简明量子力学教程 第5章 1定态微扰论和变分法
- 格式:ppt
- 大小:626.00 KB
- 文档页数:40
第五章 微扰理论本章介绍:在量子力学中,由于体系的哈密顿算符往往比较复杂,薛定谔方程能严格求解的情况不多(一维谐振子,氢原子)。
因此,引入各种近似方法就显得非常重要,常用的近似方法有微扰论,变分法,WKB (半经典近似),Hatree-Fock 自恰场近似等。
本章将介绍微扰论和变分法。
本章将先讨论定态微扰论和变分法,然后再讨论含时微扰以及光的发射和吸收等问题。
§5.1 非简并定态微扰论 §5.2 简并定态微扰论§5.3 氢原子的一级Stark 效应§5.4 变分法§5.5 氦原子基态§5.6 含时微扰§5.7 跃迁几率和黄金费米规则§5.8 光的发射与吸收§5.9 选择定则附录: 氦原子基态计算过程非简并定态微扰论本节将讨论体系受到外界与时间无关的微小扰动时,它的能量和波函数所发生的变化。
假设体系的哈密顿量不显含时间,能量的本征方程ˆH E ψψ= 满足下列条件: ˆH 可分解为 0ˆH 和 ˆH '两部分,而且 0ˆH 远大于ˆH'。
00ˆˆˆˆˆ H H H H H ''=+ 0ˆH 的本征值和本征函数已经求出,即 0ˆH 的本征方程(0)(0)(00ˆn n n H E ψψ=中,能级(0)n E 和波函数(0)n ψ都是已知的。
微扰论的任务就是从0ˆH 的本征值和本征函数出发,近似求出经过微扰ˆH ' 后,ˆH 的本征值和本征函数。
3. 0ˆH 的能级无简并。
严格来说,是要求通过微扰论来计算它的修正的那个能级无简并的。
例如我们要通过微扰计算ˆH '对 0ˆH 的第n 个能级(0)n E 的修正,就要求(0)n E 无简并,它相应的波函数只有(0)n ψ一个。
其他能级既可以是简并的,也可以是无简并的。
4. 0H 的能级组成分离谱。
严格说来,是要求通过微扰来计算它的修正的那个能级(0)n E 处于分离谱内,(0)n ψ是束缚态。
第5章微扰理论5.1复习笔记一、定态微扰理论1.适用范围及使用条件求分立能级及所属波函数的修正。
适用条件是:一方面要求H 可分成两部分,即'0H H H +=,同时0H 的本征值和本征函数已知或较易计算;另一方面又要求0H 把H 的主要部分尽可能包括进去,使剩下的微扰'H 比较小,以保证微扰计算收敛较快,即'(0)(0)(0)(0)1,mnn mn mH E E E E <<≠-(1)非简并情况微扰作用下的哈密顿量可表示为:'0H H H +=第n 个能级可近似表示为:∑+-++=mmnnmnn nn EEH H E E)0()0(2''')0(相应的波函数可近似表示为:∑+-+=mm mn mn nn E E H )0()0()0('')0(ψψψ(2)简并情况能级的一级修正由久期方程0det )1('=-v k v E H μμδ即)1(''2'1'2)1('22'21'1'12)1('11=---nkk k k knknE H H H H E H H H H E H给出。
个实根,记为有k k f E )1(k k f E ,,2,1,)1( =αα,分别把每一个根)1(αk E 代入方程∑==-kf v v v k va E H 1)1('0)(μαμδ,即可求得相应的解,记为v a α,于是可得出新的零级波函数∑>>=vkv vkv a φα||。
相应的能量为:)1()0(αk k k E E E +=。
2.氢原子的一级斯塔克效应(1)斯塔克(Stark)效应:原子在外电场作用下所产生的谱线分裂的现象。
(2)用简并情况下的微扰论解释氢原子的斯塔克效应:由于电子在氢原子中受到球对称的库仑场的作用,第n 个能级有2n 度简并。
第五章微扰理论经常遇到许多问题,体系哈密顿算符比较复杂,不能精确解,只能近似解,微扰论就是其中一个近似方法,其基本思想是逐级近似。
微扰论方法也就是抓主要矛盾。
如何分?假设本征值及本征函数较容易解出或已有现成解,是小量能看成微扰,在已知解的基础上,把微代入方程同次幂相等((1)(2)(3)①求能量的一级修正(2)式左乘并对整个空间积分能量的一级修正等于在态中的平均值。
②求对波函数一级修正将仍是方程 (2) 的解,选取 a 使展开式不含将上时代入式 (2)以左乘上式,对整个空间积分令上式化简为:③求能量二级修正把代入(3)式,左乘方程(3)式,对整个空间积分左边为零讨论:(1)微扰论成立的条件:(a)可分成,是问题主要部分,精确解已知或易求(b) <<1(2)可以证明例:一电荷为e的线性谐振子受恒定弱电场作用,电场沿x正方向,用微扰法求体系的定态能量和波函数。
【解】是的偶函数利用递推公式波函数的一级修正利用能级移动可以直接准确求出令:§5.2 简并情况下的微扰理论假设是简并的k 度简并已正交归一化代入上式以左乘上式两边,对整个空间积分左边右边不全为零解的条件是由久期方程可得到能量一级修正的k个根由于具有某种对称性,因此不考虑时,能级是k度简并的,考虑后,哈密顿量的对称性破坏,使能级的简并度降低或完全消除。
要确定,需求出,将代入上式,可求出。
§5.3 氢原子的一级斯塔克效应斯塔克(stark)效应:氢原子在外电场作用下所产生的谱线分裂现象。
( 是均匀的,沿z轴)下面研究n=2时的能级分裂现象:n=2,有4个简并度求只有两个态角量子数差 , 时, 矩阵元才不为零和不为零为实的厄密算符带入久期方程没有外电场时,原来简并的能及在一级修正中分裂为三个,兼并部分消除①当时②当时③当时,和为不同时为零的常数。
§5.4 变分法应用微扰论应很小,否则微扰论不能应用,本节所介绍的变分法不受上述条件限制。
定态微扰论和变分法量子力学体系的哈密顿算符∧H 不是时间的显函数时,通过求解定态薛定谔方程,讨论定态波函数。
除少数特例外,定态薛定谔方程一般很难严格求解,这样近似方法在量子力学中就显得十分重要。
主要介绍两种应用最广的近似方法:微扰论和变分法。
微扰论是各种近似方法中最基本的一种,它的许多结果几乎成为量子力学理论的组成部分,是本章学习的重点;变分法特别适用于研究体系的基态。
两种方法配合使用可以得出精确度较高的结果。
1 定态微扰论求解定态薛定谔方程 ψψE H =∧(1) 时,若可以把不显函时间的∧H 分为大、小两部分 ∧∧∧'+=H H H )0( ||||)0(∧∧'>>H H(2)其中 (1)∧)0(H的本征值)0(n E 和本征函数)0(n ψ是可以精确求解的,或已有确定的结果)0()0()0()0(nn n E H ψψ=∧(3)(2)∧'H 很小,称为加在∧)0(H上的微扰,有时为了表达这种微扰的程度,常引入一个很小参数λ(10<<λ),将微扰写成 ∧'H λ 下面以分离谱为例,分两种情况进行讨论。
1.1 非简并态微扰论(1)微扰对非简并态的影响非简并态是指∧)0(H 的每一个本征值)0(nE只有一个本征函数)0(nψ与之对应,当加上微扰∧'H 时,∧∧∧'+→H HH)0()0(,所以n n E E →)0(,n n ψψ→)0(,即微扰的出现是能级和波函数发生变化。
(2)微扰的基本思想就是以逐步近似的精神求解薛定谔方程。
当∧∧∧'+=H HH λ)0( (4)时,受微扰后的能级和波函数以λ的幂级数展开⎩⎨⎧+++=+++=)2(2)1()0()2(2)1()0(n n n n n n n n E E E E ψλλψψψλλ (5) )0(n E 与)0(nψ称为零级近似能量和零级近似波函数,是未受微扰时∧)0(H的本征能量和本征函数,也是我们求解微扰问题的必备基本条件,后面各项按λ的幂次称为一级修正、二级修正、…把(4)、(5)式代入薛定谔方程(1)中,得到以λ的幂次区分的一系列方程0)(:)0()0()0()0(=-∧n n E Hψλ(6))0()1()1()0()0()1()()(:nn n n E H E Hψψλ-'-=-∧∧ (7))0()2()1()1()2()0()0()2()()(:n n n n n n E E H E Hψψψλ+-'-=-∧∧ (8)求解以上方程便可得能量和波函数的一级修正、二级修正、…(3)各级修正公式零级近似:由(6)式可得零级近似即为)0(n E 、)0(n ψ. 一级修正:首先将)1(n ψ用)0(n ψ展开)0()1()1(l l lna ψψ'=∑ (9) '∑l代表求和项中不包含n l =项,这是因为)0(n ψ附加在)1(n ψ上仍是(6)式的解。
量子力学第五章微扰理论微扰理论在量子力学中,由于体系的哈密顿算符往往比较复杂,薛定谔方程能够严格求解的情况寥寥可数。
因此,引入各种近似方法以求解薛定谔方程的问题就显得十分重要。
常用的近似方法有微扰论、变分法等。
不同的近似方法有不同的适用范围。
在本章中将讨论分立谱的微扰理论、变分法。
由于体系的哈密顿算符既可以显含时间,又可以不显含时间,因此,近似方法也可以分为适用于定态的和适用于非定态的两类。
本章将先讨论定态的微扰理论、变分法,然后再讨论含时间的微扰理论以及光的发射和吸收等问题。
§5. 1 非简并定态微扰理论近似方法的精神是从已知的简单问题的准确解出发,近似地求较复杂一些的问题的解。
当然,我们还希望了解这些求解方法的近似程度,估算出近似解和准确解之间的最大偏离。
本节将讨论体系在受到外界与时间无关的微小扰动时,它的能级和波函数所发生的变化。
假定体系的哈密顿量H不显含t,能量的本征方程:Hψ=Eψ (5.1.1)满足下述条件:(1) H可分解为H(0)和H'两部分,而且H'远小于H(0)H=H(0) + H' (5.1.2) H'H(0) (5.1.3)(5.1.3)式表示,H与H(0)的差别很小,H'可视为加于H(0)上的微扰。
(5.1.3)式的严格意义将在后面再详细说明。
由于H 不显含t,因此,无论H(0)或是H'均不显含t。
(2) H(0) 的本征值和本征函数已经求出,即H(0)的本征方程(0)(0)(0)H(0)ψn=Enψn (5.1.4)中,能级En及波函数ψn都是已知的。
微扰论的任务就是从H(0)的本征值和本征函数出发,近似求出经过微扰后,H的本征值和本征函数。
(3) H(0)的能级无简并。
严格说来,是要求通过微扰论来计算它的修正的那个能级无简并,例如,要通过微扰论计算H'对H(0)的第n个能级En的修正,就要求En不简并,它相应的波函数(0)ψn只有一个。
第5章 微扰理论到现在为止,我们利用薛定谔方程求出了六大体系的本征值和本征函数 1、一维自由粒子体系:2ˆˆ2x p H m=, x p ip x x ex ⋅=πψ21)(, 22xp E m=)(∞<<-∞x p , 1=f2、一维无限深势阱222,0ˆ200a x x d H m dx x a ⎧∞<>⎪=-+⎨≤≤⎪⎩ , x an a n πψs i n 2=,22222n n E ma π= ,3,2,1=n ,1=f 3、一维线性谐振子体系:2222021ˆ,22d H m x dx ωμ=-+ ,)()(2221x H e N x n x n n αψα-=, m ωα=,ω )21(+=n E n ,,3,2,1,0=n ,1=f4、平面刚性转子2ˆˆ2z l H I=, ϕπϕim m e21)(=Φ, Im E m 222 =,,2,1,0±±=m ,5、空间刚性转子2ˆˆ2l HI=,ϕθϕθim nl lm lm e P N Y )(cos ),(=,Il l E l 2)1(2+=,,2,1,0=l ,l m ±±±=,,2,1,0 ,12+=l f6、氢原子与类氢原子222ˆ2ze H rμ=-∇-,),()(),,(ϕθϕθψlm nl nlm Y r R r =,242222222n z e z eE n aμμ=-=- , ,3,2,1=n ,1,,2,1,0-=n l ,l m ±±±=,,2,1,0 ,2n f =在量子力学中,能精确求解的问题为数是有限的,要么非常特殊,要么非常简单。
我们在这章中,介绍一些常用的近似处理方法。
也就是说,当将量子力学原理用于实际问题中,我们必须进行一些近似处理,才能得到所要的结果,才能将问题解决。
微扰论是从简单问题的精确解出发来求较复杂问题的近似解。