A无穷级数常数项级数的审敛法
- 格式:ppt
- 大小:2.23 MB
- 文档页数:5
无穷级数审敛法汇总(一)\sum_{n=1}^\infty a_n 收敛\Leftrightarrow\forall\varepsilon>0,\exists N>0,n>m>N 时\Big|\sum_{k=m+1}^na_k\Big|=|a_{m+1}+\cdots+a_n|<\varepsilon 。
证:\sum_{n=1}^\infty a_n 收敛\Leftrightarrow\forall\varepsilon>0,\exists N>0,n>m>N 时,\exists \ a,\Big|\sum_{k=1}^m a_k-a\Big|<\frac{\varepsilon}{2},\Big|\sum_{k=1}^n a_k-a\Big|<\frac{\varepsilon}{2}\implies\Big|\sum_{k=m+1}^na_k\Big|=|a_{m+1}+\cdots+a_n|=\Big|\sum_{k=1}^n a_k-\sum_{k=1}^m a_k\Big|\leq\Big|\sum_{k=1}^n a_k\Big|+\Big|\sum_{k=1}^ma_k\Big|<\varepsilon.\qquad \qquad \square二.比较判别法(正项级数)正项级数 \sum_{n=1}^\infty a_n,\sum_{n=1}^\infty b_n ,若 \exists N\in \mathbb{N},c_1>0,c_2>0, 且n>N,c_1a_n\leq c_2b_n ,则\sum_{n=1}^\infty b_n 收敛 \implies\sum_{n=1}^\infty a_n 收敛; \sum_{n=1}^\infty a_n 发散\implies\sum_{n=1}^\infty b_n 发散。
常数项级数敛散性判别法总结摘要:本文简要阐述了常数项级数敛散性判别法。
由于常数项级数敛散性判别法较多,学生判定级数选择判别法时比较困难,作者结合级数判别法的使用条件及特点对判别法进行分析,使学生更好的掌握级数判别法。
关键词:常数项级数;级数敛散性判别法;判别法使用条件及特点无穷级数是微积分学的一个重要组成部分,它是表示函数、研究函数性质以及进行数值计算的一种非常有用的数学工具。
无穷级数的中心内容是收敛性理论,因而级数敛散性的判别在级数研究中极其重要。
在学习常数项级数敛散性判别法时,学生按照指定的判别法很容易判定级数的敛散性,但是学习多种判别法后,选择判别法时比较困难。
主要原因是学生对所学判别法的使用条件及特点不够熟悉,本文针对这种情况对常数项级数敛散性判别法加以归纳总结。
1 级数收敛的概念给定一个数列{un},称u1+u2+...+un+ (1)为常数项无穷级数,简称常数项级数,记为.级数(1)的前n项之和记为Sn,即Sn=u1+u2+…+un,称它为级数(1)的部分和。
若部分和数列{Sn}有极限S,即,则称级数(1)收敛。
若部分和数列{Sn}没有极限,则称级数(1)发散。
注意:研究级数的收敛性就是研究其部分和数列是否存在极限,因此级数的收敛性问题是一种特殊形式的极限问题。
极限是微积分学的基础概念,也是学生比较熟系的概念,因此在研究级数收敛性时,联系极限概念,学生易于理解。
借助级数的性质与几何级数,调和级数的敛散性可以判别级数的敛散性。
例如,由性质(1)和当|q|0时,01,则发散。
当级数含有阶乘、n次幂或分子、分母含多个因子连乘除时,选用比值判别法。
比值判别法不需要与已知的基本级数进行比较,在实用上更为方便。
例2:判别级数的敛散性。
解:因为由比值判别法知级数收敛。
2.3 根植判别法设为正项级数,若有,则当0≤r1,则发散。
当级数含有n次幂,型如an或(un)n选用根值判别法。
根值判别法不需要与已知的基本级数进行比较。
常数项级数敛散性判别法总结作者:李娜来源:《山东工业技术》2014年第24期摘要:本文简要阐述了常数项级数敛散性判别法。
由于常数项级数敛散性判别法较多,学生判定级数选择判别法时比较困难,作者结合级数判别法的使用条件及特点对判别法进行分析,使学生更好的掌握级数判别法。
关键词:常数项级数;级数敛散性判别法;判别法使用条件及特点无穷级数是微积分学的一个重要组成部分,它是表示函数、研究函数性质以及进行数值计算的一种非常有用的数学工具。
无穷级数的中心内容是收敛性理论,因而级数敛散性的判别在级数研究中极其重要。
在学习常数项级数敛散性判别法时,学生按照指定的判别法很容易判定级数的敛散性,但是学习多种判别法后,选择判别法时比较困难。
主要原因是学生对所学判别法的使用条件及特点不够熟悉,本文针对这种情况对常数项级数敛散性判别法加以归纳总结。
1 级数收敛的概念给定一个数列{un},称u1+u2+...+un+ (1)为常数项无穷级数,简称常数项级数,记为.级数(1)的前n项之和记为Sn,即Sn=u1+u2+…+un,称它为级数(1)的部分和。
若部分和数列{Sn}有极限S,即,则称级数(1)收敛。
若部分和数列{Sn}没有极限,则称级数(1)发散。
注意:研究级数的收敛性就是研究其部分和数列是否存在极限,因此级数的收敛性问题是一种特殊形式的极限问题。
极限是微积分学的基础概念,也是学生比较熟系的概念,因此在研究级数收敛性时,联系极限概念,学生易于理解。
借助级数的性质与几何级数,调和级数的敛散性可以判别级数的敛散性。
例如,由性质(1)和当|q|2 正项级数敛散性判别法若级数各项均为非负数,则称该级数为正项级数。
正项级数收敛的充要条件是它的部分和数列有上界。
正项级数有以下几种常用判别法:2.1 比较判别法设与都是正项级数,且un≤vn(n=1,2,…),则收敛时,收敛;发散时,发散。
比较判别法适用范围比较广泛,当级数表达式型如,un为任意函数或un含有sinθ或cosθ等三角函数的因子可以进行适当的放缩时,选用比较判别法。
无穷级数的审敛法与收敛性判别无穷级数是数学中的一个重要概念,利用无穷级数可以逼近函数的值。
但无穷级数是一个无限求和的概念,有可能会出现发散的情况,因此就有了收敛性判别和审敛法这两种方法来判定无穷级数是否收敛。
首先,让我们来看一下什么是无穷级数。
无穷级数是由无限多个数相加或相减所得到的一种数列求和方式,可以表示为以下形式:$$\sum_{n=1}^{\infty}a_n=a_1+a_2+a_3+\ldots+a_n+\ldots$$其中,$a_n$ 表示第 $n$ 个数。
接下来,我们来介绍几种判定无穷级数收敛的方法。
一、正项级数判别法如果一个无穷级数的每一项都是非负数,即 $a_n\geq 0$,那么我们可以使用正项级数判别法来判断无穷级数是否收敛。
正项级数判别法的结果是,如果级数 $\sum\limits_{n=1}^{\infty}a_n$ 收敛,那么 $\lim\limits_{n\rightarrow \infty}a_n=0$。
这个结论非常重要,因为如果 $\lim\limits_{n\rightarrow\infty}a_n\neq 0$,那么级数 $\sum\limits_{n=1}^{\infty}a_n$ 一定发散。
这是因为无穷级数的每一项都是非负数,如果$\lim\limits_{n\rightarrow \infty}a_n\neq 0$,那么随着$n$ 的增大,$a_n$ 的大小也会越来越大,因此级数就会发散。
二、比较判别法比较判别法是一种常用的判定无穷级数收敛性的方法。
比较判别法的基本思想是,将待判定的级数与一个已知收敛或发散的级数进行比较,从而得出原级数的收敛性。
比较判别法分为两种情况:比较判别法一和比较判别法二。
比较判别法一表述如下:对于两个正项级数$\sum\limits_{n=1}^{\infty}a_n$ 和 $\sum\limits_{n=1}^{\infty}b_n$,如果存在一个正整数 $N$,使得当 $n>N$ 时,有 $a_n\leq kb_n$,其中 $k$ 是一个正常数,那么有以下结论:- 当级数 $\sum\limits_{n=1}^{\infty}b_n$ 收敛时,级数$\sum\limits_{n=1}^{\infty}a_n$ 收敛。
第二讲 常数项级数审敛法--正项级数及其审敛法授课题目(章节):§11.2 常数项级数审敛法——正项级数及其审敛法教学目的与要求:1.了解正项级数收敛的充要条件;2.会用正项级数的比较审敛法和根值审敛法;3.掌握正项级数的比值审敛法;4.掌握p 级数的收敛性。
教学重点与难点:重点:比值审敛法难点:比较审敛法 讲授内容:定义 若0(1,2,......)n u n ≥=则称1nn u∞=∑为正项级数性质 (1)正项级数的部分和数列{}n s 单调递增,即1231n n s s s s s +≤≤≤≤≤(2)正项级数1nn u∞=∑收敛的充要条件是部分和数列{}n s 有界证明 (1)110(1,2,),n n n n u n s s u ++≥==+1n n s s +∴≥ (2)若1nn u∞=∑收敛,则{}n s 收敛,故{}n s 有界;若{}n s 有界,又{}n s 单调递增,故{}n s 收敛,从而1nn u∞=∑收敛。
正项级数审敛法 一、比较法定理1(比较审敛法)11,n nn n u v∞∞==∑∑均为正项级,且(1,2,)n n u v n ≤=若1nn v∞=∑收敛,则1nn u∞=∑收敛;若1nn u∞=∑发散,则1nn v∞=∑发散。
证明 设级数1nn v∞=∑收敛于和σ,则级数1nn u∞=∑的部分和1212n n n s u u u v v v σ=+++≤+++≤即部分和数列{}n s 有界,故级数1nn u∞=∑收敛;反之,设1nn u∞=∑发散,若1nn v∞=∑收敛,由上面已证明的结论将有1nn u∞=∑收敛,与假设矛盾,故若1nn u∞=∑发散,则1nn v∞=∑发散。
推论11,n nn n u v∞∞==∑∑均为正项级数,且(,0)n n u kv n N N k ≤>>为自然数,若1nn v∞=∑收敛,则1nn u∞=∑收敛;若1nn u∞=∑发散,则1nn v∞=∑发散。