同济大学高等数学第六版下册第十一章常数项级数审敛法资料
- 格式:ppt
- 大小:1013.00 KB
- 文档页数:38
【最新整理,下载后即可编辑】第十一章无穷级数教学目的:1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件。
2.掌握几何级数与P级数的收敛与发散的条件。
3.掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法。
4.掌握交错级数的莱布尼茨判别法。
5.了解任意项级数绝对收敛与条件收敛的概念,以及绝对收敛与条件收敛的关系。
6.了解函数项级数的收敛域及和函数的概念。
7.理解幂级数收敛半径的概念,并掌握幂级数的收敛半径、收敛区间及收敛域的求法。
8.了解幂级数在其收敛区间内的一些基本性质(和函数的连续性、逐项微分和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些常数项级数的和。
9.了解函数展开为泰勒级数的充分必要条件。
10.掌握,sin,cosxe x x,ln(1)x+和(1)aα+的麦克劳林展开式,会用它们将一些简单函数间接展开成幂级数。
11. 了解傅里叶级数的概念和函数展开为傅里叶级数的狄利克雷定理,会将定义在[-l,l]上的函数展开为傅里叶级数,会将定义在[0,l]上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和的表达式。
教学重点:1、级数的基本性质及收敛的必要条件。
2、正项级数收敛性的比较判别法、比值判别法和根值判别;3、交错级数的莱布尼茨判别法;4、幂级数的收敛半径、收敛区间及收敛域;5、,sin,cosxe x x,ln(1)x+和(1)aα+的麦克劳林展开式;6、傅里叶级数。
教学难点:1、比较判别法的极限形式;2、莱布尼茨判别法;3、任意项级数的绝对收敛与条件收敛;4、函数项级数的收敛域及和函数;5、泰勒级数;6、傅里叶级数的狄利克雷定理。
§11. 1 常数项级数的概念和性质一、常数项级数的概念常数项级数:给定一个数列u1,u2,u3,⋅⋅⋅,u n,⋅⋅⋅,则由这数列构成的表达式u1+u2+u3+⋅⋅⋅+u n +⋅⋅⋅叫做常数项)无穷级数,简称常数项)级数,记为∑∞=1n nu,即3211⋅⋅⋅+ +⋅⋅⋅+++=∑∞=nnnuuuuu,其中第n 项u n 叫做级数的一般项. 级数的部分和: 作级数∑∞=1n n u 的前n 项和n ni i n u u u u u s +⋅⋅⋅+++==∑= 3211称为级数∑∞=1n n u 的部分和.级数敛散性定义: 如果级数∑∞=1n n u 的部分和数列}{n s 有极限s , 即s s n n =∞→lim ,则称无穷级数∑∞=1n n u 收敛, 这时极限s 叫做这级数的和, 并写成3211⋅⋅⋅++⋅⋅⋅+++==∑∞=n n n u u u u u s ;如果}{n s 没有极限, 则称无穷级数∑∞=1n n u 发散.余项: 当级数∑∞=1n n u 收敛时, 其部分和s n 是级数∑∞=1n n u 的和s 的近似值, 它们之间的差值r n =s -s n =u n +1+u n +2+ ⋅ ⋅ ⋅ 叫做级数∑∞=1n n u 的余项.例1 讨论等比级数(几何级数) 20⋅⋅⋅++⋅⋅⋅+++=∑∞=n n n aq aq aq a aq的敛散性, 其中a ≠0, q 叫做级数的公比.例1 讨论等比级数n n aq ∑∞=0(a ≠0)的敛散性.解 如果q ≠1, 则部分和qaq q a q aq a aqaq aq a s n n n n ---=--=+⋅⋅⋅+++=-111 12.当|q |<1时,因为q as n n -=∞→1lim , 所以此时级数n n aq ∑∞=0收敛, 其和为qa -1.当|q |>1时, 因为∞=∞→n n s lim , 所以此时级数n n aq ∑∞=0发散.如果|q |=1, 则当q =1时, s n =na →∞, 因此级数n n aq ∑∞=0发散;当q =-1时, 级数n n aq ∑∞=0成为a -a +a -a + ⋅ ⋅ ⋅,时|q |=1时, 因为s n 随着n 为奇数或偶数而等于a 或零, 所以s n 的极限不存在, 从而这时级数n n aq ∑∞=0也发散.综上所述, 如果|q |<1, 则级数n n aq ∑∞=0收敛, 其和为q a -1; 如果|q |≥1, 则级数n n aq ∑∞=0发散.仅当|q |<1时, 几何级数n n aq ∑∞=0a ≠0)收敛, 其和为qa -1.例2 证明级数 1+2+3+⋅ ⋅ ⋅+n +⋅ ⋅ ⋅ 是发散的.证 此级数的部分和为 2)1( 321+=+⋅⋅⋅+++=n n n s n .显然, ∞=∞→n n s lim , 因此所给级数是发散的.例3 判别无穷级数)1(1 431321211⋅⋅⋅+++⋅⋅⋅+⋅+⋅+⋅n n的收敛性. 解 由于111)1(1+-=+=n n n n u n ,因此)1(1431321211++⋅⋅⋅+⋅+⋅+⋅=n n s n111)111( )3121()211(+-=+-+⋅⋅⋅+-+-=n n n从而1)111(lim lim =+-=∞→∞→n s n n n ,所以这级数收敛, 它的和是1. 例3 判别无穷级数∑∞=+1)1(1n n n 的收敛性.解 因为)1(1431321211++⋅⋅⋅+⋅+⋅+⋅=n n s n111)111( )3121()211(+-=+-+⋅⋅⋅+-+-=n n n ,从而1)111(lim lim =+-=∞→∞→n s n n n ,所以这级数收敛, 它的和是1. 提示: 111)1(1+-=+=n n n n u n .二、收敛级数的基本性质性质1 如果级数∑∞=1n n u 收敛于和s , 则它的各项同乘以一个常数k所得的级数∑∞=1n n ku 也收敛, 且其和为ks .性质1 如果级数∑∞=1n n u 收敛于和s , 则级数∑∞=1n n ku 也收敛, 且其和为ks .性质1 如果s u n n =∑∞=1, 则ks ku n n =∑∞=1.这是因为, 设∑∞=1n n u 与∑∞=1n n ku 的部分和分别为s n 与σn , 则) (lim lim 21n n n n ku ku ku ⋅⋅⋅++=∞→∞→σks s k u u u k n n n n ==⋅⋅⋅++=∞→∞→lim ) (lim 21.这表明级数∑∞=1n n ku 收敛, 且和为ks .性质2 如果级数∑∞=1n n u 、∑∞=1n n v 分别收敛于和s 、σ, 则级数)(1n n n v u ±∑∞=也收敛, 且其和为s ±σ.性质2 如果s u n n =∑∞=1、σ=∑∞=1n n v , 则σ±=±∑∞=s v u n n n )(1.这是因为, 如果∑∞=1n n u 、∑∞=1n n v 、)(1n n n v u ±∑∞=的部分和分别为s n 、σn 、τn ,则)]( )()[(lim lim 2211n n n n n v u v u v u ±+⋅⋅⋅+±+±=∞→∞→τ)] () [(lim 2121n n n v v v u u u +⋅⋅⋅++±+⋅⋅⋅++=∞→σσ±=±=∞→s s n n n )(lim .性质3 在级数中去掉、加上或改变有限项, 不会改变级数的收敛性.比如, 级数 )1(1 431321211⋅⋅⋅+++⋅⋅⋅+⋅+⋅+⋅n n 是收敛的,级数 )1(1 43132121110000⋅⋅⋅+++⋅⋅⋅+⋅+⋅+⋅+n n 也是收敛的,级数 )1(1 541431⋅⋅⋅+++⋅⋅⋅+⋅+⋅n n 也是收敛的.性质4 如果级数∑∞=1n n u 收敛, 则对这级数的项任意加括号后所成的级数仍收敛, 且其和不变.应注意的问题: 如果加括号后所成的级数收敛, 则不能断定去括号后原来的级数也收敛. 例如, 级数1-1)+1-1) +⋅ ⋅ ⋅收敛于零, 但级数1-1+1-1+⋅ ⋅ ⋅却是发散的.推论: 如果加括号后所成的级数发散, 则原来级数也发散. 级数收敛的必要条件:性质5 如果∑∞=1n n u 收敛, 则它的一般项u n 趋于零, 即0lim 0=→n n u .性质5 如果∑∞=1n n u 收敛, 则0lim 0=→n n u .证 设级数∑∞=1n n u 的部分和为s n , 且s s n n =∞→lim , 则0lim lim )(lim lim 110=-=-=-=-∞→∞→-∞→→s s s s s s u n n n n n n n n n .应注意的问题: 级数的一般项趋于零并不是级数收敛的充分条件.例4 证明调和级数1 3121111⋅⋅⋅++⋅⋅⋅+++=∑∞=nn n 是发散的.例4 证明调和级数∑∞=11n n是发散的.证 假若级数∑∞=11n n收敛且其和为s , s n 是它的部分和.显然有s s n n =∞→lim 及s s n n =∞→2lim . 于是0)(lim 2=-∞→n n n s s .但另一方面,2121 212121 21112=+⋅⋅⋅++>+⋅⋅⋅++++=-n nn n n n s s n n ,故0)(lim 2≠-∞→n n n s s , 矛盾. 这矛盾说明级数∑∞=11n n必定发散.§11. 2 常数项级数的审敛法 一、正项级数及其审敛法正项级数:各项都是正数或零的级数称为正项级数.定理1 正项级数∑∞=1n nu收敛的充分必要条件它的部分和数列{s n}有界.定理2(比较审敛法)设∑∞=1n nu和∑∞=1n nv都是正项级数,且u n≤v n(n=1, 2,⋅⋅⋅ ).若级数∑∞=1n nv收敛,则级数∑∞=1n nu收敛;反之,若级数∑∞=1n nu发散,则级数∑∞=1n nv发散.定理2(比较审敛法)设∑∞=1n nu和∑∞=1n nv都是正项级数,且u n≤v n(k>0,∀n≥N).若∑∞=1n nv收敛,则∑∞=1n nu收敛;若∑∞=1n nu发散,则∑∞=1n nv发散.设∑u n和∑v n都是正项级数,且u n≤kv n(k>0,∀n≥N).若级数∑v n 收敛,则级数∑u n收敛;反之,若级数∑u n发散,则级数∑v n发散.证设级数∑∞=1n nv收敛于和σ,则级数∑∞=1n nu的部分和s n=u1+u2+⋅⋅⋅+u n≤v1+v2+⋅⋅⋅+v n≤σ (n=1, 2, ⋅⋅⋅),即部分和数列{s n}有界,由定理1知级数∑∞=1n nu收敛.反之,设级数∑∞=1n nu发散,则级数∑∞=1n nv必发散.因为若级数∑∞=1 n nv收敛,由上已证明的结论,将有级数∑∞=1n nu也收敛,与假设矛盾.证仅就u n≤v n(n=1, 2,⋅⋅⋅ )情形证明.设级数∑v n收敛,其和为σ, 则级数∑u n 的部分和s n =u 1+ u 2+ ⋅ ⋅ ⋅ + u n ≤v 1+v 2+ ⋅ ⋅ ⋅ +v n ≤σ (n =1, 2, ⋅ ⋅ ⋅), 即部分和数列{s n }有界. 因此级数∑u n 收敛.反之, 设级数∑u n 发散, 则级数∑v n 必发散. 因为若级数 ∑v n 收敛, 由上已证明的结论, 级数∑u n 也收敛, 与假设矛盾.推论 设∑∞=1n n u 和∑∞=1n n v 都是正项级数, 如果级数∑∞=1n n v 收敛, 且存在自然数N , 使当n ≥N 时有u n ≤kv n (k >0)成立, 则级数∑∞=1n n u 收敛; 如果级数∑∞=1n n v 发散, 且当n ≥N 时有u n ≥kv n (k >0)成立, 则级数∑∞=1n n u 发散.例1 讨论p -级数 1 413121111⋅⋅⋅++⋅⋅⋅++++=∑∞=pp p p p n n n的收敛性, 其中常数p >0. 例1 讨论p -级数)0( 11>∑∞=p np n 的收敛性.解 设p ≤1. 这时nn p 11≥,而调和级数∑∞=11n n发散, 由比较审敛法知,当p ≤1时级数pn n 11∑∞=发散.设p >1. 此时有]1)1(1[111111111-------=≤=⎰⎰p p n n p n n pp n n p dx x dx n n (n =2, 3, ⋅ ⋅ ⋅).对于级数]1)1(1[112--∞=--∑p p n n n , 其部分和111111)1(11])1(11[ ]3121[]211[------+-=+-+⋅⋅⋅+-+-=p p p p p p n n n n s .因为1])1(11[lim lim 1=+-=-∞→∞→p n n n n s .所以级数]1)1(1[112--∞=--∑p p n n n 收敛. 从而根据比较审敛法的推论1可知,级数pn n 11∑∞=当p >1时收敛.综上所述, p -级数p n n11∑∞=当p >1时收敛, 当p ≤1时发散.解 当p ≤1时, nn p 11≥, 而调和级数∑∞=11n n发散, 由比较审敛法知,当p ≤1时级数pn n 11∑∞=发散.当p >1时,]1)1(1[111111111-------=≤=⎰⎰p p n n pn n pp n n p dx x dx n n (n =2, 3, ⋅ ⋅ ⋅).而级数]1)1(1[112--∞=--∑p p n n n 是收敛的, 根据比较审敛法的推论可知,级数pn n 11∑∞=当p >1时收敛.提示: 级数]1)1(1[112--∞=--∑p p n n n 的部分和为 111111)1(11])1(11[ ]3121[]211[------+-=+-+⋅⋅⋅+-+-=p p p p p p n n n n s .因为1])1(11[lim lim 1=+-=-∞→∞→p n n n n s ,所以级数]1)1(1[112--∞=--∑p p n n n 收敛.p -级数的收敛性: p -级数pn n 11∑∞=当p >1时收敛, 当p ≤1时发散.例2 证明级数∑∞=+1)1(1n n n 是发散的.证 因为11)1(1)1(12+=+>+n n n n ,而级数 11 3121111⋅⋅⋅+++⋅⋅⋅++=+∑∞=n n n 是发散的,根据比较审敛法可知所给级数也是发散的. 定理3(比较审敛法的极限形式)设∑∞=1n n u 和∑∞=1n n v 都是正项级数, 如果l v u nn n =∞→lim (0<l <+∞),则级数∑∞=1n n u 和级数∑∞=1n n v 同时收敛或同时发散.定理3(比较审敛法的极限形式) 设∑∞=1n n u 和∑∞=1n n v 都是正项级数,(1)如果l v u nn n =∞→lim (0≤l <+∞), 且级数∑∞=1n n v 收敛, 则级数∑∞=1n n u 收敛;(2)如果+∞=>=∞→∞→nn n n n n v u l v u lim 0lim 或,且级数∑∞=1n n v 发散, 则级数∑∞=1n n u 发散.定理3(比较审敛法的极限形式) 设∑u n 和∑v n 都是正项级数,(1)如果lim(u n /v n )=l (0≤l <+∞), 且∑v n 收敛, 则∑u n 收敛;(2)如果lim(u n /v n )=l (0<l ≤+∞), 且∑v n 发散, 则∑u n 发散.证明 由极限的定义可知, 对l 21=ε, 存在自然数N , 当n >N 时,有不等式l l v ul l n n 2121+<<-, 即n n n lv u lv 2321<<,再根据比较审敛法的推论1, 即得所要证的结论. 例3 判别级数∑∞=11sin n n的收敛性.解因为111sin lim =∞→nn n ,而级数∑∞=11n n发散,根据比较审敛法的极限形式, 级数∑∞=11sin n n发散.例4 判别级数∑∞=+12)11ln(n n的收敛性.解因为11)11ln(lim 22=+∞→n n n ,而级数211n n ∑∞=收敛,根据比较审敛法的极限形式, 级数∑∞=+12)11ln(n n 收敛.定理4(比值审敛法, 达朗贝尔判别法)若正项级数∑∞=1n n u 的后项与前项之比值的极限等于ρ:ρ=+∞→n n n u u 1lim,则当ρ<1时级数收敛; 当ρ>1(或∞=+∞→nn n u u 1lim )时级数发散; 当ρ =1时级数可能收敛也可能发散.定理4(比值审敛法, 达朗贝尔判别法) 若正项级数∑∞=1n n u 满足ρ=+∞→nn n u u 1lim, 则当ρ<1时级数收敛;当ρ>1(或∞=+∞→nn n u u 1lim )时级数发散. 当ρ =1时级数可能收敛也可能发散.定理4(比值审敛法, 达朗贝尔判别法)设∑∞=1n n u 为正项级数, 如果ρ=+∞→n n n u u 1lim,则当ρ<1时级数收敛; 当ρ>1(或∞=+∞→nn n u u 1lim )时级数发散; 当ρ =1时级数可能收敛也可能发散.例5 证明级数 )1( 3211 3211211111⋅⋅⋅+-⋅⋅⋅⋅⋅+⋅⋅⋅+⋅⋅+⋅++n 是收敛的.解 因为101lim 321)1( 321lim lim 1<==⋅⋅⋅⋅⋅-⋅⋅⋅⋅⋅=∞→∞→+∞→nn n u u n n nn n ,根据比值审敛法可知所给级数收敛.例6 判别级数 10! 10321102110132⋅⋅⋅++⋅⋅⋅+⋅⋅+⋅+nn 的收敛性. 解因为∞=+=⋅+=∞→+∞→+∞→101lim ! 1010)!1(lim lim11n n n u u n nn n n n n , 根据比值审敛法可知所给级数发散.例7 判别级数∑∞∞→⋅-n n n 2)12(1的收敛性.解1)22()12(2)12(lim lim1=+⋅+⋅-=∞→+∞→n n nn u u n n n n .这时ρ=1, 比值审敛法失效, 必须用其它方法来判别级数的收敛性.因为212)12(1nn n <⋅-, 而级数211n n ∑∞=收敛, 因此由比较审敛法可知所给级数收敛. 解因为212)12(1nn n <⋅-, 而级数211n n ∑∞=收敛, 因此由比较审敛法可知所给级数收敛.提示: 1)22()12(2)12(lim lim1=+⋅+⋅-=∞→+∞→n n nn u u n n n n , 比值审敛法失效.因为212)12(1nn n <⋅-, 而级数211n n ∑∞=收敛, 因此由比较审敛法可知所给级数收敛.定理5(根值审敛法, 柯西判别法)设∑∞=1n n u 是正项级数, 如果它的一般项u n 的n 次根的极限等于ρ:ρ=∞→n n n u lim ,则当ρ<1时级数收敛; 当ρ>1(或+∞=∞→n n n u lim )时级数发散; 当ρ=1时级数可能收敛也可能发散. 定理5(根值审敛法, 柯西判别法)若正项级数∑∞=1n n u 满足ρ=∞→n n n u lim , 则当ρ<1时级数收敛;当ρ>1(或+∞=∞→n n n u lim )时级数发散. 当ρ=1时级数可能收敛也可能发散.定理5(根值审敛法, 柯西判别法) 设∑∞=1n n u 为正项级数, 如果ρ=∞→n n n u lim ,则当ρ<1时级数收敛; 当ρ>1(或+∞=∞→n n n u lim )时级数发散; 当ρ=1时级数可能收敛也可能发散.例8 证明级数 1 3121132⋅⋅⋅++⋅⋅⋅+++nn是收敛的. 并估计以级数的部分和s n 近似代替和s 所产生的误差. 解 因为01lim 1lim lim ===∞→∞→∞→nn u n nn n n n n , 所以根据根值审敛法可知所给级数收敛.以这级数的部分和s n 近似代替和s 所产生的误差为 )3(1)2(1)1(1||321⋅⋅⋅++++++=+++n n n n n n n r)1(1)1(1)1(1321⋅⋅⋅++++++<+++n n n n n n +nn n )1(1+=.例6判定级数∑∞=-+12)1(2n nn的收敛性.解 因为21)1(221lim lim =-+=∞→∞→n n n n n n u ,所以, 根据根值审敛法知所给级数收敛. 定理6(极限审敛法) 设∑∞=1n n u 为正项级数,(1)如果)lim (0lim +∞=>=∞→∞→n n n n nu l nu 或, 则级数∑∞=1n n u 发散; (2)如果p >1, 而)0( lim +∞<≤=∞→l l u n n pn, 则级数∑∞=1n n u 收敛. 例7 判定级数∑∞=+12)11ln(n n的收敛性.解 因为)(1~)11ln(22∞→+n nn, 故11lim )11ln(lim lim 22222=⋅=+=∞→∞→∞→nn nn u n n n n n ,根据极限审敛法, 知所给级数收敛. 例8 判定级数)cos 1(11nn n π-+∑∞=的收敛性.解 因为222232321)(211lim )cos 1(1limlimπππ=⋅+=-+=∞→∞→∞→n n n n n n n u n n n nn ,根据极限审敛法, 知所给级数收敛.二、交错级数及其审敛法交错级数: 交错级数是这样的级数, 它的各项是正负交错的. 交错级数的一般形式为∑∞=--11)1(n n n u , 其中0>n u .例如, 1)1(11∑∞=--n n n是交错级数,但 cos 1)1(11∑∞=---n n nn π不是交错级数.定理6(莱布尼茨定理) 如果交错级数∑∞=--11)1(n n n u 满足条件:(1)u n ≥u n +1 (n =1, 2, 3, ⋅ ⋅ ⋅); (2)0lim =∞→n n u ,则级数收敛, 且其和s ≤u 1, 其余项r n 的绝对值|r n |≤u n +1. 定理6(莱布尼茨定理)如果交错级数∑∞=--11)1(n n n u 满足: (1)1+≥n n u u ; (2)0lim =∞→n n u , 则级数收敛, 且其和s ≤u 1, 其余项r n 的绝对值|r n |≤u n +1.简要证明: 设前n 项部分和为s n .由s 2n =(u 1-u 2)+(u 3-u 4)+ ⋅ ⋅ ⋅ +(u 2n 1-u 2n ), 及 s 2n =u 1-(u 2-u 3)+(u 4-u 5)+ ⋅ ⋅ ⋅ +(u 2n -2-u 2n -1)-u 2n 看出数列{s 2n }单调增加且有界(s 2n <u 1), 所以收敛. 设s 2n →s (n →∞), 则也有s 2n +1=s 2n +u 2n +1→s (n →∞), 所以s n →s (n →∞). 从而级数是收敛的, 且s n <u 1.因为 |r n |=u n +1-u n +2+⋅ ⋅ ⋅也是收敛的交错级数, 所以|r n |≤u n +1. 例9 证明级数 1)1(11∑∞=--n n n收敛, 并估计和及余项.证 这是一个交错级数. 因为此级数满足 (1)1111+=+>=n n u n n u (n =1, 2,⋅ ⋅ ⋅), (2)01lim lim ==∞→∞→nu n n n ,由莱布尼茨定理, 级数是收敛的, 且其和s <u 1=1, 余项11||1+=≤+n u r n n .三、绝对收敛与条件收敛: 绝对收敛与条件收敛:若级数∑∞=1||n n u 收敛, 则称级数∑∞=1n n u 绝对收敛; 若级数∑∞=1n n u收敛, 而级数∑∞=1||n n u 发散, 则称级∑∞=1n n u 条件收敛.例10 级数∑∞=--1211)1(n n n 是绝对收敛的, 而级数∑∞=--111)1(n n n是条件收敛的.定理7 如果级数∑∞=1n n u 绝对收敛, 则级数∑∞=1n n u 必定收敛.值得注意的问题:如果级数∑∞=1||n n u 发散, 我们不能断定级数∑∞=1n n u 也发散.但是, 如果我们用比值法或根值法判定级数∑∞=1||n n u 发散,则我们可以断定级数∑∞=1n n u 必定发散.这是因为, 此时|u n |不趋向于零, 从而u n 也不趋向于零, 因此级数∑∞=1n n u 也是发散的.例11 判别级数∑∞=12sin n nna 的收敛性. 解因为|221|sin n n na ≤, 而级数211n n ∑∞=是收敛的,所以级数∑∞=12|sin |n nna 也收敛, 从而级数∑∞=12sin n nna 绝对收敛. 例12 判别级数∑∞=+-12)11(21)1(n n nnn 的收敛性.解: 由2)11(21||n n n nu +=, 有121)11(lim 21||lim >=+=∞→∞→e nu n n n n n ,可知0lim ≠∞→n n u , 因此级数∑∞=+-12)11(21)1(n n nnn 发散.§ 11. 3 幂级数一、函数项级数的概念函数项级数: 给定一个定义在区间I 上的函数列{u n (x )}, 由这函数列构成的表达式u 1(x )+u 2(x )+u 3(x )+ ⋅ ⋅ ⋅ +u n (x )+ ⋅ ⋅ ⋅ 称为定义在区间I 上的(函数项)级数, 记为∑∞=1)(n n x u .收敛点与发散点:对于区间I 内的一定点x 0, 若常数项级数∑∞=10)(n n x u 收敛, 则称点x 0是级数∑∞=1)(n n x u 的收敛点.若常数项级数∑∞=10)(n n x u 发散, 则称点x 0是级数∑∞=1)(n n x u 的发散点.收敛域与发散域:函数项级数∑∞=1)(n n x u 的所有收敛点的全体称为它的收敛域, 所有发散点的全体称为它的发散域. 和函数:在收敛域上, 函数项级数∑∞=1)(n n x u 的和是x 的函数s (x ),s (x )称为函数项级数∑∞=1)(n n x u 的和函数, 并写成∑∞==1)()(n n x u x s .∑u n (x )是∑∞=1)(n n x u 的简便记法, 以下不再重述.在收敛域上, 函数项级数∑u n (x )的和是x 的函数s (x ),s (x )称为函数项级数∑u n (x )的和函数, 并写成s (x )=∑u n (x ).这函数的定义就是级数的收敛域, 部分和:函数项级数∑∞=1)(n n x u 的前n 项的部分和记作s n (x ),函数项级数∑u n (x )的前n 项的部分和记作s n (x ), 即 s n (x )= u 1(x )+u 2(x )+u 3(x )+ ⋅ ⋅ ⋅ +u n (x ). 在收敛域上有)()(lim x s x s n n =∞→或s n (x )→s (x )(n →∞) . 余项:函数项级数∑∞=1)(n n x u 的和函数s (x )与部分和s n (x )的差r n (x )=s (x )-s n (x )叫做函数项级数∑∞=1)(n n x u 的余项.函数项级数∑u n (x )的余项记为r n (x ), 它是和函数s (x )与部分和s n (x )的差 r n (x )=s (x )-s n (x ).在收敛域上有0)(lim =∞→x r n n . 二、幂级数及其收敛性 幂级数:函数项级数中简单而常见的一类级数就是各项都幂函数的函数 项级数, 这种形式的级数称为幂级数, 它的形式是 a 0+a 1x +a 2x 2+ ⋅ ⋅ ⋅ +a n x n + ⋅ ⋅ ⋅ , 其中常数a 0, a 1, a 2, ⋅ ⋅ ⋅ , a n , ⋅ ⋅ ⋅叫做幂级数的系数. 幂级数的例子:1+x +x 2+x 3+ ⋅ ⋅ ⋅ +x n + ⋅ ⋅ ⋅ , !1 !2112⋅⋅⋅++⋅⋅⋅+++n x n x x .注: 幂级数的一般形式是a 0+a 1(x -x 0)+a 2(x -x 0)2+ ⋅ ⋅ ⋅ +a n (x -x 0)n + ⋅ ⋅ ⋅ , 经变换t =x -x 0就得a 0+a 1t +a 2t 2+ ⋅ ⋅ ⋅ +a n t n + ⋅ ⋅ ⋅ . 幂级数1+x +x 2+x 3+ ⋅ ⋅ ⋅ +x n + ⋅ ⋅ ⋅可以看成是公比为x 的几何级数. 当|x |<1时它是收敛的; 当|x |≥1时, 它是发散的. 因此它的收敛 域为(-1, 1), 在收敛域内有11132⋅⋅⋅++⋅⋅⋅++++=-n x x x x x.定理1 (阿贝尔定理) 如果级数∑∞=0n n n x a 当x =x 0 (x 0≠0)时收敛, 则适合不等式|x |<|x 0|的一切x 使这幂级数绝对收敛. 反之, 如果级数∑∞=0n n n x a 当x =x 0时发散, 则适合不等式|x |>|x 0|的一切x 使这幂级数发散.定理1 (阿贝尔定理) 如果级数∑a n x n 当x =x 0 (x 0≠0)时收敛, 则适合不等式|x |<|x 0|的一切x 使这幂级数绝对收敛. 反之, 如果级数∑a n x n 当x =x 0时发散, 则适合不等式|x |>|x 0|的一切x 使这幂级数发散.提示: ∑a n x n 是∑∞=0n n n x a 的简记形式.证 先设x 0是幂级数∑∞=0n n n x a 的收敛点,即级数∑∞=0n n n x a 收敛. 根据级数收敛的必要条件, 有0lim 0=∞→n n n x a , 于是存在一个常数M , 使 | a n x 0n |≤M (n =0, 1, 2, ⋅ ⋅ ⋅).这样级数∑∞=0n n n x a 的的一般项的绝对值n n n n n nn n n n x x M x x x a x x x a x a ||||||||||00000⋅≤⋅=⋅=.因为当|x |<|x 0|时,等比级数n n x x M ||00⋅∑∞=收敛,所以级数∑∞=0||n n n x a 收敛,也就是级数∑∞=0n n n x a 绝对收敛.简要证明 设∑a n x n 在点x 0收敛, 则有a n x 0n →0(n →∞) , 于是数列{a n x 0n }有界, 即存在一个常数M , 使| a n x 0n |≤M (n =0, 1, 2, ⋅ ⋅ ⋅). 因为nn n n n nn n nn x x M x x x a x x x a xa || |||| || ||00000⋅≤⋅=⋅=,而当||||0x x <时, 等比级数n n x x M ||0⋅∑∞=收敛, 所以级数∑|a n x n |收敛, 也就是级数∑a n x n绝对收敛.定理的第二部分可用反证法证明.倘若幂级数当x=x0时发散而有一点x1适合|x1|>|x0|使级数收敛,则根据本定理的第一部分,级数当x=x0时应收敛,这与所设矛盾.定理得证.推论如果级数∑∞=0nn nxa不是仅在点x=0一点收敛,也不是在整个数轴上都收敛,则必有一个完全确定的正数R存在,使得当|x|<R时,幂级数绝对收敛;当|x|>R时,幂级数发散;当x=R与x=-R时,幂级数可能收敛也可能发散.收敛半径与收敛区间:正数R通常叫做幂级数∑∞=0nn nxa的收敛半径.开区间(-R,R)叫做幂级数∑∞=0nn nxa的收敛区间.再由幂级数在x=±R处的收敛性就可以决定它的收敛域.幂级数∑∞=0nn nxa的收敛域是(-R, R)(或[-R, R)、(-R, R]、[-R, R]之一.规定:若幂级数∑∞=0nn nxa只在x=0收敛,则规定收敛半径R=0 ,若幂级数∑∞=0nn nxa对一切x都收敛,则规定收敛半径R=+∞,这时收敛域为(-∞, +∞).定理2如果ρ=+∞→||lim 1nn n a a, 其中a n 、a n +1是幂级数∑∞=0n n n x a 的相邻两项的系数,则这幂级数的收敛半径 ⎪⎪⎩⎪⎪⎨⎧+∞=≠=∞+=ρρρρ 00 10 R .定理2如果幂级数∑∞=0n n n x a 系数满足ρ=+∞→||lim 1nn n a a, 则这幂级数的收敛半径 ⎪⎪⎩⎪⎪⎨⎧+∞=≠=∞+=ρρρρ 00 10 R .定理2如果ρ=+∞→||lim 1nn n a a , 则幂级数∑∞=0n n n x a 的收敛半径R 为:当ρ≠0时ρ1=R , 当ρ=0时R =+∞, 当ρ=+∞时R =0.简要证明:|| ||||lim ||lim 111x x a a x a x a n n n nn n n n ρ=⋅=+∞→++∞→.(1)如果0<ρ<+∞, 则只当ρ|x |<1时幂级数收敛, 故ρ1=R . (2)如果ρ=0, 则幂级数总是收敛的, 故R =+∞. (3)如果ρ=+∞, 则只当x =0时幂级数收敛, 故R =0. 例1 求幂级数 )1( 32)1(13211⋅⋅⋅+-+⋅⋅⋅-+-=--∞=-∑nx x x x n x n n n n n的收敛半径与收敛域.例1 求幂级数∑∞=--11)1(n n n nx 的收敛半径与收敛域.解因为1111lim ||lim 1=+==∞→+∞→nn a an n n n ρ,所以收敛半径为11==ρR .当x =1时, 幂级数成为∑∞=--111)1(n n n, 是收敛的;当x =-1时, 幂级数成为∑∞=-1)1(n n, 是发散的. 因此, 收敛域为(-1,1].例2 求幂级数∑∞=0!1n n x n!1 !31!21132⋅⋅⋅++⋅⋅⋅++++n x n x x x的收敛域.例2 求幂级数∑∞=0!1n n x n 的收敛域.解因为0)!1(!lim !1)!1(1lim ||lim 1=+=+==∞→∞→+∞→n n n n a a n n n n nρ,所以收敛半径为R =+∞, 从而收敛域为(-∞, +∞). 例3 求幂级数∑∞=0!n n x n 的收敛半径.解 因为+∞=+==∞→+∞→!)!1(lim ||lim 1n n a a n nn n ρ, 所以收敛半径为R =0, 即级数仅在x =0处收敛.例4 求幂级数∑∞=022!)()!2(n n x n n 的收敛半径. 解 级数缺少奇次幂的项, 定理2不能应用. 可根据比值审敛法来求收敛半径:幂级数的一般项记为nn x n n x u 22)!()!2()(=. 因为21||4 |)()(|lim x x u x u n n n =+∞→, 当4|x |2<1即21||<x 时级数收敛; 当4|x |2>1即21||>x 时级数发散, 所以收敛半径为21=R .提示:2222)1(221)1()12)(22()!()!2(])!1[()]!1(2[)()(x n n n xn n xn n x u x u n n n n +++=++=++.例5求幂级数∑∞=-12)1(n nnnx 的收敛域.解 令t =x -1, 上述级数变为∑∞=12n n n n t .因为21)1(22 ||lim 11=+⋅⋅==++∞→n n a a n n n n n ρ, 所以收敛半径R =2.当t =2时, 级数成为∑∞=11n n , 此级数发散; 当t =-2时, 级数成为∑∞=-1)1(n n, 此级数收敛. 因此级数∑∞=12n n n nt 的收敛域为-2≤t <2. 因为-2≤x -1<2, 即-1≤x <3, 所以原级数的收敛域为[-1, 3). 三、幂级数的运算设幂级数∑∞=0n nn x a 及∑∞=0n n n x b 分别在区间(-R , R )及(-R ', R ')内收敛, 则在(-R , R )与(-R ', R ')中较小的区间内有 加法: ∑∑∑∞=∞=∞=+=+000)(n n n n n n n n n n x b a x b x a ,减法:∑∑∑∞=∞=∞=-=-0)(n n n n n n n n n n x b a x b x a ,设幂级数∑a n x n 及∑b n x n 分别在区间(-R , R )及(-R ', R ')内收敛, 则在(-R , R )与(-R ', R ')中较小的区间内有 加法: ∑a n x n +∑b n x n =∑(a n +b n )x n , 减法: ∑a n x n -∑b n x n =∑(a n -b n )x n .乘法: )()(0∑∑∞=∞=⋅n n n n nn x b x a =a 0b 0+(a 0b 1+a 1b 0)x +(a 0b 2+a 1b 1+a 2b 0)x 2+ ⋅ ⋅ ⋅+(a 0b n +a 1b n -1+ ⋅ ⋅ ⋅ +a n b 0)x n + ⋅ ⋅ ⋅性质1 幂级数∑∞=0n n n x a 的和函数s (x )在其收敛域I 上连续.如果幂级数在x =R (或x =-R )也收敛, 则和函数s (x )在(-R , R ](或[-R , R ))连续.性质2 幂级数∑∞=0n n n x a 的和函数s (x )在其收敛域I 上可积, 并且有逐项积分公式∑∑⎰⎰∑⎰∞=+∞=∞=+===0100001)()(n n n n xnn xn nn xx n a dx x a dx xa dx x s (x ∈I ),逐项积分后所得到的幂级数和原级数有相同的收敛半径.性质3 幂级数∑∞=0n n n x a 的和函数s (x )在其收敛区间(-R , R )内可导,并且有逐项求导公式∑∑∑∞=-∞=∞=='='='110)()()(n n n n nn n nn x na x a x a x s (|x |<R ),逐项求导后所得到的幂级数和原级数有相同的收敛半径. 性质1 幂级数∑a n x n 的和函数s (x )在其收敛域I 上连续. 性质2 幂级数∑a n x n 的和函数s (x )在其收敛域I 上可积, 并且有逐项积分公式∑∑⎰⎰∑⎰∞=+∞=∞=+===0100001)()(n n n n xnn x n nn xx n a dx x a dx xa dx x s (x ∈I ),逐项积分后所得到的幂级数和原级数有相同的收敛半径.性质3 幂级数∑a n x n 的和函数s (x )在其收敛区间(-R , R )内可导, 并且有逐项求导公式∑∑∑∞=-∞=∞=='='='010)()()(n n n n nn n nn x na x a x a x s (|x |<R ),逐项求导后所得到的幂级数和原级数有相同的收敛半径.例6 求幂级数∑∞=+011n n x n 的和函数.解 求得幂级数的收敛域为[-1, 1).设和函数为s (x ), 即∑∞=+=011)(n n x n x s , x ∈[-1, 1). 显然s (0)=1.在∑∞=++=0111)(n n x n x xs 的两边求导得x x x n x xs n n n n -=='+='∑∑∞=∞=+11)11(])([001.对上式从0到x 积分, 得)1ln(11)(0x dx xx xs x --=-=⎰.于是, 当x ≠0时, 有)1ln(1)(x xx s --=.从而⎪⎩⎪⎨⎧=<<--=0 11||0 )1ln(1)(x x x x x s .因为⎰∑∑'+=+=∞=+∞=+x n n n n dx x n x n x xs 00101]11[11)( )1ln(11000x dx x dx x x x n n --=-==⎰⎰∑∞=,所以, 当x ≠0时, 有)1ln(1)(x xx s --=,从而 ⎪⎩⎪⎨⎧=<<--=0 11||0 )1ln(1)(x x x xx s .例6 求幂级数∑∞=+011n n x n 的和函数.解 求得幂级数的收敛域为[-1, 1).设幂级数的和函数为s (x ), 即∑∞=+=011)(n n x n x s , x ∈[-1, 1).显然S (0)=1. 因为⎰∑∑'+=+=∞=+∞=+x n n n n dx x n x n x xs 00101]11[11)()11( )1ln(11000<<---=-==⎰⎰∑∞=x x dx x dx x x x n n ,所以, 当1||0<<x 时, 有)1ln(1)(x xx s --=.从而⎪⎩⎪⎨⎧=<<--=0 11||0 )1ln(1)(x x x xx s .由和函数在收敛域上的连续性, 2ln )(lim )1(1==-+-→x S S x . 综合起来得⎪⎩⎪⎨⎧=⋃-∈--=0 1)1 ,0()0 ,1[ )1ln(1)(x x x x x s . 提示: 应用公式)0()()(0F x F dx x F x -='⎰, 即⎰'+=x dx x F F x F 0)()0()(.11132⋅⋅⋅++⋅⋅⋅++++=-n x x x x x.例7 求级数∑∞=+-01)1(n n n 的和.解 考虑幂级数∑∞=+011n n x n , 此级数在[-1, 1)上收敛, 设其和 函数为s (x ), 则∑∞=+-=-01)1()1(n n n s .在例6中已得到xs (x )=ln(1-x ), 于是-s (-1)=ln2, 21ln )1(=-s , 即21ln 1)1(0=+-∑∞=n n n .§11. 4 函数展开成幂级数 一、泰勒级数要解决的问题: 给定函数f (x ), 要考虑它是否能在某个区间内“展开成幂级数”, 就是说, 是否能找到这样一个幂级数, 它在某区间内收敛, 且其和恰好就是给定的函数f (x ). 如果能找到这样的幂级数, 我们就说, 函数f (x )在该区间内能展开成幂级数, 或简单地说函数f (x )能展开成幂级数, 而该级数在收敛区间内就表达了函数f (x ). 泰勒多项式: 如果f (x )在点x 0的某邻域内具有各阶导数, 则在该邻域内f (x )近似等于)(!2)())(()()(200000⋅⋅⋅+-''+-'+=x x x f x x x f x f x f)()(!)(00)(x R x x n x f n n n +-+, 其中10)1()()!1()()(++-+=n n n x x n f x R ξ(ξ介于x 与x 0之间).泰勒级数: 如果f (x )在点x 0的某邻域内具有各阶导数f '(x ), f ''(x ), ⋅ ⋅ ⋅ ,f (n )(x ), ⋅ ⋅ ⋅ , 则当n →∞时, f (x )在点x 0的泰勒多项式n n n x x n x f x x x f x x x f x f x p )(!)( )(!2)())(()()(00)(200000-+⋅⋅⋅+-''+-'+= 成为幂级数)(!3)()(!2)())(()(300200000⋅⋅⋅+-'''+-''+-'+x x x f x x x f x x x f x f )(!)(00)(⋅⋅⋅+-+n n x x n x f 这一幂级数称为函数f (x )的泰勒级数. 显然, 当x =x 0时, f (x )的泰勒级数收敛于f (x 0).需回答的问题: 除了x =x 0外, f (x )的泰勒级数是否收敛? 如果收敛, 它是否一定收敛于f (x )?定理 设函数f (x )在点x 0的某一邻域U (x 0)内具有各阶导数, 则f (x )在该邻域内能展开成泰勒级数的充分必要条件是f (x )的泰勒公式中的余项R n (x )当n →0时的极限为零, 即))(( 0)(lim 0x U x x R n n ∈=∞→.证明 先证必要性. 设f (x )在U (x 0)内能展开为泰勒级数, 即 )(!)( )(!2)())(()()(00)(200000⋅⋅⋅+-+⋅⋅⋅+-''+-'+=n n x x n x f x x x f x x x f x f x f ,又设s n +1(x )是f (x )的泰勒级数的前n +1项的和, 则在U (x 0)内s n +1(x )→ f (x )(n →∞).而f (x )的n 阶泰勒公式可写成f (x )=s n +1(x )+R n (x ), 于是R n (x )=f (x )-s n +1(x )→0(n →∞).再证充分性. 设R n (x )→0(n →∞)对一切x ∈U (x 0)成立.因为f (x )的n 阶泰勒公式可写成f (x )=s n +1(x )+R n (x ), 于是s n +1(x )=f (x )-R n (x )→f (x ),即f (x )的泰勒级数在U (x 0)内收敛, 并且收敛于f (x ).麦克劳林级数: 在泰勒级数中取x 0=0, 得⋅⋅⋅++⋅⋅⋅+''+'+ !)0( !2)0()0()0()(2n n x n f x f x f f ,此级数称为f (x )的麦克劳林级数.展开式的唯一性: 如果f (x )能展开成x 的幂级数, 那么这种展式是唯一的, 它一定与f (x )的麦克劳林级数一致. 这是因为, 如果f (x )在点x 0=0的某邻域(-R , R )内能展开成x 的幂级数, 即f (x )=a 0+a 1x +a 2x 2+ ⋅ ⋅ ⋅ +a n x n + ⋅ ⋅ ⋅ ,那么根据幂级数在收敛区间内可以逐项求导, 有f '(x )=a 1+2a 2x +3a 3x 2+ ⋅ ⋅ ⋅+na n x n -1+ ⋅ ⋅ ⋅ ,f ''(x )=2!a 2+3⋅2a 3x + ⋅ ⋅ ⋅ + n ⋅(n -1)a n x n -2 + ⋅ ⋅ ⋅ ,f '''(x )=3!a 3+ ⋅ ⋅ ⋅+n ⋅(n -1)(n -2)a n x n -3 + ⋅ ⋅ ⋅ ,⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅f (n )(x )=n !a n +(n +1)n (n -1) ⋅ ⋅ ⋅ 2a n +1x + ⋅ ⋅ ⋅ ,于是得a 0=f (0), a 1=f '(0), !2)0(2f a ''=, ⋅ ⋅ ⋅, !)0()(n f a n n =, ⋅ ⋅ ⋅. 应注意的问题: 如果f (x )能展开成x 的幂级数, 那么这个幂级数就是f (x )的麦克劳林级数. 但是, 反过来如果f (x )的麦克劳林级数在点x 0=0的某邻域内收敛, 它却不一定收敛于f (x ). 因此, 如果f (x )在点x 0=0处具有各阶导数, 则f (x )的麦克劳林级数虽然能作出来, 但这个级数是否在某个区间内收敛, 以及是否收敛于f (x )却需要进一步考察.二、函数展开成幂级数展开步骤:第一步 求出f (x )的各阶导数: f '(x ), f ''(x ), ⋅ ⋅ ⋅ , f (n )(x ), ⋅ ⋅ ⋅ .第二步 求函数及其各阶导数在x =0 处的值:f (0), f '(0), f ''(0), ⋅ ⋅ ⋅ , f (n )( 0), ⋅ ⋅ ⋅ .第三步 写出幂级数!)0( !2)0()0()0()(2⋅⋅⋅++⋅⋅⋅+''+'+n n x n f x f x f f ,并求出收敛半径R .第四步 考察在区间(-R , R )内时是否R n (x )→0(n →∞).1)1()!1()(lim )(lim ++∞→∞→+=n n n n n x n f x R ξ 是否为零. 如果R n (x )→0(n →∞), 则f (x )在(-R , R )内有展开式!)0( !2)0()0()0()()(2⋅⋅⋅++⋅⋅⋅+''+'+=n n x n f x f x f f x f (-R <x <R ).例1 将函数f (x )=e x 展开成x 的幂级数.解 所给函数的各阶导数为f (n )(x )=e x (n =1, 2, ⋅ ⋅ ⋅), 因此f(n )(0)=1(n =1, 2, ⋅ ⋅ ⋅). 于是得级数⋅⋅⋅+⋅⋅⋅+++ !1 !2112n x n x x ,它的收敛半径R =+∞.对于任何有限的数x 、ξ (ξ介于0与x 之间), 有)!1(|| |)!1(| |)(|1||1+⋅<+=++n x e x n e x R n x n n ξ, 而0)!1(||lim 1=++∞→n x n n , 所以0|)(|lim =∞→x R n n , 从而有展开式 )( !1 !2112+∞<<-∞⋅⋅⋅+⋅⋅⋅+++=x x n x x e n x .例2 将函数f (x )=sin x 展开成x 的幂级数.解 因为)2sin()()(π⋅+=n x x f n (n =1, 2, ⋅ ⋅ ⋅), 所以f (n )(0)顺序循环地取0, 1, 0, -1, ⋅ ⋅ ⋅ ((n =0, 1, 2, 3, ⋅ ⋅ ⋅), 于是得级数⋅⋅⋅+--+⋅⋅⋅-+--- )!12()1( !5!312153n x x x x n n ,它的收敛半径为R =+∞.对于任何有限的数x 、ξ (ξ介于0与x 之间), 有 )!1(|| |)!1(]2)1(sin[| |)(|11+≤+++=++n x x n n x R n n n πξ→0 (n →∞).因此得展开式)( )!12()1( !5!3sin 12153+∞<<-∞⋅⋅⋅+--+⋅⋅⋅-+-=--x n x x x x x n n .)( !1 !2112+∞<<-∞⋅⋅⋅+⋅⋅⋅+++=x x n x x e n x . 例3 将函数f (x )=(1+ x )m 展开成x 的幂级数, 其中m 为任意常数. 解: f (x )的各阶导数为f '(x )=m (1+x )m -1,f ''(x )=m (m -1)(1+x )m -2,⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,f (n )(x )=m (m -1)(m -2)⋅ ⋅ ⋅(m -n +1)(1+x )m -n ,⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,所以 f (0)=1, f '(0)=m , f ''(0)=m (m -1), ⋅ ⋅ ⋅, f (n )(0)=m (m -1)(m -2)⋅ ⋅ ⋅(m -n +1), ⋅ ⋅ ⋅于是得幂级数!)1( )1( !2)1(12⋅⋅⋅++-⋅⋅⋅-+⋅⋅⋅+-++n x n n m m m x m m mx . 可以证明)11( !)1( )1( !2)1(1)1(2<<-⋅⋅⋅++-⋅⋅⋅-+⋅⋅⋅+-++=+x x n n m m m x m m mx x n m .间接展开法:例4 将函数f (x )=cos x 展开成x 的幂级数.解 已知)!12()1( !5!3sin 12153⋅⋅⋅+--+⋅⋅⋅-+-=--n x x x x x n n (-∞<x <+∞).对上式两边求导得)( )!2()1( !4!21cos 242+∞<<-∞⋅⋅⋅+-+⋅⋅⋅-+-=x n x x x x n n .例5 将函数211)(xx f +=展开成x 的幂级数. 解 因为)11( 1112<<-⋅⋅⋅++⋅⋅⋅+++=-x x x x xn , 把x 换成-x 2, 得)1( 1112422⋅⋅⋅+-+⋅⋅⋅-+-=+n n x x x x (-1<x <1). 注: 收敛半径的确定: 由-1<-x 2<1得-1<x <1.例6 将函数f (x )=ln(1+x ) 展开成x 的幂级数.解 因为xx f +='11)(, 而x +11是收敛的等比级数∑∞=-0)1(n n n x (-1<x <1)的和函数:)1( 11132⋅⋅⋅+-+⋅⋅⋅+-+-=+n n x x x x x. 所以将上式从0到x 逐项积分, 得)11( 1)1( 432)1ln(1432≤<-⋅⋅⋅++-+⋅⋅⋅+-+-=++x n x x x x x x n n .解: f (x )=ln(1+x )⎰⎰+='+=x x dx xdx x 0011])1[ln( ∑⎰∑∞=+∞=+-=-=01001)1(])1([n n n x n n n n x dx x (-1<x ≤1).上述展开式对x =1也成立, 这是因为上式右端的幂级数当x =1时收敛, 而ln(1+x )在x =1处有定义且连续.例7 将函数f (x )=sin x 展开成)4(π-x 的幂级数. 解 因为)]4sin()4[cos(22)]4(4sin[sin ππππ-+-=-+=x x x x ,并且有 )( )4(!41)4(!211)4cos(42+∞<<-∞⋅⋅⋅--+--=-x x x x πππ, )( )4(!51)4(!31)4()4sin(53+∞<<-∞⋅⋅⋅--+---=-x x x x x ππππ, 所以 )( ] )4(!31)4(!21)4(1[22sin 32+∞<<-∞⋅⋅⋅+-----+=x x x x x πππ.例8 将函数341)(2++=x x x f 展开成(x -1)的幂级数. 解 因为)411(81)211(41)3(21)1(21)3)(1(1341)(2-+--+=+-+=++=++=x x x x x x x x x f ∑∑∞=∞=-----=004)1()1(812)1()1(41n n n n n n n n x x)31( )1)(2121()1(0322<<----=∑∞=++x x n n n n n . 提示: )211(2)1(21-+=-+=+x x x ,)411(4)1(43-+=-+=+x x x .∑∞=<-<---=-+0)1211( 2)1()1(2111n n n n x x x , ∑∞=<-<---=-+0)1411( 4)1()1(4111n n n n x x x ,收敛域的确定: 由1211<-<-x 和1411<-<-x 得31<<-x .。
第二讲 常数项级数审敛法--正项级数及其审敛法授课题目(章节):§11.2 常数项级数审敛法——正项级数及其审敛法教学目的与要求:1.了解正项级数收敛的充要条件;2.会用正项级数的比较审敛法和根值审敛法;3.掌握正项级数的比值审敛法;4.掌握p 级数的收敛性。
教学重点与难点:重点:比值审敛法难点:比较审敛法 讲授内容:定义 若0(1,2,......)n u n ≥=则称1nn u∞=∑为正项级数性质 (1)正项级数的部分和数列{}n s 单调递增,即1231n n s s s s s +≤≤≤≤≤(2)正项级数1nn u∞=∑收敛的充要条件是部分和数列{}n s 有界证明 (1)110(1,2,),n n n n u n s s u ++≥==+1n n s s +∴≥ (2)若1nn u∞=∑收敛,则{}n s 收敛,故{}n s 有界;若{}n s 有界,又{}n s 单调递增,故{}n s 收敛,从而1nn u∞=∑收敛。
正项级数审敛法 一、比较法定理1(比较审敛法)11,n nn n u v∞∞==∑∑均为正项级,且(1,2,)n n u v n ≤=若1nn v∞=∑收敛,则1nn u∞=∑收敛;若1nn u∞=∑发散,则1nn v∞=∑发散。
证明 设级数1nn v∞=∑收敛于和σ,则级数1nn u∞=∑的部分和1212n n n s u u u v v v σ=+++≤+++≤即部分和数列{}n s 有界,故级数1nn u∞=∑收敛;反之,设1nn u∞=∑发散,若1nn v∞=∑收敛,由上面已证明的结论将有1nn u∞=∑收敛,与假设矛盾,故若1nn u∞=∑发散,则1nn v∞=∑发散。
推论11,n nn n u v∞∞==∑∑均为正项级数,且(,0)n n u kv n N N k ≤>>为自然数,若1nn v∞=∑收敛,则1nn u∞=∑收敛;若1nn u∞=∑发散,则1nn v∞=∑发散。
§11-2 常数项级数的审敛法一、正项级数及其审敛法正项级数:∑∞=1n n u 0≥n u (1)显然,部分和数列{}n s 单调增加:.21 ≤≤≤≤n s s s {}↑n s 1.收敛准则定理1 正项级数∑∞=1n n u 收敛⇔部分数列{}n s 有界.例1判别正项级数∑∞=122sin n nn π的收敛性 解 nn n s 22sin22sin 2122ππ+++=n 2121212+++<121121121<-⎪⎭⎫⎝⎛-=n 有上界 级数收敛2.比较审敛法定理2 设∑∞=1n n u 和∑∞=1n n v 都是正项级数,且.),2,1( =≤n v u nn 若∑∞=1n n v 收敛,则∑∞=1n n u 收敛;反之,若∑∞=1n n u 发散,则∑∞=1n n v 发散.分析:σ=∑∞=1n n v ,则∑∞=1n n u 的部分和,),2,1(2121 =≤++≤+++=n v v v u u u s n n n σ即{}n s 有界,由TH1知∑∞=1n n u 收敛。
反之,设∑∞=1n n u 发散,则∑∞=1n n v 必发散.因为若∑∞=1n nv收敛,由上面已证结论知∑∞=1n n u 也收敛,与假设矛盾.推论 设∑∞=1n n u 和∑∞=1n n v 都是正项级数,如果级数∑∞=1n n v 收敛,且存在自然数N ,使当N n ≥时有)0(≥≤k kv u n n 成立,则级数∑∞=1n n u 收敛;如果级数∑∞=1n n v 发散,且当Nn ≥时有)0(≥≥k kv u n n 成立, 则级数∑∞=1n n u 发散.分析:因为级数的每一项同乘不为零的常数k ,以及去掉级数前面的有限项不会影响级数的收敛性.例2 讨论p —级数 )2(11∑∞=n pn的收敛性,其中常数p >0.解 设1≤p ,则,11n np≥但调和级数发散,故级数(2)发散. 设1>p ,当n x n ≤≤-1时,有,11p p xn ≤所以⎥⎦⎤⎢⎣⎡---=≤=----⎰⎰11111)1(111111p p n n n n p p p n n p dx x dx n n , ,3,2=n 考虑级数)3(,1)1(1111∑∞=--⎥⎦⎤⎢⎣⎡--n p p n n 级数(3)的部分和⎥⎦⎤⎢⎣⎡+-++⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡-=-----11111)1(113121211p p p p p n n n s =.)1(111-+-p n 因 .1=n s 故级数(3)收敛.由推论1知,级数(3)当p >1时收敛.总之:p —级数(2)当≤p 1时发散,当p >1时收敛.注:比较审敛法的:必须有参考级数。