一元函数微分学的应用
- 格式:ppt
- 大小:94.01 KB
- 文档页数:11
⼀元函数微分学⼏何应⽤(⼀)--单调性与极值单调性与极值的判别单调性的判别若 y = f(x)在区间I上有f'(x)>0,则 y=f(x)在I上严格单调增加若 y = f(x)在区间I上有f'(x)<0,则 y=f(x)在I上严格单调增加费马引理(极值点的必要条件)⼀阶可导点是极值点的必要条件(极值导数必为0,导数为0不⼀定是极值,如y=x3)设f(x)在x=x0处可导,且在点x0处取得极值,则必有f'(x0)=0判别极值的第⼀充分条件(左右邻域⼀阶导异号)极值点不⼀定是可导点左邻域内,f'(x)<0,⽽右邻域,f'(x)>0,则f(x)在x=x0处取得极⼩值左邻域内,f'(x)>0,⽽右邻域,f'(x)<0,则f(x)在x=x0处取得极⼤值若f'(x)在左右邻域内不变号,则点x0不是极值点判别极值的第⼆充分条件(⼀阶导数=0,⼆阶导数≠0)设f(x)在x=x0处⼆阶可导,且f'(x0)=0,f''(x0)≠0若f''(x0)<0,则f(x)在x0处取得极⼤值若f''(x0)>0,则f(x)在x0处取得极⼩值可以⽤⼀阶导数定义和保号性证明判别极值的第三充分条件(⾼阶导)f(x)在x0处n阶可导,且 f(m)(x0)=0(m=1,2,...,n-1),f(n)(x)≠0(n≥2)f'(x0)=f''(x0)=...=f(n-1)(x0)=0若n为偶数且f(n)(x0)<0时,f(x)在x0处取得极⼤值若n为偶数且f(n)(x0)>0时,f(x)在x0处取得极⼩值拉格朗⽇中值定理推⼴(联系函数与导函数)f(b) - f(a) = f'(ξ)(b - a)f(x) - f(x0) = f'(ξ)(x - x0)。
一元函数微分学微积分是数学中一个非常重要的分支,它研究连续与变化。
微分学是微积分中的一部分,它研究一元函数的变化率和切线问题。
在工科、理工科及金融等领域,微分学都是必修的一门学科。
一、导数一个函数的导函数即为该函数的导数。
导数表示函数在某点处的变化率,也可以理解为以该点处斜率为切线的直线方程。
导数的定义如下:$f'(x)=\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}$其中,f(x)表示函数在x点处的取值,h表示x的变化量。
导数是对变化量和量的一个测量,它也可以被解释为函数的瞬时变化率。
在求导数时,我们需要注意函数是否连续,导数是否存在,同时还需考虑到函数在自变量为非自然数时的导数。
二、微分微分是在导数的基础上增加了一些附加的概念,它是由函数在一个点处的导数以及该点处的自变量与函数值所组成的。
微分的定义不是很直接,但是我们可以从定义出发进行理解:设函数y=f(x),在x点的微分dy=dx*f'(x)。
其中,dx表示x的增量,dy表示y的增量,f'(x)表示在x处的导数。
可以看出,微分有一个重要的作用,就是可以得到函数在某个点处的极小增量。
即在当前的点位置,函数的变化量以及对应的变量量。
微分还可以解决一些求和问题和变量替换问题的计算。
三、函数图像的切线函数图像的切线是函数图像在某个点的斜率。
在此前提下,我们可以通过导数求出函数图像在任意一个点上的斜率。
通过直线方程就可以求出函数图像在该点的切线。
求解函数图像的切线需要确定该点的横坐标和纵坐标,然后求出导数,最后代入方程即可。
四、一元函数微分学应用微分学的应用非常广泛。
在物理学中,微分学可以用于描述物体的运动,地球的形变和能源泄露等问题。
在金融学中,微分学可以用于计算股市的波动和证券价格的变化等问题。
在自然科学中,微分学可以用于解决生物学的遗传学和数学物理学中的加速和速度问题等。
总之,一元函数微分学是微积分中最基础的内容。
一元函数微分学的基本原理与应用微分学是数学中的一个分支,主要研究函数的变化率、极值和曲线的切线等问题。
在微分学中,一元函数是指只有一个自变量的函数。
本文将介绍一元函数微分学的基本原理和其应用。
一、微分的定义和基本原理微分学的基本概念之一是微分的定义。
对于一元函数 f(x),在某一点 x0 处的微分表示为 df(x0) 或简写为 dy,可以定义为 dx 的一个无穷小变化量,即:dy = f'(x0)dx其中,f'(x0) 表示在 x0 处的导数,表示函数在该点的斜率或变化率,dx 表示自变量 x 的无穷小变化量。
微分学的基本原理包括导数和微分的性质。
导数的定义如下:f'(x) = lim [f(x+Δx) - f(x)] / Δx (当Δx 趋近于 0 时)导数可以用来描述函数的斜率,即切线的倾斜程度。
在微分学中,常用的导数表示方式有函数的导函数、差商和极限等形式。
微分的基本性质包括线性性质、乘积法则、商法则和链式法则等。
根据这些性质,可以对各种类型的函数进行微分运算,进而得到函数的导数和微分。
二、应用举例:极值问题和曲线的切线微分学的应用非常广泛,以下是两个常见的应用例子:极值问题和曲线的切线。
1. 极值问题:求解一个函数的最大值和最小值。
通过对函数的微分,可以得到导数为零的点或导数不存在的点,并进行求解。
对于一元函数 f(x),当导数 f'(x) 的值为零或不存在时,函数在该点可能取得极值。
举例来说,若给定函数 f(x) = x^2 - 4x + 3,我们可以求解 f'(x) = 2x - 4,令导数等于零得到 2x - 4 = 0,解得 x = 2。
然后,通过二阶导数的符号判断该点是否是极值点。
若 f''(x) > 0,则 x = 2 是函数的极小值点;若 f''(x) < 0,则 x = 2 是函数的极大值点。
一元微积分与数学分析—常见函数的T aylor展开梅加强南京大学数学系如果f在x0附近是光滑的,则称形式和∞n=0f(n)(x0)n!(x−x0)n为f在x0处的T aylor展开(级数)或(无限)T aylor公式.如果f在x0附近是光滑的,则称形式和∞n=0f(n)(x0)n!(x−x0)n为f在x0处的T aylor展开(级数)或(无限)T aylor公式.T aylor展开在x0=0的特殊情形也称Maclaurin展开(级数)或Maclaurin公式.如果f在x0附近是光滑的,则称形式和∞n=0f(n)(x0)n!(x−x0)n为f在x0处的T aylor展开(级数)或(无限)T aylor公式.T aylor展开在x0=0的特殊情形也称Maclaurin展开(级数)或Maclaurin公式.如果limn→∞n−1k=0f(k)(x0)k!(x−x0)k=f(x),则记f(x)=∞n=0f(n)(x0)n!(x−x0)n.此时称f在x0处的T aylor展开收敛到自身.如果f在x0附近是光滑的,则称形式和∞n=0f(n)(x0)n!(x−x0)n为f在x0处的T aylor展开(级数)或(无限)T aylor公式.T aylor展开在x0=0的特殊情形也称Maclaurin展开(级数)或Maclaurin公式.如果limn→∞n−1k=0f(k)(x0)k!(x−x0)k=f(x),则记f(x)=∞n=0f(n)(x0)n!(x−x0)n.此时称f在x0处的T aylor展开收敛到自身.注意:f光滑并不意味着其T aylor展开收敛到自身.例如,考虑函数f(x)=e−1 x2(x=0),f(0)=0,则f在0处的各阶导数均为零,其Maclaurin展开恒为零.问题1:对于给定的函数,如何较快地求出它的T aylor展开呢?问题2:T aylor展开有什么用?问题1:对于给定的函数,如何较快地求出它的T aylor展开呢?问题2:T aylor展开有什么用?定理1(T aylor公式系数的唯一性)设f在x0处n阶可导,且f(x)=nk=0a k(x−x0)k+o(x−x0)n(x→x0),则a k=1k!f(k)(x0),k=0,1,···,n.证明.根据带Peano余项的T aylor公式,f(x)又可写为f(x)=nk=01k!f(k)(x0)(x−x0)k+o(x−x0)n(x→x0).如果令b k=a k−1k!f(k)(x0),k=0,1,···,n,则两式相减可得nk=0b k(x−x0)k=o(x−x0)n(x→x0).首先,在上式中令x→x0即得b0=0.其次,上式两边除以x−x0,再令x→x0可得b1=0.这个过程可以继续,当等式两边除以(x−x0)k并令x→x0时就得到b k=0(0≤k≤n).T aylor展开的运算性质设f,g在x0=0处的Taylor展开分别为∞n=0a n x n,∞n=0b n x n,则(1)λf(x)+µg(x)的Taylor展开为∞n=0(λa n+µb n)x n,其中λ,µ∈R.(2)f(−x)的Taylor展开为∞n=0(−1)n a n x n;(3)f(x k)的Taylor展开为∞n=0a n x kn,其中k为正整数;(4)x k f(x)的Taylor展开为∞n=0a n x k+n,其中k为正整数;(5)f (x)的Taylor展开为∞n=1na n x n−1=∞n=0(n+1)a n+1x n;(6)x0f(t)d t的Taylor展开为∞n=0a nn+1x n+1;例子例11=1+x+x2+···+x n+···,x∈(−1,1).1−x例111−x=1+x+x2+···+x n+···,x∈(−1,1).证明.由等比级数求和公式可得1 1−x =1−x n1−x+x n1−x=1+x+x2+···+x n−1+x n1−x,固定x∈(−1,1),当n→∞时余项x n1−x→0.例111−x=1+x+x2+···+x n+···,x∈(−1,1).证明.由等比级数求和公式可得1 1−x =1−x n1−x+x n1−x=1+x+x2+···+x n−1+x n1−x,固定x∈(−1,1),当n→∞时余项x n1−x→0.例2ln(1−x)=−∞n=1x nn=−x−x22−···−x nn−···,∀x∈[−1,1).(1)对数函数的展开证明.利用积分可得ln(1−x)=−xd t1−t=−x1+t+···+t n−1+t n1−td t=−x−x22−···−x nn−xt n1−td t.如果−1≤x<0,则xt n1−td t≤xt n d t=|x|n+1n+1→0;(n→∞)如果0≤x<1,则xt n1−td t≤11−xxt n d t=x n+1(1−x)(n+1)→0.(n→∞)由此即得(1).将(1)中x换成−x,则得ln(1+x)=∞n=1(−1)n−1nx n=x−x22+x33−···,∀x∈(−1,1].(2)特别地,在上式中取x=1,得ln2=1−12+13−14+15−16+···.将(1)中x换成−x,则得ln(1+x)=∞n=1(−1)n−1nx n=x−x22+x33−···,∀x∈(−1,1].(2)特别地,在上式中取x=1,得ln2=1−12+13−14+15−16+···.例3arctan x=∞n=1(−1)n−1x2n−1(2n−1)!=x−x33+x55−x77+···,∀x∈[−1,1].(3)证明.利用积分可得arctan x=xd t1+t2=x−x33+x55+···+(−1)n−1x2n−12n−1+R n(x),其中余项R n(x)=(−1)nxt2n1+t2d t.当x∈[−1,1]时|R n(x)|≤|x|0t2n d t=|x|2n+12n+1→0(n→∞),这说明(3)式成立.特别地,取x=1,我们就重新得到了Leibniz公式π4=1−13+15−17+···.(Leibniz-Gregory)例4e x=1+x+x22!+x33!+···+x nn!···,∀x∈(−∞,∞).(4)例4e x=1+x+x22!+x33!+···+x nn!···,∀x∈(−∞,∞).(4)证明.e x的各阶导数仍为它自己,由Lagrange余项可得e x=n−1n=0x kk!+R n(x),R n(x)=eθxn!x n,其中θ∈(0,1).此时有如下估计|R n(x)|≤e|x||x|nn!→0(n→∞).这说明(4)式成立.例5sin x=∞n=1(−1)n−1x2n−1(2n−1)!=x−x33!+x55!+···+,∀x∈(−∞,∞).(5)cos x=∞n=0(−1)n x2n(2n)!=1−x22!+x44!−···,∀x∈(−∞,∞).(6)例5sin x=∞n=1(−1)n−1x2n−1(2n−1)!=x−x33!+x55!+···+,∀x∈(−∞,∞).(5)cos x=∞n=0(−1)n x2n(2n)!=1−x22!+x44!−···,∀x∈(−∞,∞).(6)证明.利用sin x=cos x,cos x=−sin x可得sin(2k+1)(0)=(−1)k,sin(2k)(0)=0.由带Lagrange余项的T aylor公式可得sin x=x−x33!+x55!+···+(−1)n−1x2n−1(2n−1)!+(−1)n x2n+1cosθx(2n+1)!,(θ∈(0,1))当n→∞时余项趋于零.cos x的展开类似可得.。
一元函数微积分学在物理学上的应用 速度、加速度、功、引力、压力、形心、质心[][]1.(),()().3.00(),t t t t T t x m m x θθωθ='='=用导数描述某些物理量速度是路程对时间的导数.加速度是速度对时间的导数。
2.设物体绕定轴旋转,在时间间隔0,t 内转过的角度则物体在时刻的角速度当物体的温度高于周围介质的温度时,物体就不断冷却,若物体的温度与时间的函数关系为T=T(t),则物体在时刻t 的冷却速度为T (t).3.一根杆从一端点算起,,段干的质量为则杆在点x 处的线密[][](),().5.T C (T )=q (T ).6. (),().Q Q t Q t T w w t t w t ρ'='''=度是(x)=m (x).4.一根导线在0,t 这段时间内通过导线横截面的电量为则导线在时刻t 的电流强度I(t)=某单位质量的物体从某确定的温度升高到温度时所需的热量为q(T),则物体在温度时的比热某力在0,t 时间内作的功则时刻的功率为例1 .2212,5360,(),2M 55,12,360,(),()522cm AB AM M A x g m x xx m k m x x m x xρρ='=====2设有长为的非均匀杆部分的质量与动点到端点的距离的平方成正比,杆的全部质量为则杆的质量的表达式杆在任一点处的线密度(x)=5x解:m(x)=kx 令得所以(x)=变力作功:变力()F x 沿直线运动从a 到b 所作的功()ba w F x dx =⎰51.53[05][05][,]29.83,8828828m m x x x x dx dx x m dx kN dw dx xw x dx πππ+⋅⋅=⋅⋅∴=⋅=⎰例2(1)(功)一圆柱形的注水桶高为,底圆半径为,桶内盛满了水,试问要把桶内的水全部吸出需作多少功?解:作轴如图所示取深度为积分变量,它的变化区间为,相应于,上任一小区间的一薄层水的高度为,因此如的单位为,这薄层水的重力为把这层水吸出桶外需作的功近似为所求的功为25823462()2kJ π⋅⋅≈2.21,2[,1][2,2]R l Rx R x x Rx R x dx x xdx ρρ>=+++++例2(2)(功)设有一半径为,长度为的圆柱体平放在深度为的水池中,(圆柱体的侧面与水面相切,设圆柱体的比重为())现将圆柱体从水中移出水面,问需作多少功?解:分析:依题意就是把圆柱体的中心轴移至处,计算位于上的体积微元移至时所作的微元功。
一元函数微积分学在物理学上的应用(1)
一元函数微积分学是数学中重要的一类方法,在自然科学研究中也发挥着重要作用。
在物理学中,一元函数微积分学可以用于研究运动物体的位置、速度、加速度等以及物体
的力、能量等问题。
首先,在运动的物体的位置、速度、加速度等问题中,一元函数微积分学可以提供对
该问题方面更多的解释。
比如,在利用微积分学研究动力学时,是把动力学研究成微分方
程的形式。
在考虑了力学运动模型中的惯性、阻力、重力等因素的影响后,可以从一元微
分方程的解获得动力学运动的位置、速度和加速度的时变关系,从而对物体的不同状态有
更深入的分析。
其次,一元函数微积分学也可以用于研究物体的力以及物体的能量的变化情况。
比如,在电磁学中,一元微积分可以用来描述电磁场中物体的受力情况。
有了物体受力的情况,
就可以运用动量定理、动能定理以及动量守恒定律来分析物体在受到力的作用下物体的动
能是如何变化的,从而深入研究物体的运动特征。
一元函数微分学总结一元函数微分学是微积分学中的一个重要分支,用于研究一元函数的变化率和极值问题。
它是微分学的基础,对于理解和应用微积分具有重要的意义。
一元函数的微分学主要涉及函数的导数、极值和曲线的图像等内容。
其中,函数的导数是函数在某一点的变化率,它可以表示为函数的斜率或者切线的斜率。
函数的导数可以帮助我们研究函数在不同点的变化规律,了解函数的增减性、凹凸性、极值等特征。
在一元函数微分学中,求导是一个重要的操作。
通过求导,我们可以得到函数的导数表达式,从而可以计算函数在任意一点的导数值。
求导的基本规则包括常数导数规则、幂函数导数规则、指数函数导数规则、对数函数导数规则等,这些规则可以帮助我们快速计算导数。
另外,函数的导数还可以用于研究函数的极值。
通过求导,我们可以找到函数的极值点,即导数为零或者不存在的点。
极大值点对应函数的局部最大值,极小值点对应函数的局部最小值。
通过求导,我们可以判断一个函数在某一点的极值类型,并且可以进一步确定函数的增减区间和凹凸区间。
函数的导数还可以用于研究函数的图像。
通过求导,我们可以得到函数在不同点的斜率,进而可以画出函数的切线和曲线的大致形状。
通过分析切线和曲线的关系,我们可以了解函数的增减性和凹凸性,从而更加深入地理解函数的性质。
总而言之,一元函数微分学是微积分学中的重要分支,它研究一元函数的变化率和极值问题。
通过求导和分析导数,我们可以了解函数的增减性、凹凸性和极值等特征,从而更好地理解和应用微积分。
在实际应用中,一元函数微分学广泛应用于物理、经济、工程等领域,为实际问题的建模和求解提供了有力的工具和方法。
第四章 一元函数微分学的应用第一节 柯西(Cauchy )中值定理与洛必达(Hospital L ')法则思考题 :1. 用洛必达法则求极限时应注意什么?答:应注意洛必达法则的三个条件必须同时满足.2. 把柯西中值定理中的“()x f 与()x F 在闭间区[]b a ,上连续”换成“()x f 与()x F 在开区间()b a ,内连续”后,柯西中值定理的结论是否还成立?试举例(只需画出函数图象)说明.答:不成立.图像如下:习作题:1. 用洛必达法则求下列极限:(1)11lim 21--→x x x , (2)xxx sin lim 1→,(3)()πππ--→x x x sin lim , (4)x x x x x x x --+-→4240sin 23lim .解:(1)11lim 21--→x x x =)1(lim 1+→x x =2,(2)xxx sin lim0→=x x cos lim 0→=1,(3)()ππsin lim π--→x x x =()1πcos lim π-→x x =1,(4)x x x x x x x --+-→4240sin 23lim =14cos 264lim 330--+-→x x x x x = 1012--=1-. 2. 用洛必达法则求下列极限:(1)xx x +→0lim , (2)()xx x 11lim +→.解 :(1)x x x +→0lim =xxx ln 0elim +→=xx x10ln lime+→ =xx -+→0lim e=1,(2)()xx x 101lim +→=xx x 1)1ln(0elim +→ =xx x )1ln(lime+→=11lim0e+→x x =e .3. 设()x x x f -=2,直接用柯西中值定理求极限()xx f x sin lim 0→. 解:()00=f , 00sin =,()xx f x sin lim 0→∴ =()()0sin sin 0lim 0--→x f x f x =()()ξξn si lim0''→f x (ξ在0与 x 之间) =ξξξcos 12lim-→=1-.第二节 拉格朗日)Lagrange (中值定理及函数的单调性思考题:1.将拉格朗日中值定理中条件()x f “在闭区间[]b a ,上连续”换为“在开区间()b a ,内连续”后,定理是否还成立?试举例(只需画图)说明.答:不成立.如下图:2. 罗尔中值定理是微分中值定理中一个最基本的定理,仔细阅读下面给出的罗尔中值定理的条件与结论,并回答下列问题.罗尔中值定理:若()x f 满足如下3条: (1)在闭区间[]b a ,上连续;(2)在开区间()b a ,上可导;(3)在区间[]b a ,端点处的函数值相等,即)()(b f a f =,则在开区间()b a ,内至少存在一点ξ,使得()0='ξf .需回答的问题:(1)罗尔中值定理与拉格朗日中值定理的联系与区别?答:罗尔中值定理是拉格朗日中值定理的一个特殊情况.反之,拉格朗日中值定理是罗尔中值定理的推广.(2)罗尔中值定理中条件(1)换为“在开区间()b a ,内连续”,定理的结论还成立吗?画图说明.答:不成立.如下图:(3)不求()()()()()4321----=x x x x x f 的导数,说明方程()0='x f 有几个实根,并指出它们所在的区间.答:方程()0='x f 有3个实根, 分别在区间(1, 2)、(2, 3)、(3, 4)内. 原因: 0)4()3()2()1(====f f f f , 据罗尔定理即可得出结果.3. 举例说明罗尔中值定理与拉格朗日中值定理的条件是充分的而非必要的(可采用画图方式说明).答:如下图所示.)(x f 在],[b a 内不连续)(x f 在0=x 处不可导习作题:讨论函数2e x y -=的单调性.解:函数2e x y -=的定义域为),(+∞-∞,2e 2x x y --=', 令0='y , 得0=x ,用0=x 把),(+∞-∞ 分成两部分)0(),0,(∞+-∞,当)0,(-∞∈x 时0)(>'x f , 当),0(+∞∈x 时0)(<'x f , 因此2e x y -=在)0,(-∞上单调递增, 在),0(+∞上单调递减.第三节 函数的极值与最值思考题:1. 画图说明闭区间上连续函数)(x f 的极大值与最值之间的关系. 答:图像如下由图可知, 函数)(x f 的极值与最值的关系为:)(x f 的极值为可能为最值,最值在极值点及边界点上的函数值中取得.2. 可能极值点有哪几种?如何判定可能极值点是否为极值点?答:对连续函数来说,可能极值点有驻点及函数一阶导数不存在的点(尖点)两种. 利用极值的第一充分条件或第二充分条件判定.习作题:1. 求3)(x x f =+23x 在闭区间[]5,5-上的极大值与极小值,最大值与最小值.解:x x x f 63)(2+=', 令0)(='x f , 得2,021-==x x ,66)(+=''x x f , 06)0(>=''f , 06)2(<-=-''f ,∴)(x f 的极大值为=-)2(f 4,极小值为0)0(=f .∵50)5(-=-f , 200)5(=f .∴ 比较)5(),0(),2(),5(f f f f --的大小可知:)(x f 最大值为200, 最小值为50-.2. 求函数x x y -+=1在]1,5[-上的最大值. 解:xy --='1211, 令0='y , 得43=x . ∵45)43(=y , ()565-=-y , ()11=y , 比较可知 x x y -+=1在]1,5[-上最大值为45=y .第四节 曲率思考题:1. 对圆来说,其半径与其曲率半径相等吗?为什么? 答:相等.因为:曲率半径r r s R s s =∆⋅∆=∆∆=→∆→∆ααα00lim 1lim 1. 2. 是否存在负曲率,为什么?答:不存在.因为曲率定义为:sk s ∆∆=→∆α0lim ,故可知曲率为非负的值.习作题:1. 求立方抛物线()03>=a ax y 上各点处的曲率, 并求a x =处的曲率半径.解:23ax y =', ax y 6='', 于是曲率 ()2321y y k '+''==()2342916x a ax+,当 a x =时曲率 ()2362916a a k +=,故曲率半径()26691123a a k R +==.2. 曲线()03≥=x x y 上哪一点处曲率最大,求出该点的曲率. 解:23x y =', x y 6='', 故曲率 ()())0(916916232344≥+=+=x x xx xk ,对k 关于x 求导, 得()23444916)91541(d d x x x x k ++-=, 令0d d =xk且0≥x 得4451=x . <≤x 04451时, 0d d >xk ; 4451>x 时, 0d d <xk , ∴曲线()03≥=x x y 上,)45,45(4341--处曲率最大 , 最大曲率为44535⋅=k .第五节 函数图形的描绘思考题:1. 若))(,(00x f x 为连续曲线弧()x f y =的拐点,问: (1)()0x f 有无可能是()x f 的极值,为什么? 答:可能.如:()⎪⎩⎪⎨⎧>≤=,0,,0,2x x x x x y)0,0(为()x y 的拐点且()0y 为)(x y 的极值.(2)()0x f '是否一定存在?为什么?画图说明答:不一定. 如31x y = 图像如右:()0,0点为曲线31x y =的拐点,但d d =x xy2. 根据下列条件,画曲线:(1) 画出一条曲线,使得它的一阶和二阶导数处处为正.解:如下图.(2) 画出一条曲线,使得它的二阶导数处处为负,但一阶导数处处为正.解:如下图.(3) 画出一条曲线,使得它的二阶导数处处为正,但一阶导数处处为负.解:如下图.(4)画出一条曲线,使得它的一阶、二阶导数处处为负.解:如下图.习作题:1. 设水以常速s /m 3a (0>a )注入图4—19所示的容器中,请作出水上升的高度关于时间t 的函数()t f y =的图像,阐明凹向,并指出拐点.在区间[]1,0t 上函数()t f y =的图像上凹, 在区间[]21,t t 上函数()t f y =的图像下凹, 点()()11,t f t 为函数图像的拐点.2. (1)()x f '的图像如图4—20所示,试根据该图像指出函数)(xf 本身拐点横坐标x 的值.答:拐点横坐标为3x x =与4x x =. (2)在图4—21的二阶导数()x f ''的图像中,指出函数()x f 本身拐点横坐标x 的值. 答:拐点横坐标为1x x =和2x x =. 3. 求曲线32310510x x y ++=的凹凸区间与拐点. 解:函数的定义域为()+∞∞-,,21010x x y +=', x y 2010+='',图4—19令0=''y , 得21-=x , 用21-=x 把()+∞∞-,分成)21,(--∞,),21(+∞-两部分. 当∈x )21,(--∞时,0<''y , 当∈x ),21(+∞-时,0>''y , ∴曲线的凹区间为),,21(+∞-凸区间为),21,(--∞ 拐点为)665,21(-.4.求曲线()()213--+=x x x y 的渐近线.解:()()∞=--+→213lim1x x x x , 故1=x 为曲线的铅直渐近线,()()∞=--+→213lim2x x x x , 故2=x 为曲线的铅直渐近线,()()2133lim lim 0121211x x x x x x x x x →∞→∞++==--⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭, 故0=y 为曲线的水平渐近线,∴ 曲线的渐近线为:2,1,0===x x y .第六节 一元函数微分学在经济上的应用思考题:1. 回答下列问题:(1) 为什么说需求价格弹性一般为负值?答:因为需求价格弹性()p Q p Q p Ep EQ d d ⋅=中,pQd d 是需求量关于价格的导数, 而一般情况下,需求函数()p Q Q =是价格p 的单凋递减函数,即一般地0d d <pQ, 所以说需求价格弹性一般为负值.(2)设生产x 个单位产品时,总成本为()x C ,问这时每单位产品的平均成本是多少?答:平均成本()xxCxC=)(.(3)用数学语言解释“某项经济指标的增长速度正在逐步加快”或“某项经济指标的增长速度正在逐步变慢”,并画图说明.答:设u 表示某项经济指标,t 表示时间,)(t u u =二阶可导,则“经济指标的增长速度正在逐步加快”,即指t u d d 是递增函数,所以0d d 22>t u ,也即)(t u u =的图像上升且上凹(如下图1);相反“经济指标的增长速度正在逐步变慢”,即指0d d ,0d d 22<>tut u ,也即)(t u u =的图像上升且下凹(如下图2).2. 一般情况下,对商品的需求量Q是消费者收入x 的函数,即)(x Q Q =,试写出需求Q 对收入x 的弹性——需求收入弹性数学公式,并分析其经济意义.答:需求收入弹性()xQx Q x Ex EQ d d ⋅=. 因为一般情形下,需求Q 是收入x 的增函数, 故0d d >x Q 从而Ex EQ >0. 若ExEQ=1,则表明需求的变动幅度与收入的变动幅度是同步的,若>Ex EQ1,则表明需求变动的百分比高于收入变动的百分比.若0<ExEQ <1,则表明需求变动的百分比低于收入变动的百分比.习作题:1. 某厂商提供的总成本和总收入函数如右图,试画出下列对于产品数量q 的函数图象.(1)总利润;(2)边际成本;(3)边际收入解:(1)总利润L=)()(q C q R -,图像如下图(1),tu(2)边际成本c M =)('q C , 图像如下图(2), (3)边际收入R M =)('q R , 图像如下图(3).2. 求解下列各题:(1)设某产品的总成本函数和总收入函数分别为x x C 23)(+=, 15)(+=x xx R , 其中x 为该产品的销售量,求该产品的边际成本、边际收入和边际利润.解:边际成本C M =x x C 1)('=边际收入R M =2)1(5)('+=x x R边际利润xx M M q L C R 1)1(5)('2-+=-=.(2)(2)设p 为某产品的价格,x 为产品的需求量,且有801.0=+x p , 问p 为何值时,需求弹性大或需求弹性小.解:由801.0=+x p 得10d d -=px, 所以需求价格弹性80)10(1.080-=-⨯-=p p p p Ep Ex , 故当80-p p < 1-, 即40<p <80时, 需求弹性大; 当1-<80-p p<0, 即0<p <40时,需求弹性小.(注:可编辑下载,若有不当之处,请指正,谢谢!)。
第九章 微积分中的经济应用(仅数学三)参考解答例1(一元函数连续性) 解:∵(100)(100)d s Q Q =500(1001)=-,∴495000a =。
∵d Q 、s Q 均为P 的连续函数,∴100100lim (100),lim (100)d d s s p p Q Q Q Q ++→→==,即9950050⨯=-be ,995001002⨯=c ,故50495000e b =,95.4=c 。
■ 例2(一元函数导数)解:(1)∵成本23400)(2xx x C ++=, ∴边际成本:()3dC x x dx=+。
(2)∵收益R px ==()dR xdx=。
(3)∵利润C R L -=,∴边际利润350--=x xdxdL 。
(4)∵收益R px =,p=,∴2100R p=,p R ln 10ln 4ln -=,于是,收益对价格的弹性为1ln ln -==pd R d EpER 。
■例3(弹性)解:∵需求对价格的弹性为2.0=-==dpdQ Q p EpEQ p ε→Q dpdQ p2.0-=,而收益p p Q R ⋅=)(,∴边际收益为Q Q Q dpdQ pp Q dpdR 8.02.0)(=-=+=,从而,当10000=Q时,8000=dpdR 。
■例4(一元函数定积分)解:(1)∵固定成本100=C ,可变边际成本为40203)(2--='x x x C , ∴总成本函数为⎰⎰--+='+=xxdt t t C dt t C C x C 02000)40203()()(10401023+--=x x x 。
∵边际收益为3210)(+='x x R ,∴收益为x x dt t x R x325)3210()(2+=+=⎰。
于是,总利润函数为10721523-++-=-=x x x C R L 。
(2)当MC MR =,即3210402032+=--x x x 时,利润最大,此时可解得驻点2,1221-==x x (舍去)。
一元函数的微积分学的应用一元函数的微积分学是数学学科中十分重要的一个分支,它涉及到很多实际应用问题的解决。
本文将围绕这一主题,探讨一元函数微积分学在实际应用中的作用。
一、函数的极限在微积分中,函数的极限是一个非常基础的概念。
它用来描述当自变量趋近于某个特定值时,函数的取值趋近于一个确定的值。
函数的极限在实际应用中十分重要。
例如,在物理学中,速度和加速度等物理量都是由函数表示的,在分析运动过程时,经常需要考虑函数在某一点处的极限。
二、导数导数是微积分中又一个非常重要的概念。
我们可以通过求导来计算函数在某个点上的斜率,进而得到函数的极值和拐点等信息。
在实际应用中,导数被广泛用于优化问题中。
例如,在工业领域中,优化生产过程可以显著降低生产成本和提高产品品质。
对于多项式函数的导数,我们还可以用它来求函数的局部极值和拐点。
三、积分积分是微积分中又一个重要的概念。
定积分可以将曲线下面的面积计算出来,而不定积分则可以将函数积累起来,在求解方程组、解微分方程等问题中发挥重要作用。
在实际应用中,积分可用于计算容积、质量、面积和功率。
例如,在工程学领域中,我们可以用积分来计算某一区域内物体的体积,进而通过密度进行质量计算。
四、微积分在经济学中的应用微积分在经济学中也发挥着重要的作用。
例如,在市场经济中,供求关系可以看做是一个基于价格和数量的函数,而函数的变化则可以用微积分来描述。
通过对供求函数的微分和积分,可以帮助经济学家更好地分析市场需求。
五、微积分在医学中的应用在医学中,微积分也发挥着重要作用。
例如,在医学影像学中,我们经常需要对医学图像进行分析,以诊断疾病。
微积分可以帮助我们分析医学图像中的特征,准确地检测疾病的位置、形态和大小。
综上所述,一元函数微积分学不仅在数学理论研究中发挥着重要的作用,而且在实际应用中也具有广泛的应用价值。
熟练掌握微积分学的原理和方法,不仅可以帮助我们更好地理解自然和社会现象,还能应用于许多具体问题的解决。