第三章一元函数的积分学及其应用(1)共54页文档
- 格式:ppt
- 大小:707.00 KB
- 文档页数:54
103第三章 一元函数积分学2008考试内容原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 积分上限的函数及其导数 牛顿-莱布尼茨(Newton –Leibniz )公式 不定积分和定积分的换元积分法与分部积分法 有理函数、三角函数的有理式和简单无理函数的积分 反常(广义)积分 定积分的应用2008考试要求1. 理解原函数的概念,理解不定积分和定积分的概念。
2. 掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分与分部积分法。
3. 会求有理函数、三角函数有理式和简单无理函数的积分。
4. 理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式。
5. 了解反常积分的概念,会计算反常积分。
掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值。
第一节 一元函数积分学之一(原函数)一、 原函数的概念及其等价描述1.概念:设有函数()f x 和可导函数()F x ,如果对区间[], a b 上的任何一点x ,都有()()F x f x '=,则称()F x 为()f x 在区间[], a b 上的一个原函数。
()F x c +构成()f x 的全体原函数,叫做()f x 的不定积分,记为:()()f x dx F x c =+⎰。
2.原函数的性质:● ()()()()0limx F x x F x F x f x x∆→+∆-'==∆,且原函数()F x 一定是连续函数;● 验证()F x 是否为()f x 的原函数,分两步 第一步:()F x 在区间上是否连续; 第二步:验证()()F x f x '=是否成立。
● 当()f x 连续时,则()f x 一定有原函数,且()()xf t d t f x '⎡⎤=⎢⎥⎣⎦⎰,因为104()()()()()()()()0000001limlim 11lim =lim x xx x x x x x x x F x x f X F x f t dt f t dt x x f t dt f x f x x x ξ+∆∆→∆→+∆∆→∆→+∆-⎡⎤'==⋅-⎢⎥⎣⎦∆∆⎡⎤=⋅−−−−−→⋅∆=⎢⎥⎣⎦∆∆⎰⎰⎰积分中值定理。
第三章 一元函数的积分学§1 不定积分【考试要求】1.理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式.2.掌握不定积分的换元积分法和分部积分法.3.会求有理函数、三角函数有理式的积分和简单无理函数的积分.一、基本概念1.原函数与不定积分定义若()()F x f x '=,(,)x a b ∈,则称()F x 是()f x 在(,)a b 内的一个原函数.(一般地,“在区间(,)a b 内”几个字常省略).若()F x 是()f x 的一个原函数,则()F x C +也是()f x 的原函数(其中C 为任意常数),()f x 的全体原函数称为()f x 的不定积分,记作()d f x x ⎰.若()F x 是()f x 的一个原函数,则()d ()f x x F x C =+⎰.2.不定积分与原函数的关系(1)不定积分与原函数是两个不同的概念,前者是个集合,后者是该集合中的一个元素,因此()d ()f x x F x ≠⎰.(2)设()F x ,()G x 是()f x 的任意两个原函数,则()()F x G x C =+((,)x a b ∈).(3)原函数的几何意义:称()y F x C =+为()f x 的积分曲线,其上横坐标为x 处的切线互相平行.3.原函数存在定理设()f x 在(,)a b 内连续,则在(,)a b 内必有原函数.4.不定积分的基本性质(1)()d ()d kf x x k f x x =⎰⎰ (k 为常数);(2)[()()]d ()d ()d f x g x x f x x g x x ±=±⎰⎰⎰;(3)求导与求不定积分互为逆运算① (()d )()f x x f x '=⎰ ,d ()d ()d f x x f x x =⎰;② ()d ()f x x f x C '=+⎰,d ()()f x f x C =+⎰;5.基本积分公式(熟练掌握)(1)d k x kx C =+⎰;(2)11d 1x x x C μμμ+=++⎰; (3)1d ln ||x x C x=+⎰; (4)d ln x x a a x C a=+⎰; (5)e d e x x x C =+⎰;(6)sin d cos x x x C =-+⎰;(7) cos d sin x x x C =+⎰;(8) 2sec d tan x x x C =+⎰;(9)2csc d cot x x x C =-+⎰;;(10)sec tan d sec x x x x C ⋅=+⎰;(11)csc cot d csc x x x x C ⋅=-+⎰;(12)d arcsin xx C =+⎰;(13)2d arc ta n 1x x C x=++⎰; (14)tan d ln |cos |x x x C =-+⎰;(15)cot d ln |sin |x x x C =+⎰;(16)d arcsin xx C a =+⎰; (17)22d 1arctan x x C a x a a=++⎰; (18)sec d ln |sec tan |x x x x C =++⎰;(19)csc d ln |csc cot |x x x x C =-+⎰;(20)22d 1ln 2x a x C a x a a x +=+--⎰;(21)d ln x x C =++⎰; (22)21arcsin 22a x x C a =++⎰. 6.初等函数的原函数初等函数在其定义区间内必有原函数,但它的原函数不一定是初等函数.不能用初等函数来表示(积不出来)的不定积分如下:2e d x x ⎰, 2e d x x -⎰, sin d x x x ⎰, cos d x x x⎰, 2sin d x x ⎰, 2cos d x x ⎰, d ln x x ⎰,e d x x x⎰,e ln d x x x ⎰,ln |sin |d x x ⎰等.二、不定积分的积分法1.公式法 将被积函数变形,直接利用公式.2.换元法 引入新的变量,再积分.第一类换元法(凑微分法)设()f u 的原函数为()F u ,()u x ϕ=有连续的导数,则[()]()d f x x x ϕϕ'⋅⎰ [()]d ()f x x ϕϕ=⎰()u x ϕ=()()d [()][()]u x f u u F u C F x C ϕϕ==+=+⎰凑微分 换元 积分 变量还原常见的凑微分公式(1)1()d ()d()f ax b x f ax b ax b a+=++⎰⎰,0a ≠;(2)11()d ()d()n n n n f x x x f x x n -=⎰⎰; (3)(e )e d (e )d(e )x x x x f x f =⎰⎰;(4)d 1(ln )(ln )d(ln )x f x f x x x n =⎰⎰;(5)21111()d ()d()f x f x x x x=-⎰⎰; (6)12f x f =⎰⎰; (7)(sin )cos d (sin )d(sin )f x x x f x x =⎰⎰;(8)(cos )sin d (cos )d(cos )f x x x f x x =-⎰⎰;(9)2(tan )sec d (tan )d(tan )f x x x f x x =⎰⎰;(10)2(cot )csc d (cot )d(cot )f x x x f x x =-⎰⎰;(11)21(arctan )d (arc tan )d(arc tan )1f x x f x x x ⋅=+⎰⎰; (12)1(arcsin )d (arcsin )d(arcsin )f x x f x x ⋅=⎰⎰; (13)d xf x f ⋅=⎰⎰;(14)()d ()d ln |()|()()f x f x x f x C f x f x '==+⎰⎰. 第二类换元法设()x t ϕ=单调,有连续的导数,且()0t ϕ'≠,如果[()]()d ()f t t t F t C ϕϕ'=+⎰,则()d f x x =⎰ ()x x ϕ=[()]()d f t t t ϕϕ'⎰1()[()]t x F t C ϕ-==+1[()]F x C ϕ-=+.换元 积分 变量还原3.分部积分法 设()u u x =,()v v x =具有连续的导数,则d d uv x uv u v x ''=-⎰⎰ 或 d d u v uv v u=-⎰⎰称为分部积分公式.4.特殊函数类的积分有理函数:先化为多项式与简单分式,再逐项积分.三角函数有理式:令tan 2x u =,化为有理函数的积分.简单无理函数:引入代换去掉根号,化为有理函数的积分.常用的分项公式如下:(1)111(1)1x x x x=-++; (2)111(1)1x x x x=+--; (3)2211(1)1x x x x x=-++; (4)22211111(1)(1)(1)1(1)x x x x x x x x x =-=--+++++; (5)2222111(1)1x x x x=-++. 常用的三角公式如下:(1)21cos 2cos 2x x +=;(2)21cos 2sin 2x x -=;(3)21sin (sin cos )22x x x ±=±三、典型例题题型1 直接积分法 (即将被积函数分解为几个简单函数的代数和再分项积分)例1 求下列不定积分(1) 231d 5x xx x ++⎰; (2)10d (2)x x x +⎰;(3) 42d x x x +⎰; 解 原式2222d 111d arctan (1)1x x x C x x xx x ⎡⎤==-=--+⎢⎥++⎣⎦⎰⎰.(4)2222+sin sec d 1x x x x x ⋅+⎰; 解 原式精品文档()()2222221+sin 11sec d sec d d 11xx x x x x xx x +-=⋅=-++⎰⎰⎰tan arctan x x C =-+.题型2 换元积分法(第一类和第二类)例1 求下列不定积分(1)2sin cos d 1sin x xx x ⋅+⎰; (2)d x⎰解原式ln dln d u x x u ========⎰⎰⎰11d()2arcsin arc 12u u C --==+=⎰ .(3)3xx ⎰;解原式23221122u x x x x x u========⎰⎰⎰32111(1(1)d(1)222u u u u =+-=++-⎰⎰⎰535222212211[(1)(1)](1)(125353u u C x =+-++=+-+ . (4)sin 222esin d exxxx ⋅⎰; 解 原式sin 222sin 22sin11esin d e d(sin 22)e44x xx x x x x x --=⋅=--=-⎰⎰(5)1d (1e )xxx x x ++⎰; (6)ln(tan )d sin cos x x x x ⋅⎰.例2 求x ⎰.解:原式2[ln()3x x =+=+⎰例3 求 342e ed e 2e 1x xx xx +-+⎰. 解:原式2222e (e e )d(e e )1d e (e e )(e e )e ex x x x x x x x x x x x x C -----+-===-+---⎰⎰ 例4 求 241d 1x x x ++⎰.解:原式22221111d()1d arctan 11()2x x x x x C x x x x+--===++-+⎰⎰例5 求下列不定积分(1)xx ⎰;(2)3d x x ⎰; 解 令π323sec ,0,d sec tan d 22x t t x t t t ⎛⎫=<<=⋅ ⎪⎝⎭ ,原式23233tan 34tan 4sec tan d d sin 23sec 33sec 2t t t t t t t t =⋅⋅==⎛⎫ ⎪⎝⎭⎰⎰⎰241231sin 2arccos 324322t t C x x ⎛⎫=-+=- ⎪⎝⎭.(3)d x ⎰.解 令2tan ,d sec d x t x t t ==,原式2222sec d cos d dsin arcta (2tan 1)sec 1sin 1sin t t t t tt t t t ====+++⎰⎰⎰arctanx C =+.注 1ο,令s i n x a t = 或 cos x a t =;2ο,令sec x a t = 或 csc x a t =或 ch x a t =;3ο,令tan x a t = 或 cot x a t =或 sh x a t =;4ο三角代换变量还原时利用辅助三角形. 例6 求下列不定积分(1)d x⎰;解 原式()d31d13xx-==⎰⎰1ln|31|3x C=-++.(2)21d446xx x-+⎰.解原式()()2111212d21arctan221xx C x-=-=⋅+ -+⎰.(注对二次三项式2ax bx c++或其平方根,配方后使用公式).例7求下列不定积分(1)d x⎰(2)21lnd(ln)xxx x--⎰.(注1xt=称为倒代换,当分母的次数高于分子的次数时,可考虑用此代换).例8 求e (1e )d x xx +⎰(注 可考虑指数代换e xu =或e sin xt =).例9 求d x x⎰,(令:t =)解令t =,22tan 1tan d 2tan sec d .t x t x t t t =⇒=+⇒=⋅原式(2222arctan 2sec tan d 2tan d 2sec 1tan t t t t t t t t t t t ⋅=⋅⋅=⋅=⋅+⎰⎰⎰()222sec 1d 2d(tan )2tan tt t t t t t t t =⋅-=-=⋅-⎰⎰⎰22tan 2ln |cos |t t t t C =⋅+-+212ln ||arctan x=⋅+-+22ln ||arctanx =⋅--+.题型3 分部积分法关键:正确地选择u 和v ,选择u ,v 的原则:1οv 好求; 2οd v u ⎰要比d u v ⎰简单.例1 求下列不定积分(1)2(22)e d xx x x +-⎰; (2)2(1)ln d xx x +⎰;(3)e cos d xx x x ⎰; (4)sin ln d x x ⎰ 解 原式1sinln dsinln sinln cosln d x x x x x x x x xx=-=-⋅⋅⎰⎰sinln cosln d sinln cox x x x x x x ⎡=-=-⋅⎣⎰()()1sinln cosln sinln d x x x x x xx=-+-⎰()sinln cosln sinln d x x x x x =--⎰所以 原式()sinln cosln 2xx x C =-+.(5)22arctan d (1)xx x x +⎰; 解 原式22arctan arctan 1d d arctan d(-)arctan d 1x x x x x x x x x =-=-+⎰⎰⎰⎰()221111arctan d arctan 12x x x x x x =-+⋅-+⎰()()22221111arctan d arctan 221x x x x x x =-+-+⎰ 22211111arctan d 212x x x x x ⎛⎫=-+-- ⎪+⎝⎭⎰()()22111arctan ln ln 122x x x x =-+-+-()22111arctan ln arctan 212x x x x x =-+-+.(6)ln(x x x +⎰.解原式ln(x x x =+⋅⎰dln(x =⋅+-⋅⎰ln(d x x =⋅+-=⎰.例2 求 22sin d (cos sin )xx x x x -⎰. 解 原式2sin sin sin 1d d (cos sin )cos sin x x x x x x x x x x x x x ⎛⎫=⋅= ⎪--⎝⎭⎰⎰sin 11cos sin cos sin x x x x x x x x ⎛⎫=⋅-⋅ ⎪--⎝⎭⎰2sin 11s d cos sin (cos x x x x x x x x x ⎛⎫=⋅-=⎪-⎝⎭⎰.例3 求ed xx x ⎰.(先换元,后分部积分) 解: 原式222222d d 12ln(1)d 2[ln(1)2d ]1tt x t t ttt t t t t =++=+-+⎰⎰24arctan C =-++.题型4 分项--分部积分法(将积分分成两项(或多项)的积分和,然后利用分部积分抵消不可积部分)例1 求 2ln 1d ln x x x-⎰; 例2求 22e (tan 1)d x x x +⎰. 题型5 有理函数积分例1 求25d 613x x x x +-+⎰; 例2 求221d (1)x x x +⎰.题型6 三角有理函数积分例1 求 d sin 22sin xx x+⎰ 例2 求d 1sin cos xx x --⎰题型7 简单无理函数积分例1求d x⎰; 例2 求d x⎰.例3求d x⎰(0,0)a b x <<>.解:原式2=⎰2arcsin C =+;题型8 分段函数的积分例1 求|1|ed x x -⎰.例2 求2()max(1,)x x ϕ=的一个原函数()F x ,且(0)1F =.题型9 含有抽象函数的不定积分例1设()d arcsin xf x x x C =+⎰,求1d ()x f x ⎰.例2设()f x 为非负连续函数,当0x ≥时,有20()()d e 1xxf x f x t t ⋅-=-⎰,求()d f x x ⎰. 解 方程化为20()()d ()()d =e 1xxxf x f x t t f x f x t t ⋅-=--⎰⎰,()d ()d u x txxf x t t f u u =--====⎰⎰,代入原方程得()20()d e 1xxf x f u u ⋅=-⎰,令()()()()()20()d exxF x f u u F x f x F x F x ''=⇒=⇒⋅=⎰,两边积分()()()2d e 1d xF x F x x x '⋅=-⎰⎰,得()2211e 22xF x x C =-+, 又()()22100,e 212xF C F x x =⇒=-∴=--,()()(F x F x ∴=≥.()()d f x x F x C =+=⎰.例3设(,)f x y 可微,且(,)ff x y x∂=-∂,e cos xf y y-∂=∂,(0,0)0f =,求(,)d f x x x ⎰. 例4设()f x 在[0,)+∞上可导,(0)1f =,且满足01()()()d 01xf x f x f t t x '-+=+⎰,求[()()]e d xf x f x x -'''-⎰.四、不定积分常用的计算技巧总结(考生自看)1.加减常数法例1 求 cos d 1cos xx x-⎰. 解:原式2cos 111()d (1)d 1cos 1cos 2sin (/2)x x x x x x x -=+=-+=----⎰⎰.2.加减函数法例2 求 21d 1exx +⎰. 解:原式2222221e e e 1d (1)d ln(1e )1e 1e 2x x xx x xx x x C +-==-=-++++⎰⎰.例3 求 d (1)nxx x +⎰. 解:原式1111d d d ln ||ln |1(1)1nnn n n nx x x x x x x x x x x x n -+-==-=-+++⎰⎰⎰.3.乘除函数法例4 求 d e ex x x-+⎰.解:原式22e d de arctane 1(e )1(e )x xxx x x C ===+++⎰⎰. 4.分母整体化法例5 求 2100d (1)xx x +⎰. 解:原式2219899100100100(1)(1)d d (2)d u xu u u u u u u uu u=+-----=====-+⎰⎰⎰9798991212979899u u u C ---=-+-+.例6 求 2sin d (sin cos )xx x x +⎰.解:原式π4222πsin()sin csin 114d d π2sin 2sin ()4u x u x u x x u u x =+-=====+⎰⎰⎰2d d(sin )()[l n |csc(4sin sin 4u u x u u =-=+⎰⎰.5.依分母分解法例7 求 3cos 4sin d cos 2sin x xx x x-+⎰. 解:因为cos x 与sin x 的导数互相转化,所以 可设3cos 4sin (cos 2sin )(cos 2s x x A x x B x -=+++(2)cos (2)sin A B x A B x =++- 故得:231,224A B A B A B +=⎧⇒=-=⎨-=-⎩. 原式cos 2sin (cos 2sin )d 2d cos 2sin cos 2sin x x x x x x x x x x '++=-+=-++⎰⎰.6.还原法例8 求 11(1)ed x xx x x++-⎰.解:11121ed (1)ed ed d(ex x x x xxx x x x x x+++=+-=+⎰⎰⎰⎰1111ed eed ex x x x xxxxx x x x C ++++=+-=+⎰⎰.7.待定函数法 例9 (上例)解:因为被积函数是一个函数与1ex x+的乘积,它的一个原函数必定也是某一个函数与1e x x+的乘积.令 111(1)ed ()ex x xxx x F x C x +++-=+⎰,其中()F x 为待定函数, 两边求导数11211(1)e[()()(1)]ex x xxx F x F x xx++'+-=+-,22111(1)()()(1)()x F x F x F x x x'∴+-=+-⇒=, 故 原式1ex xx C +=+.8.相关积分法例10 求 221e sin d x I x x =⎰,221e cos d xI x x =⎰.解:221222211e d e ,21e cos2d e (cos2sin 2),4xx x x I I x C I I x x x x C ⎧+==+⎪⎪⎨⎪-==++⎪⎩⎰⎰ 1I ∴=22111e e (cos2sin 2)224x x x x C⎡⎤-++⎢⎥⎣⎦2211e e (cos2sin 2)48x xx x C =-++; 2I =22111e e (cos2sin 2)224x x x x C⎡⎤+++⎢⎥⎣⎦2211e e (cos2sin 2)48x xx x C =+++.五、练习题31-1.若()f x 的导函数是e cos xx -+,则()f x 的一个原函数为( ).(A) e cos xx -- (B) esin x x --+ (C)ecos xx --- (D) esin xx -+2.若()f x '为连续函数,则(2)d f x x '=⎰( ).(A) (2)f x C + (B) ()f x C + (C)1(2)2f x C + (D) 2(2)f x C + 3.若()f x 是以l 为周期的连续函数,则其原函数( ).(A) 是以l 为周期的连续函数 (B)是周期函数,但周期不是l(C) 不是周期函数 (D)不一定是周期函数4.设cos x x 是()f x 的一个原函数,求()d xf x x '⎰. 5.2222221sin cos d d sin cos sin cos x x x x x x x x +=⋅⋅⎰⎰. 6. 22e 1e (1)d (e )d sin sin xxxx x x x--=-⎰⎰.7.11e ed d 1e 1e xxx xx x +-=++⎰⎰. 8.45422sincos d sin (1sin )dsin x x x x x x =⋅-⎰⎰.9.1515sin cos d (sin cos )d(sin cos )(sin cos )x xx x x x x x x +=---⎰⎰.10.21111d d d(1)111n n n nnn n n x x x x x x x x x x --⋅+-==++++⎰⎰⎰. 11.cos sin d(sin cos )d cos sin cos sin x x x x x x x x x-+=++⎰⎰.12.321()arctan d arctan d()33x x x x x x x ++=⎰⎰. 13.2d x x⎰. 14.d 1d(3)3xx =⎰⎰ 15.22222d 2ln 2d d 2d 1d 12(14)2(12)ln 2(1)ln 2xxxu x x x x u x x x u u u =========+++⎰⎰⎰.16.22sin d x x x ⎰.17.arcsin 2arcsin x =-⎰⎰.18.2arctan tan 3d sec d 22ed sin d (1)xx ttx t tx x e t t x ==+====⎰⎰. 19.241d 1x x x -+⎰. 20.421d (1)x x x +⎰21. 1183848282821d d d (1)(1)4(1)x x x x x x x x x x ⋅==+++⎰⎰⎰42221d 4(1)x tt t t =+===⎰2tan 24d sec d 1tan sec d 4sec t u t u u u u u u ======⎰.22. 112d d x x x x +-+=⎰⎰22112d[(1)3]2x =-++⎰⎰.23. 2d d d x xx x x =+⎰⎰⎰.24.313(1)4d d x x x x +-+=⎰⎰.25.d 4sin 3cos 5x x x ++⎰(可令tan 2xt =);26. 3sin 2cos d 2sin 3cos x x x x x ++⎰(可令tan 2xt =或依分母分解法);27.设(cos )sin f x x '=(0)x π<<,求()f x . 28.设()F x 是()f x 的一个原函数,且当0x ≥时,有2e()()2(1)xx f x F x x ⋅=+,又(0)1F =, ()0F x >, 求()f x .29.()d ()f x x F x C =+⎰,且当0x ≥时,有2()()sin 2f x F x x ⋅=,又(0)1F =,()0F x ≥,求()f x .30.求2[ln ()ln ()][()()()]d f x f x f x f x f x x ''''++⎰.31.设ln(1)(ln )x f x x +=,计算()d f x x ⎰.32.2()(1)()d exxf x x f x x x '-+⎰. 33.1e (ln )d x x x x +⎰.3-1参考答案1.A2.C3.D 4.2cos sin xx C x--+. 5.tan cot x x C -+.6.e cot xx C ++. 7.ln(1e )xx C -++.8.579111sin sin sin 579x x x C -++9.455(sin cos )4x x C -+.10.1[(1)ln |1|]n nx x C n+-++.11.ln|cos sin|x x C++.12.32arctan36x x xx C+-+.13.arcsin x Cx--+14.1ln|3|3x C++. 15.11(arctan2)ln22xxC-++.16.321sin2cos2sin26448x x xx x x C --++.17.arcsin C-++.18arctan1e+xxC-.1ln C+. 20.311arctan 3x C x x-+++. 21. 44811arctan 881x x C x-⋅++. 22. 2ln |1|x C +-++.23. 1arcsin 22x x C --+. 244ln |1|x C +-++.25. 1tan 22C x -++. 26.125ln |2sin 3cos |1313x x x C -++.27. 1()arcsin 22x f x x C =++. 28.232e()2(1)xx f x x =+.29.2sin 2()xf x =.30.()()[ln ()()1]f x f x f x f x C ''-+. 31.e ln(1e )ln(1e )xxxx C --++-++.32.()ex f x C x +. 33.e ln xx C +.§2 定 积分【考试要求】 1.理解定积分的概念,掌握定积分的基本性质及定积分中值定理.2.掌握定积分的换元积分法和分部积分法.3.理解积分上限函数,会求它的导数,掌握牛顿 –莱布尼茨公式.4.了解反常(广义)积分的概念,会计算反常(广义)积分.一、基本概念 1.定积分定义设()f x 在[,]a b 上有定义且有界,做下述四步:(1)分割:用1n -个分点分割区间[,]a b011i ia x x x x -=<<<<;(2)作乘积:()i i f x ξ∆,其中1[,]i i i x x ξ-∈,1i i i x x x -∆=-;(3)求和:1()ni i i f x ξ=∆∑;(4)取极限:01lim ()ni i i f x λξ→=∆∑,其中1max ||i i nx λ≤≤=∆,如果上述极限存在,则称()f x 在[,]a b 上可积,并称上述极限为()f x 在[,]a b 上的定积分,记作1lim ()()d nbi i ai f x f x x λξ→=∆=∑⎰.注 ()d baf x x ⎰的值与对区间[,]a b 的分法无关,与i ξ的取法无关,与积分变量用什么字母表示无关;与[,]a b 有关,与()f x 有关, 即()d ()d bbaaf x x f t t =⎰⎰.2.定积分的存在性定理设()f x 在[,]a b 上连续,或在[,]a b 上有界且只有有限个第一类间断点,则()d ba f x x ⎰一定存在.3.几何意义定积分()d baf x x ⎰表示由曲线()y f x =,,x a x b ==及x 轴所围平面图形面积的代数和.4.定积分的运算性质:(1)()d ()d a abbf x x f x x =-⎰⎰. (4)[()()]d ()d ()d bb baaaf xg x x f x x g x x ±=±⎰⎰⎰.(2)()d 0aaf x x =⎰. (5)()d ()d b baakf x x k f x x =⎰⎰.(3)d bax b a =-⎰. (6)()d ()d ()d bc baacf x x f x x f x x =+⎰⎰⎰.5.定理定理1 (定积分的比较定理)若在[,]a b 上恒有()()f x g x ≤,则()d ()d bbaaf x xg x x ≤⎰⎰.推论1 若()f x 与()g x 在[,]a b 上连续,()()f x g x ≤,且至少有一点0[,]x a b ∈,使00()()f x g x <,则()d ()d bbaaf x xg x x<⎰⎰.推论2 若在[,]a b 上恒有()0f x ≥,则()d 0baf x x ≥⎰.推论3 ()d ()d bbaaf x x f x x ≤⎰⎰. 定理2(估值定理)若在[,]a b 上,()m f x M ≤≤,则()()d ()ba mba f x x Mb a -≤≤-⎰.定理3(积分中值定理)(1)若()f x 在[,]a b 上连续,则[,]a b ξ∃∈,使()d ()()baf x x f b a ξ=-⎰.(2)若()f x 在[,]a b 上连续,()g x 在[,]a b 上不变号,且在[,]a b 上可积,则[,]a b ξ∃∈,使()()d ()baf xg x x f ξ=⎰⎰.定理4(变上限积分函数及其导数) 设()f x 在[,]a b 上连续,()()d xa F x f t t =⎰称为变上限积分函数,则导数为d ()()d ()()d xt x aF x f t t f t f x x ='===⎰.推论1 设()()()d x aF x f t t ϕ=⎰,则()d ()()d [()]()d x aF x f t t f x x x ϕϕϕ''==⋅⎰.推论2 设21()()()()d x x F x f t t ϕϕ=⎰,则21()2211()d ()()d [()]()[()](d x x F x f t t f x x f x x x ϕϕϕϕϕϕ'''==⋅-⋅⎰.推论3 设()()()()d x aF x f t g x t ϕ=⎰,则()()()()d x a F x g x f t t ϕ'⎡⎤'=⎢⎥⎣⎦⎰()()()d ()[()](x ag x f t t g x f x ϕϕϕ''=+⎰.定理5(变上限积分函数与不定积分的关系) 设()f x 在[,]a b 上连续,则变上限积分函数()()d xaF x f t t =⎰是()f x 的一个原函数, 即()d ()d xaf x x f t t C =+⎰⎰.注:不定积分()d f x x ⎰只能作为运算符号,不能表示一个具体的原函数,特别当()f x 为一个抽象的函数时,无法用()d f x x ⎰来讨论它的某一原函数的性质;而()d xa f t t ⎰为某一确定的原函数,可以用它来讨论此原函数的性质.定理6(牛顿-莱布尼兹公式)设()f x 在[,]a b 上连续,()F x 是()f x 的一个原函数,则()d ()()()bb aaf x x F x F b F a ==-⎰. 6.定积分的计算方法(1) 换元法:设()f x 在[,]a b 上连续,()x t ϕ=在[,]αβ上有连续的导数,且当t 从α变到β时,()t ϕ从()a ϕα=单调地变到()b ϕβ=,则()d [baf x x f βαϕ=⎰⎰要点:换元要换限,变量不还原,不换元则不换限.(2)分部积分法:设()u x ,()v x 在[,]a b 上有连续的导数,则d d bbb aaauv x uv u v x ''=-⎰⎰或 d d b b b aaau v uv v u =-⎰⎰.注:求不定积分时适用的积分法,相应地也适用定积分的求法.7.广义积分的概念与计算 (1)无穷限的广义积分ο1 设()f x 在[,)a +∞上连续,则()d lim()d baab f x x f x x +∞→+∞=⎰⎰;ο2 设()f x 在(,]b -∞上连续,则()d lim()d b baa f x x f x x -∞→-∞=⎰⎰;ο3 设()f x 在(,)-∞+∞上连续,则()d lim()d lim ()d bbaaa b f x x f x x f x x +∞-∞→-∞→+∞=+⎰⎰⎰.仅当等式右边的两个极限都存在时,左边的无穷限广义积分收敛,否则发散.注意: ο3式中等式右边的两个极限若有一个不存在,则()d f x x +∞-∞⎰发散.(2)无界函数的广义积分(瑕积分) ο1 设()f x 在(,]a b 上连续,lim ()x af x +→=∞, 则()d lim ()d bbaa f x x f x x εε++→=⎰⎰,x a =称为瑕点.ο2 设()f x 在[,)a b 上连续,lim ()x bf x -→=∞, 则0()d lim ()d bb aaf x x f x x εε+-→=⎰⎰,x b =称为瑕点.ο3 设()f x 在[,]a b 上除点c 外均连续,lim ()x cf x →=∞,则()d ()d ()d bc baacf x x f x x f x x=+⎰⎰⎰12120lim ()d lim ()d c bac f x x f x x εεεε++-+→→=+⎰⎰.x c =称为瑕点.仅当等式右边的极限存在时,瑕积分收敛,否则发散.注意:ο3式中等式右边的两个极限若有一个不存在,则瑕积分()d ba f x x ⎰发散.二、重要结论(1)利用定积分定义求n 项和的极限 设()f x 连续,则ο1 1()d lim ()nban k b a b af x x f a k n n →∞=--=+⋅∑⎰.ο2 111()d lim ()nn k k f x x f n n →∞==⋅∑⎰.(2)奇、偶函数的积分ο1 设()f x 连续,若()f x 为偶函数,则()d xf t t ⎰为奇函数;若()f x 为奇函数,则对任意a ,()d xaf t t ⎰为偶函数.ο2 设()f x 在[,]a a -上连续,则()d [()()]d aaaf x x f x f a x-=+-⎰⎰(3)周期函数的积分设()f x 在(,)-∞+∞上连续,且以T 为周期,则ο1 202()d ()d ()d T a TTT af x x f x x f x x +-==⎰⎰⎰;ο2 0()d ()d nTT a f x x n f x x =⎰⎰;ο3 0()d ()d a nT Taf x x n f x x +=⎰⎰.即:周期函数在每个周期长度区间上的积分均相等,与起点无关.(4)常用结论ο1 ππ22(sin )d (cos )d f x x f x x =⎰⎰, 令π2x t =-;ο2 ππ00π(sin )d (sin )d 2xf x x f x x =⎰⎰, 令πx t =-;ο3 ππ2(sin )d 2(sin )d f x x f x x =⎰⎰,。
第三章一元函数积分学及其应用
教学要求
1.理解原函数概念,理解不定积分和定积分的概念。
2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法。
3.会求简单有理函数的积分。
4.理解变上限定积分定义的函数,会求它的导数,掌握牛顿一莱布尼茨公式。
5. 掌握定积分的性质及换元积分法和分部积分法。
6. 了解广义积分的概念并会计算广义积分。
7.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积、变力作功、引力、压力等)。
教学重点
运用换元积分法和分部积分法进行不定积分的计算;利用牛顿-莱布尼茨公式以及换元积分法和分部积分法计算定积分。
教学难点
有理函数的不定积分计算,对原函数与不定积分的联系与区别的理解;微积分学基本定理的意义。
教学内容
第一节一元函数的积分
一、不定积分
1.不定积分的概念和性质;
2.直接积分法;
3.换元积分法;
4.分部积分法;
5.简单有理函数的积分。
二、定积分
1.定积分的概念和性质;
2.牛顿-莱布尼兹公式;
3.定积分的积分方法。
三、广义积分
1.无限区间上的广义积分;
2.无界函数的广义积分。
第二节积分的应用
一、定积分的几何应用
1.定积分的微元法;
2.平面图形的面积计算;
3.旋转体的体积;
4.平面曲线的弧长。
二、定积分的物理意义
1.变力所做的功;
2.水压力;
3.引力。
第三章 一元函数积分学及其应用 (1)3.1 定积分的概念、性质、可积准则 (1)3.1.1 定积分问题举例 ..................................................................................................... 1 3.1.2 定积分的概念 ......................................................................................................... 3 3.1.3 定积分的几何意义 ................................................................................................. 4 3.1.4 可积准则 ................................................................................................................. 5 3.1.5 定积分的性质 ......................................................................................................... 7 3.2 微积分基本定理 .. (10)3.2.1 牛顿-莱布尼兹公式 ........................................................................................... 10 3.2.2 原函数存在定理 ................................................................................................... 12 3.3 不定积分 .. (16)3.3.1 不定积分的概念及性质 ....................................................................................... 16 3.3.3 基本积分公式 ....................................................................................................... 17 3.3.3 积分法则 ............................................................................................................... 18 3.4 定积分的计算 (30)3.4.1 定积分的换元法 ................................................................................................... 30 3.4.2 定积分的分部积分法 ........................................................................................... 34 3.5 定积分应用举例 .. (35)3.5.1 总量的可加性与微元法 ....................................................................................... 35 3.5.2 几何应用举例 ....................................................................................................... 36 3.5.3 物理、力学应用举例 ........................................................................................... 45 3.5.4 函数的平均值 ....................................................................................................... 49 3.6 反常积分 .. (50)3.6.1 无穷区间上的反常积分 ....................................................................................... 50 3.6.2 无界函数的反常积分 ........................................................................................... 53 3.6.3 反常积分的审敛法 Γ函数 (55)习题课四 ...................................................................................................................... 59 习题课5 .. (63)第三章 一元函数积分学及其应用3.1 定积分的概念、性质、可积准则 3.1.1 定积分问题举例1. 曲边梯形的面积设)(x f y =在区间],[b a 上非负、连续。
第五章.一元函数积分法及其应用原函数和不定积分。
不定积分的性质。
前面我们主要是讨论导函数的概念,即对于一个连续函数,求出它的导函数,就意味着描述了这个连续函数在每一点的变化率随着自变量而变化的规律。
反过来,这个规律是不是只是描述了一个特定函数的变化率呢?根据变化率的定义,显然所有与原来的函数在Y 轴方向上平行的函数都具有相同的变化率变化规律,这实际上就意味着,一个导函数同时描述了一束沿着Y 轴方向相互平行的函数的变化率的变化规律。
这一束函数的解析式相差一个常数。
我们也可以这么说,即相差任意一个常数的函数具有相同的导函数。
这样我们就得到了一个对应关系,即对于在区间I 上连续的一束函数F (x )+c (c 为任意常数),对应着一个唯一的函数f (x ),满足)())((x f dx c x F d =+,或 dx x f c x F d )())((=+。
换一种观念,上面的过程也可以看成是一种对于函数F (x )的运算,即微分的运算,得到函数F (x )+c 的微分,那么反过来,也存在一个作用于函数f (x )的逆运算过程,得到函数F (x )+c 本身,这种逆运算就是积分,或者说不定积分,写成⎰⎰+==+c x F dx x f c x F d )()())((。
这里,相对地,我们就把被积函数f (x )称为原函数F (x )+c 的导函数,而把原函数F (x )+c 称为被积函数f (x )的不定积分。
因此我们可以把不定积分理解为微分的逆运算,只不过是一种一对多的关系,即一个被积函数对应于无穷多个相差为任意常数的原函数。
在这种意义之下,我们就可以很容易地理解下面的表达式:⎰+=c x F dx x F )()('; ⎰=dx x f dx x f d )())((; ⎰=)()')((x f dx x f 。
希望同学们多加体会这些表面看来很绕的表达式,深切体会不定积分的逆运算含义。