力的作用而吸引到一起.如图所示,某双星系统中A、B两颗天体绕O点做匀速圆周运动,它们的轨道半径之比r A∶r B =1∶2,则两颗天体的()A .质量之比m A ∶mB =2∶1B .角速度之比ωA ∶ωB =1∶2C .线速度大小之比v A ∶v B =2∶1D .向心力大小之比F A ∶F B =2∶1解析:选 A.双星绕连线上的一点做匀速圆周运动,其角速度相同,周期相同,两者之间的万有引力提供向心力,有F =m A ω2r A =m B ω2r B ,所以m A ∶m B =2∶1,B 、D 错误,A 正确;由v =ωr 可知,线速度大小之比v A ∶v B =1∶2,C 错误.6.宇宙中,两颗靠得比较近的恒星,只受到彼此之间的万有引力作用而互相绕转,称之为双星系统.设某双星系统中的A 、B 两星球绕其连线上的某固定点O 做匀速圆周运动,如图所示.现测得两星球球心之间的距离为L ,运动周期为T ,已知引力常量为G ,若R A >R B ,则( )A .两星球的总质量等于4π2L 3GT 3B .星球A 的向心力大于星球B 的向心力C .星球A 的线速度一定小于星球B 的线速度D .双星的质量一定,双星之间的距离减小,其转动周期减小解析:选D.由题可知,双星的角速度相等,根据v =ωr ,且R A >R B ,则v A >v B ,C 错误;双星靠相互间的万有引力提供向心力,根据牛顿第三定律知它们的向心力大小相等,B 错误;根据万有引力提供向心力,对A 有G M A M B L 2=M A ⎝ ⎛⎭⎪⎫2πT 2R A ,对B 有G M A M B L 2=M B ⎝ ⎛⎭⎪⎫2πT 2R B ,其中L =R A +R B ,解得T =4π2L 3G ()M A +M B ,M A +M B =4π2L 3GT 2,故当双星的质量一定,双星之间的距离减小时,其转动周期减小,D 正确,A 错误.[B 级——等级考增分练]7.如图所示,半径为r 的圆形轨道Ⅰ为空间站运行轨道,半长轴为a 的椭圆轨道Ⅱ为载人飞船的运行轨道,飞船在两个轨道相切点A 与空间站交会对接,已知飞船与空间站均绕地球运动,引力常量为G ,地球质量为M ,下列说法中正确的是( )A.空间站的运行速度大于第一宇宙速度 B .在A 点对接时飞船应沿运行速度方向喷气 C .飞船与空间站运行周期之比为r 3a 3D .飞船在轨道Ⅱ经过A 点,喷气变轨前一刻的速度小于GM r解析:选 D.第一宇宙速度是物体绕地球做圆周运动的最大速度,所以空间站的运行速度不可能大于第一宇宙速度,故A 错误;载人飞船与空间站对接需向高轨道做离心运动,则需要向后点火加速,即飞船应沿运行速度相反方向喷气,故B 错误;设飞船的运行周期为T 1,空间站的运动周期为T 2,根据开普勒第三定律得a 3T 21 =r 3T 22 ,则T 1T 2=a 3r 3,故C 错误;以r 为半径做圆周运动的物体,根据万有引力提供向心力得G mMr 2 =m v 2r ,得以r 为半径做圆周运动的物体的速度为v =GMr ,飞船在轨道Ⅱ经过A 点后做近心运动,喷气变轨前一刻的速度小于GMr ,故D 正确.8.北斗导航系统又被称为“双星定位系统”,具有导航、定位等功能.“北斗”系统中两颗工作卫星均绕地心O 做匀速圆周运动,轨道半径为r ,某时刻两颗工作卫星分别位于轨道上的A 、B 两位置(如图所示).若卫星均顺时针运行,地球表面处的重力加速度为g ,地球半径为R .不计卫星间的相互作用力,则以下判断正确的是( )A.这两颗卫星的加速度大小相等,均为Rgr B .卫星1向后喷气就一定能追上卫星2C.卫星1由位置A 运动到位置B 所需的时间为πr3R r gD .卫星1中物体的速度为gr解析:选C.由GMm r 2 =ma 、GMm R 2 =mg ,得 a =gR 2r 2 ,A 错误;卫星1向后喷气时速度增大,所需的向心力增大,万有引力不足以提供其所需的向心力而做离心运动,与卫星2不处于同一轨道上了,B 错误;卫星1由位置A 运动到位置B 的过程,由t =θ360° T =16 T 、GMm r 2 =mr (2πT )2、GMm R 2 =mg 可得,t =πr 3R r g ,C 正确;由GMmr 2 =m v 2r 、GMm R 2 =mg 可得,卫星1中物体的速度v = gR 2r ,D 错误.9.(多选)双星的运动是产生引力波的来源之一,假设宇宙中有一双星系统由a 、b 两颗星体组成,这两颗星绕它们连线的某一点在万有引力作用下做匀速圆周运动,测得a 星的周期为T ,a 、b 两颗星的距离为l ,a 、b 两颗星的轨道半径之差为Δr (a 星的轨道半径大于b 星的),则( )A .b 星的周期为l -Δrl +ΔrT B .a 星的线速度大小为π(l +Δr )TC .a 、b 两颗星的轨道半径之比为l l +ΔrD .a 、b 两颗星的质量之比为l -Δrl +Δr解析:选BD.由于双星系统是在相互间万有引力作用下绕连线上同一点做圆周运动,故二者连线始终过圆心,则二者在任意相同时间内转过的圆心角相等,故二者的转动周期相同,A 错误;由r a +r b =l 及r a -r b =Δr 得r a =l +Δr2 ,r b =l -Δr 2 ,故a 星的线速度大小为v a =2πr aT =π(l +Δr )T ,B 正确;a 、b 两颗星的轨道半径之比为r a r b =l +Δr l -Δr ,C 错误;由F 引=m a r a ⎝ ⎛⎭⎪⎫2πT 2 =m b r b ⎝ ⎛⎭⎪⎫2πT 2 有m a m b=r b r a =l -Δrl +Δr,D 正确.。
06 双星与多星—万有引力与航天双星与三星及四星,是天体物理的重要而奇特的现象。
对于天体物理学家来说,双星和三星及四星是能提供最多信息的天体,从双星可以得到比单个恒星更多的信息和恒星演化的秘密。
在浩瀚的银河系中,我们发现的半数以上的恒星都是双星体,它们之所以有时被误认为单个恒星,是因为构成双星的两颗恒星相距得太近了,它们绕共同的质量中心作圆形轨迹运动,以至于我们很难分辨它们,这其中包括著名的第一亮星天狼星。
双星与多星模型,有以下规律:1.变中有不变(1)变:双星系统、三星系统、四星系统物理模型是不同的,不同的是:双星系统是两颗星,相互的万有引力等于各自做圆周运动的向心力;三星系统是三颗星,或者在同一条直线上,两端的两颗星围绕之间的星做圆周运动,则两端的两颗星所受另外两颗星的万有引力的合力等于该星做圆周运动的向心力,或者三颗星在等边三角形的三个顶点位置,都围绕三角形中心做圆周运动,则每一颗星所受另外两颗星的万有引力的合力等于该星做圆周运动的向心力,四星系统也有两种形式,或者是三颗星在等边三角形的三个顶点位置,都围绕处于三角形中心的第四颗星做圆周运动,则每一颗星所受另外三颗星的万有引力的合力等于该星做圆周运动的向心力,或者是四颗星在正方形的四个顶点位置,都围绕正方形的中心做圆周运动,则每一颗星所受另外三颗星的万有引力的合力等于该星做圆周运动的向心力,(2)不变:做题的关键都是:做圆周运动的星所受其他星的万有引力的合力等于向心力。
2.不变中有变(1)都是三星系统,两种形式也不同,两种形式的不同处在于前者是同一直线上的两个力求合力,后者是不同直线上的两个力(两个力夹角为600)求合力。
都是四星系统,两种形式也不同,两种形式的不同处在于前者是互成600的两个力的合力与第三个力求合力,后者是三个互成角度的力求合力。
(2)都是三角形模型,三星系统的三角形的中心没有星,只是三颗星做圆周运动的圆心,所以求合力是二力合成;四星系统的三角形的中心还有一颗星,它对其他三颗星也有万有引力,所以求合力是三力合成。
双星系统知识点一、双星系统的概念双星系统是指两个天体围绕着一个共同的重心运动的天体系统。
这种系统中,两个天体之间存在引力作用,它们围绕着共同的重心旋转。
在观测双星系统时,我们可以通过观察它们之间的相对位置和轨道周期等特征来了解它们的性质。
二、双星系统的分类1. 根据轨道周期分类:双星系统可以分为短周期和长周期两种类型。
短周期双星系统的轨道周期较短,通常在几天或几十天以内;而长周期双星系统的轨道周期较长,可能需要数年或数十年才能完成一次公转。
2. 根据距离分类:根据两个天体之间的距离,双星系统可以分为近距离和远距离两种类型。
近距离双星系统中,两个天体之间的距离通常小于1000个天文单位(AU);而远距离双星系统中,两个天体之间的距离可能达到几万或几十万AU。
3. 根据性质分类:根据两个天体的性质,双星系统可以分为恒星-行星系统、恒星-恒星系统、行星-行星系统等不同类型。
其中,恒星-行星系统指的是一个恒星和一颗行星组成的双星系统;恒星-恒星系统指的是两个恒星组成的双星系统;而行星-行星系统则是由两颗行星组成的双星系统。
三、双星系统的形成双星系统的形成可以通过以下几种方式:1. 分裂:在分裂过程中,一个天体分裂成两个独立的天体,它们之间存在引力作用,最终形成了一个双星系统。
2. 合并:在合并过程中,两个天体相互靠近并发生碰撞,最终形成了一个新的天体。
如果碰撞后新天体仍然存在引力作用,则可能形成一个双星系统。
3. 凝聚:在凝聚过程中,原始物质逐渐聚集形成更大的物体。
当这些物体足够大时,它们之间可能发生引力作用,并最终形成一个双星系统。
四、双星系统对人类探索的意义1. 通过观测双星系统可以了解宇宙中物质分布和演化规律。
2. 双子座等多个著名双星系统是天文学家观测和研究恒星演化的重要工具。
3. 双星系统中的行星也是人类探索外太空的目标之一,因为它们可能存在生命的可能性。
五、双星系统的研究方法1. 观测:通过望远镜等设备观测双星系统的相对位置、轨道周期等特征来了解它们的性质。
物理迷你专题:双星、三星、四星等问题1.两个星球组成双星,它们在相互之间的万有引力作用下,绕连线上某点做周期相同的匀速圆周运动,现测得两星中心距离为R ,其运动周期为T ,求两星的总质量.2.双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一点做周期相同的匀速圆周运动。
研究发现,双星系统演化过程中,两星的总质量、距离和周期均可能发生变化。
若某双星系统中两星做圆周运动的周期为T ,经过一段时间演化后,两星总质量变为原来的k 倍,两星之间的距离变为原来的n 倍,则此时圆周运动的周期为T kn A 23. T k n B 3. T k n C 2. T k n D .3.如右图,质量分别为m 和M 的两个星球A 和B 在引力作用下都绕O 点做匀速圆周运动,星球A 和B 两者中心之间的距离为L 。
已知A 、B 的中心和O 三点始终共线,A 和B 分别在O 的两侧。
引力常数为G 。
(1)求两星球做圆周运动的周期:(2)在地月系统中,若忽略其他星球的影响,可以将月球和地球看成上述星球A 和B ,月球绕其轨道中心运行的周期为T 1。
但在近似处理问题时,常常认为月球是绕地心做圆周运动的,这样算得的运行周期记为T 2。
已知地球和月球的质量分别为5.98×1024kg 和7.35×1022kg 。
求T 2与T 1两者平方之比。
(结果保留3位小数)4.经过用天文望远镜长期观测,人们在宇宙中已经发现了许多双星系统,通过对它们的研究,使我们对宇宙中物质的存在形式和分布情况有了较深刻的认识,双星系统由两个星体构成,其中每个星体的线度都远小于两星体之间的距离。
一般双星系统距离其他星体很远,可以当作孤立系统来处理.现根据对某一双星系统的光度学测量确定:该双星系统中每个星体的质量都是m,两者相距L,它们正围绕两者连线的中点做圆周运动.(1)试计算该双星系统的运动周期T计算;(2)若实验上观测到的运动周期为T观测,且T观测:T计算=1:N(N>1).为了解释T观测与T计算的不同,目前有一种流行的理论认为,在宇宙中可能存在一种望远镜观测不到的暗物质.作为一种简化模型,我们假定在以这两个星体连线为直径的球体内均匀分布着这种暗物质.若不考虑其他暗物质的影响,请根据这一模型和上述观测结果确定该星系间这种暗物质的密度.5.宇宙中存在一些离其它恒星较远的、由质量相等的三颗星组成的三星系统,通常可忽略其它星体对它们的引力作用.已观测到稳定的三星系统存在两种基本的构成形式:一种是三颗星位于同一直线上,两颗星围绕中央星在同一半径为R的圆轨道上运行;另一种形式是三颗星位于等边三角形的三个顶点上,并沿外接于等边三角形的圆形轨道运行.设每个星体的质量均为m,万有引力常量为G.(1)试求第一种形式下,星体运动的线速度和周期.(2)假设两种形式星体的运动周期相同,第二种形式下星体之间的距离应为多少?6.由三颗星体构成的系统,忽略其它星体对它们的作用,存在着一种运动形式:三颗星体在相互之间的万有引力作用下,分别位于等边三角形的三个顶点上,绕某一共同的圆心O 在三角形所在的平面内做相同角速度的圆周运动(图示为A 、B 、C 三颗星体质量不相同时的一般情况).若A 星体质量为2m ,B 、C 两星体的质量均为m ,三角形的边长为a ,求: (1)A 星体所受合力大小F A ; (2)B 星体所受合力大小F B ; (3)C 星体的轨道半径R C ;(4)三星体做圆周运动的周期T .7.宇宙中存在由质量相等的四颗星组成的四星系统,四星系统离其他恒星较远,通常可忽略其他星体对四星系统的引力作用.已观测到稳定的四星系统存在两种基本的构成形式:一种是四颗星稳定地分布在边长为a 的正方形的四个顶点上,均围绕正方形对角线的交点做匀速圆周运动,其运动周期为T 1;另一种形式是有三颗星位于边长为a 的等边三角形的三个顶点上,并沿外接于等边三角形的圆形轨道运行,其运动周期为T 2,而第四颗星刚好位于三角形的中心不动。
高中物理:双星系统一.选择题(共5小题)1.宇宙中,两颗靠得比较近的恒星,只受到彼此之间的万有引力作用互相绕转,称之为双星系统。
在浩瀚的银河系中,多数恒星都是双星系统。
设某双星系统A、B绕其连线上的O点做匀速圆周运动,如图所示。
若AO>OB,则()A.星球A的质量一定大于B的质量B.星球A的线速度一定小于B的线速度C.双星间距离一定,双星的质量越大,其转动周期越大D.双星的质量一定,双星之间的距离越大,其转动周期越大2.宇宙中两颗相距较近的天体称为“双星”,它们以二者连线上的某一点为圆心做匀速圆周运动,而不至因为万有引力的作用而吸引到一起。
如图所示,某双星系统中A、B两颗天体绕O点做匀速圆周运动,它们的轨道半径之比r A:r B=1:2,则两颗天体的()A.质量之比m A:m B=2:1B.角速度之比ωA:ωB=1:2C.线速度大小之比v A:v B=2:1D.向心力大小之比F A:F B=2:13.双星系统是由两颗恒星组成的,在两者间的万有引力相互作用下绕其连线上的某一点做匀速圆周运动.研究发现,双星系统在演化过程中,两星的某些参量会发生变化.若某双星系统中两星运动周期为T,经过一段时间后,两星的总质量变为原来的m倍,两星的距离变为原来的n倍,则此时圆周运动的周期为()A.T B.T C.T D.T4.我国天文学家通过“天眼”在武仙座球状星团M13中发现一个脉冲双星系统。
如图所示,由恒星A与恒星B组成的双星系统绕其连线上的O点各自做匀速圆周运动,经观测可知恒星B的运行周期为T。
若恒星A的质量为m,恒星B的质量为2m,引力常量为G,则恒星A与O点间的距离为()A.B.C.D.5.2021年10月16日,我国“神舟十三号”载人飞船成功发射,顺利与空间站实施对接。
对接后,“神舟十三号”与空间站在距离地面高度为h的轨道上一起绕地球做匀速圆周运动。
地球的半径为R,地球表面的重力加速度大小为g,忽略地球的自转。
专题25双星和多星问题【知识梳理】 一、双星模型1.定义:绕公共圆心转动的两个星体组成的系统,我们称之为双星系统。
如图:2.特点(1)各自所需的向心力由彼此间的万有引力提供,即Gm 1m 2L 2= ,Gm 1m 2L 2= 。
(2)两颗星的周期、角速度 ,即T 1= ,ω1= 。
(3)两颗星的轨道半径与它们之间的距离关系为r 1+r 2= 。
(4)两颗星到圆心的距离r 1、r 2与星体质量成反比,即m 1m 2= 。
(5)双星的运动周期T = 。
(6)双星的总质量m 1+m 2= 。
二、多星模型1.定义:所研究星体的万有引力的 提供做圆周运动的向心力,除中央星体外,各星体的角速度或周期相同。
2.常见的多星模型另外两星球对其万有引另外两星球对其万有引另外三星球对其万有引【专题练习】 一、单项选择题1.在两个黑洞合并过程中,由于彼此间的强大引力作用,会形成短时间的双星系统。
如图所示,黑洞A 、B 可视为质点,它们围绕连线上的O 点做匀速圆周运动,且AO 大于BO ,不考虑其他天体的影响。
下列说法正确的是( )A .黑洞A 的向心力大于B 的向心力 B .黑洞A 的线速度大于B 的线速度C .黑洞A 的质量大于B 的质量D .两黑洞之间的距离越大,A 的周期越小2.“慧眼”望远镜是中国第一颗空间X 射线天文卫星,既可以实现宽波段、大视场X 射线巡天又能够研究黑洞、中子星等高能天体。
在利用“慧眼”观测美丽的银河系时,发现某双黑洞间的距离为S ,只在彼此之间的万有引力作用下绕它们连线上的某点做匀速圆周运动,其运动周期为T ,引力常量为G ,则双黑洞总质量为( ) A .3224S GT πB .2234T GS πC .2324S GT πD .23243S GT π3.“双星”是宇宙中普遍存在的一种天体系统,这种系统之所以稳定的原因之一是系统的总动量守恒且总动量为0,如图所示,A 、B 两颗恒星构成双星系统,绕共同的圆心O 互相环绕做匀速圆周运动,距离不变,角速度相等,已知A 的动量大小为p ,A 、B 的总质量为M ,A 、B 轨道半径之比为k ,则B 的动能为( )A .()221kp k M+B .()212k p kM+C .()212k p kM-D .()221kp k M-4.中国科学家利用“慧眼”太空望远镜观测到了银河系的MaxiJ1820+070是一个由黑洞和恒星组成的双星系统,距离地球约10000光年。
宇宙中的双星及多星问题一、双星问题在银河系中,双星的数量非常多,估计不少于单星。
研究双星,不但对于了解恒星形成和演化过程的多样性有重要的意义,而且对于了解银河系的形成和演化,也是一个不可缺少的方面。
双星系统具有如下特点:(1)它们以相互间的万有引力来提供向心力。
(2)它们共同绕它们连线上某点做圆周运动。
(3)它们的周期、角速度相同。
二、三星问题三星问题有两种情况:第一种情况三颗星连在同一直线上,两颗星围绕中央的星(静止不动)在同一半径为R的圆轨道上运行,周期相同;第二种情况三颗星位于等边三角形的三个顶点上,并沿等边三角形的外接圆轨道运行,三颗星运行周期相同。
【深入学习】例题1:(2008•宁夏)天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星.双星系统在银河系中很普遍.利用双星系统中两颗恒星的运动特征可推算出它们的总质量.已知某双星系统中两颗恒星围绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T,两颗恒星之间的距离为r,试推算这个双星系统的总质量.(引力常量为G)例题2:(2013•山东)双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一点做周期相同的匀速圆周运动.研究发现,双星系统演化过程中,两星的总质量、距离和周期均可能发生变化.若某双星系统中两星做圆周运动的周期为T,经过一段时间演化后,两星总质量变为原来的k倍,两星之间的距离变为原来的n倍,则此时圆周运动的周期为()1、第一种情况:例题3:宇宙中有这样一种三星系统,系统由两个质量为m的小星体和一个质量为M的大星体组成,两个小星体围绕大星体在同一圆形轨道上运行,轨道半径为r .关于该三星系统的说法中正确的是( )A .在稳定运行的情况下,大星体提供两小星体做圆周运动的向心力B .在稳定运行的情况下,大星体应在小星体轨道中心,两小星体在大星体相对的两侧2、第二种情况:例题4:宇宙间存在一些离其他恒星较远的三星系统.其中有一种三星系统如图所示,三颗质量均为m 的星体位于等边三角形的三个顶点上,三角形边长为R .忽略其他星体对它们的引力作用,三星在同一平面内绕三角形中心O 做匀速圆周运动,引力常量为G .则( )【课堂检测】1.我们的银河系的恒星中大约四分之一是双星.某双星由质量不等的星体S 1和S构成,两星在相互之间的万有引力作用下绕两者连线上某一定点C 做匀速圆周运动.那么S 1、S 2做匀速圆周运动的( )A. 角速度与其质量成反比B. 线速度与其质量成反比C. 向心力与其质量成反比D. 半径与其质量的平方成反比2.冥王星与其附近的另一星体卡戎可视为双星系统,质量比约为7∶1,同时绕它们连线上某点O 做匀速圆周运动.由此可知,冥王星绕O 点运动的( )A .轨道半径约为卡戎的17B .角速度大小约为卡戎的17C .线速度大小约为卡戎的7倍D .向心力大小约为卡戎的7倍物理限时练一、单项选择题1.2013年2月15日中午12时30分左右,俄罗斯车里雅宾斯克州发生天体坠落事件.一块陨石从外太空飞向地球,到A 点刚好进入大气层,由于受地球引力和大气层空气阻力的作用,轨道半径渐渐变小,则下列说法中正确的是( ) A .陨石正减速飞向A 处B .陨石绕地球运转时角速度渐渐变小C .陨石绕地球运转时速度渐渐变大D .进入大气层陨石的机械能渐渐变大2.火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知( )A .太阳位于木星运行轨道的中心B .火星和木星绕太阳运行速度的大小始终相等C .火星与木星公转周期之比的平方等于它们轨道半长轴之比的立方D .相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积3.(2015·福建卷)如图,若两颗人造卫星a 和b 均绕地球做匀速圆周运动,a 、b 到地心O 的距离分别为r1、r2,线速度大小分别为v1、v2,则( ) A .v1v2=r2r1 B .v1v2=r1r2C .v1v2=(r2r1)2D .v1v2=(r1r2)2 4.(2015·天津卷)未来的星际航行中,宇航员长期处于零重力状态,为缓解这种状态带来的不适,有人设想在未来的航天器上加装一段圆柱形“旋转舱”,如图所示.当旋转舱绕其轴线匀速旋转时,宇航员站在旋转舱内圆柱形侧壁上,可以受到与他站在地球表面时相同大小的支持力.为达到上述目的,下列说法正确的是( ) A .旋转舱的半径越大,转动的角速度就应越大 B .旋转舱的半径越大,转动的角速度就应越小 C .宇航员质量越大,旋转舱的角速度就应越大 D .宇航员质量越大,旋转舱的角速度就应越小 5.(2015·四川卷)登上火星是人类的梦想,“嫦娥之父”欧阳自远透露:中国计划于2020年登陆火星.地球和火星公转视为匀速圆周运动,忽略行星自转影响.根据下表,火星和地球相比( )行星 半径/m 质量/kg 轨道半径/m 地球 6.4×106 6.0×1024 1.5×1011 火星3.4×1066.4×10232.3×1011A.火星的公转周期较小 B .火星做圆周运动的加速度较小 C .火星表面的重力加速度较大 D .火星的第一宇宙速度较大6.我们的银河系的恒星中大约四分之一是双星.某双星由质量不等的星体S 1和S 2构成,两星在相互之间的万有引力作用下绕两者连线上某一定点C 做匀速圆周运动.由天文观察测得其运动周期为T,S 1到C 点的距离为r 1,S 1和S 2的距离为r,已知引力常量为G .由此可求出S 2的质量为 ( )A.212)(4GTr r r 2π B.2312π4GT rC.232π4GT rD. 2122π4GT r r7.天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星。
双星系统知识点一、简介在天文学中,双星系统是指由两个恒星组成的系统。
恒星是宇宙中最为常见的天体之一,它们通过引力相互吸引并围绕共同的质心运动。
双星系统具有丰富多样的形态和性质,它们不仅是研究恒星演化和星际物理过程的重要工具,也是科学家们探索宇宙奥秘的窗口。
二、分类根据双星系统的特征和形态,可以将其分为以下几类:1. 视双星视双星是指从地球上看起来仿佛是一颗恒星,但实际上是由两颗相距较近的恒星组成的系统。
这种系统在望远镜下可以分辨出两个独立的点状光源,它们围绕共同的质心运动。
视双星的亮度和相对位置随时间而变化,这种变化可以为科学家们提供有关恒星质量、轨道周期和距离等重要参数的信息。
2. 物理双星物理双星是指由两颗真实的恒星组成的系统,它们通过引力相互吸引并围绕共同的质心运动。
物理双星可以进一步分为主序双星、巨星双星和白矮星双星等多个亚类别。
主序双星指的是两颗处于主序星阶段的恒星组成的系统,这种系统中的两颗恒星质量相近,亮度也相近。
巨星双星是由两颗巨星组成的系统,其中一颗恒星已经进入了巨星阶段,亮度远高于另一颗恒星。
白矮星双星则是由两颗质量较小的白矮星组成的系统,它们的亮度很低,难以直接观测。
三、形成和演化双星系统的形成和演化是一个复杂的过程,在宇宙中的各个阶段都可能形成双星系统。
科学家们提出了多种关于双星形成和演化的理论,包括原始星团理论、分裂理论和捕获理论等。
1. 原始星团理论原始星团理论认为,双星系统的形成始于恒星形成的初期阶段。
在星际云中,由于引力的作用,星际物质开始聚集形成原始星团。
在原始星团中,密度较高的区域会形成多个恒星,其中一部分可能会形成双星系统。
原始星团理论被广泛应用于解释大量的双星系统存在的原因。
2. 分裂理论分裂理论认为,双星系统可以通过恒星分裂形成。
在这种情况下,一个单独的恒星开始快速自转,由于离心力的作用,它逐渐变形并分裂为两颗相对独立的恒星。
这种形成方式通常需要非常特殊的环境和条件,并且在宇宙中相对较为罕见。
高中物理双星系统问题探析
双星系统是指由两个行星组成的天体系统,它们以自身的重力作用力在轨道上绕着彼此公转。
双星系统的形成,是一种自然演化过程,在星云形成的初期,星系会进入一个不稳定状态,继而产生“胶子”状态,由此形成双星系统。
双星系统的动力学有许多特殊特性,其运动特性决定了它们的动态行为和走势。
如果两颗行星完全同质,本质上就相当于一个质点,它们运动的轨道可用坐标系描述,符合简谐振荡定律。
如果两颗行星的质量不同,此时双星系统的具体的动力学行为可使用单星动力学原理和双星动力学原理直接描述,这些原理采用数学语言描述,从而明确双星系统的动态行为以及力的变化。
双星系统的研究也得到了天文学家的广泛应用。
他们通过分析系统所受外界作用的大小、方向等,即可推断出该双星系统可能出现的变化,从而有助于研究星际运动。
此外,研究双星系统有助于人们了解银河系结构与组成以及其它形态星系样本中存在的特征等。
双星系统动力学与稳定性分析双星系统是宇宙中一种很常见的天体系统,由两个恒星以一定的轨道相互环绕而成。
它们之间的相互作用与动力学过程是天文学与天体物理学领域的关键研究课题之一。
本文将从动力学的角度出发,进行双星系统的稳定性分析。
首先,我们来看双星系统的初级阶段——恒星的形成。
恒星形成始于分子云的坍缩,并且由于角动量守恒,分子云在坍缩的过程中会逐渐形成一个旋转的盘状结构。
在这个旋转盘中,形成了许多密度较高的区域,我们称之为原恒星形成区。
在这个区域中,物质会进一步凝聚形成原恒星。
而在一些情况下,原恒星可能会分裂成两个凝聚核,这就是双星系统的初步形成。
随着原恒星形成区内物质的迅速凝聚,每个凝聚核都将诞生一颗恒星。
而这两颗恒星之间的相互作用将决定双星系统的动力学演化。
在双星系统中,恒星之间存在引力相互作用。
这一引力作用将使得两颗恒星围绕着它们的重心轨道运动。
双星系统的稳定性分析涉及到对这种轨道运动的研究。
在理想情况下,双星系统的运动可以看作两个质点在中心引力场中的运动。
此时,根据开普勒定律,双星系统的轨道可以是圆形、椭圆形或抛物线形。
其中,圆形轨道是双星系统最稳定的状态,而椭圆形轨道则是既稳定又常见的情况。
然而,在现实中,双星系统的稳定性可能受到多种因素的影响。
一方面,双星系统中星体的质量和距离将决定系统的稳定性。
当双星之间的质量差距较大时,通常较轻的恒星将绕着较重的恒星运动,这种情况被称为质量不平衡情况。
这会导致双星系统的动力学演化受到不均匀的引力作用,从而影响轨道的稳定性。
另一方面,双星系统的稳定性还受到潮汐作用的影响。
当两颗恒星之间的距离过近时,它们将受到彼此的引潮力作用。
这种潮汐作用会使得恒星轨道变得不稳定,可能导致双星系统的瓦解。
特别是在双星系统中存在质量差距较大的情况下,潮汐作用的影响更为显著。
综上所述,双星系统的动力学与稳定性分析是研究宇宙中恒星系统的重要课题。
通过对恒星形成、引力相互作用和潮汐作用等因素的研究,我们可以更好地理解双星系统的演化过程以及它们的稳定性。