常数项级数及审敛法
- 格式:ppt
- 大小:2.79 MB
- 文档页数:47
n 1n 1§ 11-2 常数项级数的审敛法一、正项级数及其审敛法正项级数: U n U n 0⑴n 1显然,部分和数列s n 单调增加:s 1 s 2Sn . s n1.收敛准则定理1正项级数 U n 收敛部分数列S n 有界.n 1n例1判别正项级数亠的收敛性定理2设 U n 和V n 都是正项级数,且U n V . (nn 1n 1则 U n 收敛;反之, n 1 若 U n 发散,则 V n 发散.n 1 n 1 分析: V nn 1,贝U U n 的部分和 n 1 S n U 1 U 2 U n V 1 V 2 V n (n 1,2,),即S n 有界,由TH1知 U n 收敛。
反之,设n 1U n 发散,则n 1V n n 1必发散.因为若V n 收敛,由上面已证结论知 U n 也收敛,与假设矛盾n 11解「sin 2 22221 1 I 2n1 1 22Sin 2n1 1 1 2n2 222n1有上界 级数收敛1,2,).若 V n 收敛,n 12.比较审敛法推论 设 U n 和 V n 都是正项级数,如果级数 V n 收敛,且存在自然数 N,使n 1n 1kv n (k 0)成立,则级数 u n 收敛;如果级数 v n 发散,且当n Nn 1n 1分析:因为级数的每一项同乘不为零的常数 k ,以及去掉级数前面的有限项不会 影响级数的收敛性.注:比较审敛法的:必须有参考级数。
常用:几何级数, p —级数(调级数)例3判别下列级数的敛散性. 当n N 时有U n 时有 u n kv n (k 0)成立,则级数 U n 发散.n 1例2讨论p —级数⑵的收敛性,其中常数p>0.1,当n则書n时,1丄,但调和级数发散,故级数(2)发散. n有1 n pIn 1n p2dxx(nn p 1n 2,3,考虑级数(n 1) 级数(3)的部分和sn1 2卩11 3p 11 =1 1(n 1)p1 = (n 1)p 1因S n 1 .故级数(3)收敛. 由推论 1知,级数⑶当p>1时收敛.总之:p —级数(2)当p 1时发散,当p>1时收敛.(1).n n 121 n 5n 2U nn12 2^2n 5n 2n 8n丄发散,原级数发散 n 1 n(2).1 . 1 sin — n〔 n 1 n 1 U n 原级数收敛3. 比较审敛法的极限形式定理3设 u n 和n 1V n 都是正项级数,n 10 或 lim 土nV n例4判别下列级数的敛散性.4. 比值审敛法能发散.(证略,可参考教材) 例5判别下列级数的敛散性:(1)3 n n lim U n 1 - 1,级数收敛n 13n U n 3⑵n!nlim U n 1 lim n 1 级数发散n 1 2n U nn 2⑶n 1 nxn 1x 0lim U n 1 x0 x 1收敛,x 1 发散x 1发散n U n5.根值审敛法----柯西判别法(1)如果 lim unnV n(0 I),且级数V n 收敛,则级数 U n 收敛;n 1n 11(1) si nn 1 n.1 sinlim n n 10,丄发散 原级数发散n 1 n⑵ 2nta nn 13li mn1 2ntan]3nn2 3n2收敛收敛3,且级数 V n 发散,则级数 U n 发散n 1n 1(2)如果 limU nnV n 定理4设 u n 为正项级数,如果n 1lim 山 nU n则当1级数收敛;U n 11 (或 limnU n)时级数发散; 1时级数可能收敛也可例7判别下列级数的敛散性二、交错级数及其审敛法);(2) limu n 0,n则级数收敛,且其和S U 1,其余项r n 的绝对值r交错级数:U 1 U 2 U 3U 4(4)U 1 U 2 U 3U 4,其中U i ,u都是正数.定理7(莱布尼兹定理)如累交错级数(1)n1U n 满足条件:n 1定理5设 U n 为正项级数,如果lim n U nn 1n,则当 1时级数收敛, 1(或Hm nU n)时级数发散, 例6判别下列级数的敛散性1时级数可能收敛也可能发散.(证略,可参考教材)nU n n11Zn-0(nnn)1,级数收敛—5‘n imn ,n 31,级数发散6根限审敛法(与p —级数作比较)定理6设 u n 为正项级数,n 1(1)如果 lim nu n l 0 或 lim nu nnn,则 U n 发散;n 1⑶如果p 1,而limn p u nl 0nU n 收敛。