第五章微扰理论习题
- 格式:doc
- 大小:42.01 KB
- 文档页数:3
第五章 微扰理论第一部分:基本概念与基本思想题目1. 定态微扰理论主要研究什么样的物理体系?2. 00//ˆˆˆˆˆ 在微扰理论中,中的和各应满足什么条件?HH H H H =+ 3. 讨论无简并微扰理论的适用条件,说明其表达式的物理意义。
4. 何为吸收和发射? 说明自发发射和受激发射? 为什么量子力学无法解释自发发射?5. 讨论原子中的电子与光的相互作用时,为什么忽略电子和磁场间的相互作用?6. 与定态微扰理论相比,含时微扰理论所要解决的问题有何不同?7. 何为Stark 效应?8. 试述变分法的基本思想及其所解决的问题?9. 中心力场中电子跃迁选择定则是什么?第二部分: 基本技能训练题1. 设氢原子中价电子所受有效作用势为2222020() 014s s s e e a e U r e r r λλπε=--=<≤其中 试用微扰理论求基态能量(准确到一级).2. 00102030000123100()()**()()()()()ˆ, : H , ||||,设在表象中的矩阵表示为其中和试用微扰理论求能量本征方程的本征值准确到二级。
H HE a E b a b E E E E a b E ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦<<<<3. 转动惯量为I 电偶极矩为D 的空间转子处于均匀电场ε中,若电场很小,用微扰法计算转子基态能量的二级修正。
4. 设体系未受微扰时只有二个能级E 10及E 20, 现在受到微扰H /作用,微扰矩阵元为12211122////, ; a,b ,H H a H H b ====都是实数用微扰公式计算能量到二级修正.5. 基态氢原子处于平行电场中,若电场是均匀的且随时间按指数下降,即0t -0 t 0e t 0 ( 0 )τεετ<⎧⎪=⎨⎪≥>⎩当当的参数求经过长时间后氢原子处于2p 态的几率。
6. 粒子处于宽为a 的一维无限深势阱中,若微扰为/a 0x 2()a x a 2b H x b ⎧-≤≤⎪⎪=⎨⎪<≤⎪⎩求粒子能量的一级修正。
第五章 微扰理论5.1 如果类氢原子的核不是点电荷,而是半径为0r ,电荷均匀分布的小球,计算这种效应对类氢原子基态能量的一级修正。
解: 这种分布只对0r r <的区域有影响, 对0r r ≥的区域无影响. 根据题意知()()0ˆHU r U r '=- 其中()0U r 是不考虑这种效应的势能分布, 即()2004ze U r rπε=-()U r 为考虑这种效应后的势能分布, 在0r r ≥的区域为()204ze U r rπε=-在0r r <的区域, ()U r 可由下式()r U r e Edr ∞=-⎰其中电场为()()30233000002014,443434Ze Ze r r r r r r r E Ze r r r ππεπεππε⎧=≤⎪⎪=⎨⎪>⎪⎩则有:()()()()22320002222222000330000001443848r rr r rr U r e Edr e EdrZe Ze rdr dr r r Ze Ze Ze r r r r r r r r r πεπεπεπεπε∞∞=--=--=---=--≤⎰⎰⎰⎰因此有微扰哈密顿量为()()()()222200300031ˆ220s s Ze r Ze r r r r r H U r U r r r ⎧⎛⎫--+≤⎪ ⎪'=-=⎨⎝⎭⎪>⎩其中s e =类氢原子基态的一级波函数为()(321001000003202exp 2Zra R Y Z a Zr a Z ea ψ-==-⎫=⎪⎭按定态微扰论公式,基态的一级能量修正值为()()()00*00111110010032222222000000ˆ131sin 4422Zrr a s s E H Hd Ze Ze Z r d d e r dr a r r r ππψψτϕθθπ-''==⎡⎤⎛⎫⎛⎫=--+⎢⎥ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦⎰⎰⎰⎰00322222430000031422ZrZr Zr r r r a a a s Z Ze e r dr e r dr erdr a r r ---⎛⎫⎛⎫=---⎪ ⎪⎪⎝⎭⎝⎭⎰⎰⎰ 完成上面的积分,需要作作三个形如0b m y y e dy -⎰的积分,用分部积分法,得00002220002222000000022112222Zr Zr r a a y Zr Zr a a a erdr ye dyZ a Zr a a a e e r Z a Z Z Z ----⎛⎫= ⎪⎝⎭⎧⎫⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪⎪=-+-=-++⎢⎥⎨⎬ ⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎝⎭⎪⎪⎣⎦⎩⎭⎰⎰00002222332200000002322000000222222222222Zr Zr Zrr a a a y Zr a a a Zr Zr er dr y e dy e Z Z a a a a a a er r Z Z Z Z ----⎧⎫⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎪⎪⎢⎥==-++-⎨⎬ ⎪ ⎪ ⎪⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎪⎪⎣⎦⎩⎭⎛⎫⎛⎫⎛⎫=-+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎰⎰0000225440002500000000040002222224242412422424222Zr Zrr a a y Zr a a er dr y e dyZ a Zr Zr Zr Zr e Z a a a a a a a Z Z Z ---⎛⎫= ⎪⎝⎭⎧⎫⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪⎪⎢⎥ ⎪=+--+++ ⎪ ⎪⎨⎬ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎪⎪⎝⎭⎝⎭⎝⎭⎣⎦⎩⎭⎛⎫⎛⎫⎛=-+ ⎪ ⎪⎝⎭⎝⎭⎰⎰0002325234000000025234432000000000023412424222233324222Zr a Zr a a a a r r r r e Z Z Z a a a a a a r r r r e Z Z Z Z Z Z --⎛⎫⎫⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫=-+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭我们可以计算11E ,0000003232122000010020025234432000000000032340203422222233312422222Zr a s Zr a Zr a a a a a Z E Ze e r r a r Z Z Z Z a a a a a a r r r r e r Z Z Z Z Z Z a e Z ---⎧⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎪=--+++⎢⎥⎨ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎝⎭⎝⎭⎪⎣⎦⎩⎡⎤⎛⎫⎛⎫⎛⎫--+++++⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎝⎭⎣⎦⎛⎫-- ⎝00200022222000223230000022333332222Zr a ssa a r Z Z a a a Z Ze e Ze r Zr Z r r Z r a -⎫⎡⎤⎛⎫⎛⎫⎪++⎢⎥⎬⎪⎪ ⎪⎭⎝⎭⎝⎭⎢⎥⎪⎣⎦⎭⎛⎫⎛⎫=-++--- ⎪ ⎪⎝⎭⎝⎭但是既然是近似计算,我们再适当地作一次近似.氢原子的半径约为13~10r cm -, 而80~10aa cm Z -=.所以有5213510821010~110r a r e e a ------=≈≈ 于是022223222212522001003333000004314311222232525rrs s s s s a s Ze Ze Ze r Ze Ze r r E er dr r Ze r a r r r a r r a -⎡⎤⎛⎫⎡⎤=--+=-++=⎢⎥ ⎪⎢⎥⎢⎥⎝⎭⎣⎦⎣⎦⎰这就是基态能量的一级修正.而准确到一级近似的能量为()()222222222000011113220024411252525s s s s Ze Ze r Ze r Z e Z r E EEa a a a a a ⎛⎫⎛⎫=+=-+=--=-- ⎪ ⎪⎝⎭⎝⎭5.2 转动惯量为I ,电偶极矩为D 的空间转子处在均匀电场E 中,如果电场较小,用微扰法求转子基态能量的一级修正。
量子力学基础教程答案【篇一:量子力学课后答案】class=txt>????? 第一章绪论第二章波函数和薛定谔方程第三章力学量的算符表示第四章态和力学量的表象第五章微扰理论第六章弹性散射第七章自旋和全同粒子?301.1.由黑体辐射公式导出维恩位移定律:?mt?b,b?2.9?10m?c。
证明:由普朗克黑体辐射公式:8?h?31 ??d??d?, h3c ekt?1c c及??、d???2d?得?? 8?hc1?? ?5,hc?e?kt?1 d?hc令x?,再由??0,得?.所满足的超越方程为 ?d? ktxex 5?x e?1 hc x?4.97,即得用图解法求得?4.97,将数据代入求得?mt?b,b?2.9?10?3m?0c ?mkt1.2.在0k附近,钠的价电子能量约为3ev,求de broglie波长.0hh?10解:? ???7.09?10m?7.09a p2me # 3e?kt,求t?1k时氦原子的de broglie波长。
1.3. 氦原子的动能为 2h0hh?10??12.63?10m?12.63a 解:? ??p2me3mkt ?23?1其中m?4.003?1.66?10?27kg,k?1.38?10j?k # 1.4利用玻尔—索末菲量子化条件,求:(1)一维谐振子的能量。
(2)在均匀磁场中作圆周运动的电子的轨道半径。
绪论第一章b?10t,玻尔磁子?b?0.923?10?23j?t?1,求动能的量子化间隔?e,并与t?4k及已知外磁场t?100k 的热运动能量相比较。
p21解:(1)方法1:谐振子的能量e????2q2 2?2p2q2可以化为??1 22 ?2e?2e? ????2???2e 的平面运动,轨道为椭圆,两半轴分别为a?2?e,b?,相空间面积为 2 ??2?eepdq??ab???nh,n?0,1,2,? ?? e?nh?,n?0,1,2,? 所以,能量方法2:一维谐振子的运动方程为q????2q?0,其解为q?asin??t??? 速度为 q??a?cos??t???,动量为p??q??a??cos??t???,则相积分为 2222tta??a??t222pdq? a??cos??t???dt?(1?cos??t???)dt??nh,n?0,1,2,? 002222a??nh e???nh?,n?0,1,2,? 2t 2?v?v evb?(2)设磁场垂直于电子运动方向,受洛仑兹力作用作匀速圆周运动。
第5章微扰理论5.1复习笔记一、定态微扰理论1.适用范围及使用条件求分立能级及所属波函数的修正。
适用条件是:一方面要求H 可分成两部分,即'0H H H +=,同时0H 的本征值和本征函数已知或较易计算;另一方面又要求0H 把H 的主要部分尽可能包括进去,使剩下的微扰'H 比较小,以保证微扰计算收敛较快,即'(0)(0)(0)(0)1,mnn mn mH E E E E <<≠-(1)非简并情况微扰作用下的哈密顿量可表示为:'0H H H +=第n 个能级可近似表示为:∑+-++=mmnnmnn nn EEH H E E)0()0(2''')0(相应的波函数可近似表示为:∑+-+=mm mn mn nn E E H )0()0()0('')0(ψψψ(2)简并情况能级的一级修正由久期方程0det )1('=-v k v E H μμδ即)1(''2'1'2)1('22'21'1'12)1('11=---nkk k k knknE H H H H E H H H H E H给出。
个实根,记为有k k f E )1(k k f E ,,2,1,)1( =αα,分别把每一个根)1(αk E 代入方程∑==-kf v v v k va E H 1)1('0)(μαμδ,即可求得相应的解,记为v a α,于是可得出新的零级波函数∑>>=vkv vkv a φα||。
相应的能量为:)1()0(αk k k E E E +=。
2.氢原子的一级斯塔克效应(1)斯塔克(Stark)效应:原子在外电场作用下所产生的谱线分裂的现象。
(2)用简并情况下的微扰论解释氢原子的斯塔克效应:由于电子在氢原子中受到球对称的库仑场的作用,第n 个能级有2n 度简并。
量子力学第五章微扰理论微扰理论在量子力学中,由于体系的哈密顿算符往往比较复杂,薛定谔方程能够严格求解的情况寥寥可数。
因此,引入各种近似方法以求解薛定谔方程的问题就显得十分重要。
常用的近似方法有微扰论、变分法等。
不同的近似方法有不同的适用范围。
在本章中将讨论分立谱的微扰理论、变分法。
由于体系的哈密顿算符既可以显含时间,又可以不显含时间,因此,近似方法也可以分为适用于定态的和适用于非定态的两类。
本章将先讨论定态的微扰理论、变分法,然后再讨论含时间的微扰理论以及光的发射和吸收等问题。
§5. 1 非简并定态微扰理论近似方法的精神是从已知的简单问题的准确解出发,近似地求较复杂一些的问题的解。
当然,我们还希望了解这些求解方法的近似程度,估算出近似解和准确解之间的最大偏离。
本节将讨论体系在受到外界与时间无关的微小扰动时,它的能级和波函数所发生的变化。
假定体系的哈密顿量H不显含t,能量的本征方程:Hψ=Eψ (5.1.1)满足下述条件:(1) H可分解为H(0)和H'两部分,而且H'远小于H(0)H=H(0) + H' (5.1.2) H'H(0) (5.1.3)(5.1.3)式表示,H与H(0)的差别很小,H'可视为加于H(0)上的微扰。
(5.1.3)式的严格意义将在后面再详细说明。
由于H 不显含t,因此,无论H(0)或是H'均不显含t。
(2) H(0) 的本征值和本征函数已经求出,即H(0)的本征方程(0)(0)(0)H(0)ψn=Enψn (5.1.4)中,能级En及波函数ψn都是已知的。
微扰论的任务就是从H(0)的本征值和本征函数出发,近似求出经过微扰后,H的本征值和本征函数。
(3) H(0)的能级无简并。
严格说来,是要求通过微扰论来计算它的修正的那个能级无简并,例如,要通过微扰论计算H'对H(0)的第n个能级En的修正,就要求En不简并,它相应的波函数(0)ψn只有一个。
第五章 近似方法1.一维无限深势阱宽度为a ,其势能函数为(0,)()0(0/4,3/4)(/43/4)x x a U x x a a x a K a x a ∞<>⎧⎪=≤≤≤≤⎨⎪≤≤⎩K 是个很小的常数,把此势阱中的粒子看成是受到微扰的一维无限深势阱中的粒子,求其能量和波函数的一级近似。
解:无微扰时的本征函数为(0)()(1,2,)n n x x n aπψ== 对应的能量本征值为:222(0)22nn E aπμ= 能量的一级修正为:3/43/4(1)'(0)*(0)220/4/422ˆ'd sin d sin aa a nnnnn a a n x K n x E H H x K x dxa a a aππψψ====⎰⎰⎰3/43/4/4/421c o s 223c o s [s i n s i n ]222222a a a a n x K K K n x K K n n a dx dx a a a n πππππ-==-=--⎰⎰ 12/2((1)(2n K n K Kn n π-⎧⎪=⎨+-⎪⎩为偶数时)为奇数时)波函数的一级修正:'(1)(0)(0)(0)mn nm m n n mH E E ψψ≠=-∑ 现在来求:'mn H3/43/4'(0)*(0)0/4/422ˆ'd sin sin d sin sin aa a mnmn a a m x n x K m x n x H H x K x dx a a a a a a ππππψψ===⎰⎰⎰3/43/4/4/421()()()()[cos cos ][cos cos ]2a a a a K m n x m n x K m n x m n x dx dx a a a a a aππππ-+-+=-=-⎰⎰3/4/4()()[sin sin ]|()()a a K a m n x a m n x a m n a m n aππππ-+=--+ 3()()3()(){sin sin }{sin sin }()44()44K m n m n K m n m n m n m n ππππππ--++=----+2()()2()()cos sin cos sin()24()24K m n m n K m n m n m n m n ππππππ--++=--+ 将此式代入上式可得波函数的一级修正2.一维无限深势阱(a x <<0)中的粒子受到微扰:⎪⎩⎪⎨⎧<<-<<=)0()1(2)20(2)(/a x a xax a x x H λλ 的作用,求基态能量的一级修正。
填空 第一章 绪论6、玻尔的量子化条件为 n L =9德布罗意关系为 k p E==,ω 。
1、 用来解释光电效应的爱因斯坦公式为 221mv A h +=ν 。
2、 戴微孙-革末 实验验证了德布罗意波的存在,德布罗意关系为 k p E==,ω 。
第二章 波函数和薛定谔方程1、波函数的标准条件为 单值,连续,有限 。
4、2),,,(t z y x ψ的物理意义: 发现粒子的几率密度与之成正比 。
5、dr r r 22),,(⎰ϕθψ表示 在r —r+dr 单位立体角的球壳内发现粒子的几率 。
第三章 量子力学中的力学量2如两力学量算符有共同本征函数完全系,则0 。
3、设体系的状态波函数为,如在该状态下测量力学量有确定的值,则力学量算符与态矢量的关系为__ψλψ=Fˆ_______。
5、在量子力学中,微观体系的状态被一个 波函数 完全描述;力学量用 厄密算符 表示。
10坐标和动量的测不准关系是_2≥∆∆x p x ___________________________。
自由粒子体系,_动量_________守恒;中心力场中运动的粒子___角动量________守恒3、 设为归一化的动量表象下的波函数,则的物理意义为___在p —p+dp 范围内发现粒子的几率____________________________________________。
3、厄密算符的本征函数具有 正交,完备性 。
10、=]ˆ,[x p x i ; =]ˆ,ˆ[zy L L x L i ;第四章 态和力学量的表象量子力学中的态是希尔伯特空间的__矢量__________;算符是希尔伯特空间的__算符__________。
力学量算符在自身表象中的矩阵是 对角的第五章 微扰理论第七章 自旋与全同粒子7.为泡利算符,则=2ˆσ 3 ,=]ˆ,ˆ[y xσσz i σˆ28、费米子所组成的全同粒子体系的波函数具有_交换反对称性__ _______, 玻色子所组成的全同粒子体系的波函数具有____交换对称性____ 。
第五章 微扰理论
第一部分:基本概念与基本思想题目
1. 定态微扰理论主要研究什么样的物理体系?
2. 00//ˆˆˆˆˆ 在微扰理论中,中的和各应满足什么条件?H
H H H H =+ 3. 讨论无简并微扰理论的适用条件,说明其表达式的物理意义。
4. 何为吸收和发射? 说明自发发射和受激发射? 为什么量子力学无法解释自发发射?
5. 讨论原子中的电子与光的相互作用时,为什么忽略电子和磁场间的相互作用?
6. 与定态微扰理论相比,含时微扰理论所要解决的问题有何不同?
7. 何为Stark 效应?
8. 试述变分法的基本思想及其所解决的问题?
9. 中心力场中电子跃迁选择定则是什么?
第二部分: 基本技能训练题
1. 设氢原子中价电子所受有效作用势为
222
2020
() 014s s s e e a e U r e r r λλπε=--=<≤其中 试用微扰理论求基态能量(准确到一级).
2. 00102030000123100()()**()()()()()ˆ, : H , ||||
,设在表象中的矩阵表示为其中和试用微扰理论求能量本征方程的本征值准确到二级。
H H
E a E b a b E E E E a b E ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦<<<<
3. 转动惯量为I 电偶极矩为D 的空间转子处于均匀电场ε中,若电场很小,用微扰法计算转子基态能量的二级修正。
4. 设体系未受微扰时只有二个能级E 10及E 20, 现在受到微扰H /作用,
微扰矩阵元为12
211122////, ; a,b ,H H a H H b ====都是实数用微扰公式计算能量到二级修正.
5. 基态氢原子处于平行电场中,若电场是均匀的且随时间按指数下降,即
0t -0 t 0e t 0 ( 0 )
τεετ<⎧⎪=⎨⎪≥>⎩当当的参数
求经过长时间后氢原子处于2p 态的几率。
6. 粒子处于宽为a 的一维无限深势阱中,若微扰为
/a 0x 2()a x a 2
b H x b ⎧-≤≤⎪⎪=⎨⎪<≤⎪⎩求粒子能量的一级修正。
7. 计算氢原子由第一激发态到基态的自发发射几率。
8. 用狄拉克符号求线性谐振子偶极跃迁的选择定则。
9. 对于处于宽度为a 的一维无限深势阱中的粒子(质量为m 0),受到微扰
V(x)=V 0cos (2π/a)x
求体系的能量(准确到二级)。
10. 设在H 0表象中0102()() E a b H b E a ⎛⎫+= ⎪+⎝⎭
(a,b 为实数)
(1) 用微扰法求能量至二级修正。
(2) 严格求解能量,并与微扰法的结果进行比较。
11. 若设 20()r Ae λψλ-=>作为波函数,用变分法求氢原子基态能量。
12. 设某体系H 的本征值是由小到大顺序排列,且
E 0< E 1< E 2<....E k <....
证明H 在任一态中的平均值大于或等于E 0,即 0H E ≥。