信号与系统基本运算
- 格式:ppt
- 大小:735.50 KB
- 文档页数:14
信号与系统的数学基础
信号与系统是一门涉及到信号处理和系统分析的学科,其数学基础主要包括以下几个方面:
1. 微积分:微积分是信号与系统中最基本的数学工具,用于描述信号的变化率和系统的响应。
2. 线性代数:线性代数用于表示信号和系统的线性组合、向量和矩阵等概念,以及求解线性方程组。
3. 概率论与随机过程:概率论和随机过程用于描述信号和系统中的随机现象,如噪声和干扰。
4. 复变函数:复变函数用于描述信号在复数域中的表示和运算,以及系统的复数域分析。
5. 离散数学:离散数学用于描述离散时间信号和系统,如数字信号处理和数字通信系统。
6. 常微分方程和偏微分方程:常微分方程和偏微分方程用于描述连续时间信号和系统的动态行为,如滤波器设计和信号传输。
以上是信号与系统的数学基础的主要方面,这些数学工具在信号与系统的理论分析和实际应用中都起着重要的作用。
《信号与系统》总复习要点第一章绪论1.信号的分类:模拟信号,数字信号,离散信号,抽样信号2.信号的运算:移位、反褶、尺度、微分、积分、加法和乘法3. δ(t)的抽样性质 (式1-14)4.线性系统的定义:齐次性、叠加性5.描述连续时间系统的数字模型:微分方程描述离散时间系统的数字模型:差分方程6.连续系统的基本运算单元:加法器,乘法器,积分器离散系统的基本运算单元:加法器,乘法器,延时器7.连续系统的分析方法:时域分析方法,频域分析法(FT),复频域分析法(LT)离散子系统的分析方法:时域分析方法,Z域分析方法8.系统模拟图的画法9.系统线性、时不变性、因果性的判定第二章连续时间系统的时域分析1.微分方程的齐次解+特解的求法自由响应+强迫响应2.系统的零输入响应+零状态响应求法3.系统的暂态响应+稳态响应求法4.0-→0+跳变量冲激函数匹配法5.单位冲激响应h(t), 单位阶跃响应g(t), 与求法h(t)=g'(t), g(t)=h (-1)(t)类似δ(t)与u(t)的关系6.卷积的计算公式,零状态响应y zs (t)=e(t)*h(t)=∫∞-∞e(τ)h(t-τ)d τ=h(t)*e(t)7.卷积的性质串连系统,并联系统的单位冲激响应f(t)*δ(t)= f(t)f(t)*δ(t-3)= f(t-3)8. 理解系统的线性 P57 (1) (2) (3)第三章 傅立叶变换 t →w1.周期信号FS ,公式,频谱:离散谱,幅度谱2.非周期信号FT ,公式,频谱:连续谱,密度谱3. FT FT -14.吉布斯现象 P100---P1015.典型非周期信号的FT (单矩形脉冲)6.FT 的性质①对称性②信号时域压缩,频域展宽 P127,P128 ()[]⎪⎭⎫ ⎝⎛=a F a at f F ω1()()j t F f t e dt ωω∞--∞=⎰1()()2j t f t F e d ωωωπ∞-∞=⎰③尺度和时移性质 P129④频移性质:频谱搬移 cos(w 0t)的FT⑤时域微积分特性,频域微分特性⑥卷积定理(时域卷积定理、频域卷积定理)7.周期信号的FT :冲激8.抽样信号f s (t)的FT 及频谱F s (ω)9.抽样定理①条件 f s >=2f m w s >=2w m②奈奎斯特频率 f s =2f m③奈奎斯特间隔 T s =1/f s10.关于频谱混叠的概念第四章 拉普拉斯变换、连续时间系统的s 域分析 t →s 1. LT LT -12.典型信号的LT3.LT 性质:时移,频移,尺度,卷积()j 1e baf at b F a a ωω⎛⎫+↔⋅ ⎪⎝⎭0001[()cos()][()()]2F f t t F F ωωωωω=++-()()⎰∞∞--=tt f s F ts d e ()()⎰∞+∞-=j j d e j π21 σσss F t f t s []000()()()e st L f t t u t t F s ---=()e ()αt L f t F s α-⎡⎤=+⎣⎦[]()1() 0s L f at F a a a ⎛⎫=> ⎪⎝⎭4.LT 的逆变换①查表法②部分分式展开法(系数求法)③留数法5.LT 分析法 (第四章课件63张,64张,78张,81张) 求H(s), h(t), y zi (t), y zs (t), y(t)6.系统函数H(s) h(t) 一对拉氏变换对 H(s)的极点决定h(t)的形式H(s)的零点影响h(t)的幅度和相位7.H(s)的零极点 稳定性: ①②极点全在S 面左半面 P241 例4-26 8.连续系统的频响特性 H(jw)=H(s)│s=jw9.全通网络(相位校正),最小相移网络第五章 傅立叶变换应用于通信系统-滤波、调制与抽样1.h(t) H(jw) 构成傅式变换对2.无失真传输概念3.实现无失真传输的系统要满足的时域条件、频域条件4.理想低通滤波器的频响特性,及其单位冲激响应5.信号调制、解调的原理()||h t dt M ∞-∞≤⎰第七章 离散时间系统的时域分析1.离散序列的周期判定:2π/w 0,分三种情况讨论2.离散时间信号的运算、典型离散时间信号3.离散系统的阶次确定4.离散时间系统的差分方程,及模拟图的画法5.u(n), δ(n), g(n), h(n)的关系δ(n)= u(n)- u(n-1) h(n)= g(n)- g(n-1) 6.离散时间系统的时域求解法 (迭代、齐次解+特解、零输入+零状态)7.离散系统的单位冲激响应h(n)及其求法8.卷积和9.系统的零状态响应y zs (n)=x(n)*h(n) 10.有限长两序列求卷积:x 1(n):长N x 2(n):长M 见书例7-16, 对位相乘求和法, 长度:N+M-111.卷积性质:见课件第七章2,第35张12.离散系统的因果性,稳定性时域:因果性 n<0 ,h(n)=0稳定性 h(n)绝对可和()()k u n n k δ∞==-∑0()()k g n h n k ∞==-∑()()()()∑∞-∞=-=*m m n h m x n h n x ()n h n ∞=-∞<∞∑第八章 Z 变换、离散时间系统的Z 域分析1.LT →ZT: z=e sTZ 平面与S 平面的映射关系2. ZTZT -13.典型序列的Z 变换 4.Z 变换的收敛域: 有限长序列 有无0,∞右边序列 圆外左边序列 圆内双边序列 圆环5.逆Z 变换 ①查表法②部分分式展开法(与LT -1不同的,先得除以Z ) ③留数法6.ZT 的性质时移性质 (1)双边序列移位(2)单边序列移位 ①左移 ②右移 序列的线性加权性质序列的指数加权性质卷积定理7.Z 域分析法解差分方程:书P81 例8-16第八章课件2 第33张~37张 ()()n n X z x n z ∞-=-∞=∑()⎰-π=c n z z z X jn x d 21)(18.系统函数H(z) h(n) H(z) Z 变换对 求H(z), h(n), y zs (n), y zi (n), y(n), H(e jw ) *见书P86:例8-19, P109 8-36 8-379.离散系统的稳定性,因果性稳定性 因果性时域 n<0, h(n)=0 频域 H(z)所有极点在单位圆内 收敛域(圆外)含单位圆10.离散系统的频响特性H(e jw )=H(z)│z=ejw =│H(e jw )│e j ψ(w)幅度谱:描点作图,2π为周期相位谱书P98,例8-22, 第八章课件:59张,60张 ()n h n ∞=-∞<∞∑。
信号与系统-公式总结信号与系统是电子信息类专业中的一门核心课程,主要研究信号的产生、变换、传输和处理过程,以及系统对信号的响应和处理。
信号与系统的学习需要掌握大量的数学知识和公式,下面就是信号与系统中一些重要的公式总结。
1. 信号的分类和表示:- 狄拉克脉冲函数:δ(t)- 单位阶跃函数:u(t)- 奇函数和偶函数性质:x(t) = x(-t) 和 x(t) = -x(-t)- 周期信号的频率和周期关系:f = 1/T2. 傅里叶变换:- 连续时间傅里叶变换(CTFT):X(jω)= ∫[−∞,∞]x(t)e^(-jωt)dt- 傅里叶反变换:x(t) = (1/2π) ∫[−∞,∞]X(jω)e^(jωt)dω- 周期信号的傅里叶级数展开:x(t) = ∑[k=−∞,∞]c(k)e^(jωk0t) - 频谱为实数的信号的性质:X(jω) = X*(−jω)3. 拉普拉斯变换:- 连续时间拉普拉斯变换(CTLT):X(s) = ∫[−∞,∞]x(t)e^(-st)dt- 拉普拉斯反变换:x(t) = (1 / 2πj) ∫[σ-j∞,σ+j∞]X(s)e^(st)ds- 零极点的性质:如果x(t)的拉普拉斯变换X(s)的极点位于左半平面,那么系统是稳定的。
4. Z变换:- 离散时间Z变换(DTZT):X(z) = ∑[n=−∞,∞]x(n)z^(-n) - Z反变换:x(n) = (1 / 2πj) ∮ X(z)z^(n-1)dz- 零极点的性质:如果X(z)的极点的模都小于1,则系统是稳定的。
5. 系统函数和频率响应:- 系统函数:H(s) = Y(s) / X(s) = L{h(t)}- 系统函数的零极点分解:H(s) = (s-z1)(s-z2)...(s-zn) / (s-p1)(s-p2)...(s-pm)- 频率响应:H(jω) = |H(jω)|e^(jφ(ω))6. 系统的时域响应和频域响应:- 系统的单位冲激响应:h(t) = L^{-1}{H(s)} 或 h(n) = Z^{-1}{H(z)}- 系统的频域响应:H(s) = ∫[−∞,∞]h(t)e^(-st)dt 或 H(z) =∑[n=−∞,∞]h(n)z^(-n)7. 信号的卷积运算:- 连续时间信号的卷积:y(t) = x(t) * h(t) = ∫[−∞,∞]x(t-τ)h(τ)dτ - 离散时间信号的卷积:y(n) = x(n) * h(n) = ∑[k=-∞,∞]x(k)h(n-k)8. 频域中的乘法和卷积:- 频域乘法:y(t) = x(t)h(t) = x(t) ⊗ h(t)- 频域卷积:y(t) = x(t) * h(t) = X(jω)H(jω)9. 系统的稳定性:- 连续时间系统的稳定性:系统零极点的实部都小于0时,系统是稳定的。
信号与系统常用卷积
卷积是信号与系统领域中的一种重要运算。
它是将两个信号进行数学操作的方法,通常用符号 "*" 表示。
卷积运算可以以离散形式和连续形式进行。
离散卷积是指对离散时间信号进行卷积运算。
设有两个离散时间序列\[x[n]\]和\[h[n]\],卷积运算的结果\[y[n]\]可以表示为:
\[y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]\]
连续卷积是指对连续时间信号进行卷积运算。
设有两个连续时间信号\[x(t)\]和\[h(t)\],卷积运算的结果\[y(t)\]可以表示为:
\[y(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau\]
卷积运算的物理意义是对信号的相乘后再积分求和。
它在信号处理与系统分析中有广泛应用。
例如,卷积可以用于系统的响应预测、信号的滤波和信号的特征提取等。
在实际应用中,卷积运算可以通过离散求和或积分的方式进行计算。
计算机程序中常用的卷积算法包括直接法、快速卷积法(如快速傅里叶变换法)和卷积定理等。
总之,卷积是信号与系统分析中一种常用的运算方法,通过对信号的相乘与积分求和,可以得到新的信号。
在信号处理和系统分析中有广泛应用,为进一步深入研究相关领域奠定了基础。
《信号与系统》重要公式信号与系统是电子信息类专业的一门重要课程,其中涉及到许多重要的公式。
下面是《信号与系统》中的一些重要公式。
1.线性系统的叠加性质:对于系统的输入信号x(t)和输出信号y(t),以及系统的响应函数h(t),有如下关系:h(a*x(t)+b*y(t))=a*h(x(t))+b*h(y(t))2.线性时不变系统的冲击响应函数:线性时不变系统的输出可以由输入和系统的冲击响应函数进行卷积运算得到:y(t)=x(t)*h(t)3.冲击函数的性质:冲击函数的面积等于单位冲击高度,即:∫h(t)dt = 14.线性卷积的性质:对于两个信号x(t)和y(t)进行卷积运算,然后再对结果进行线性组合,等于先对每个信号进行线性组合,再进行卷积运算:a*(x(t)*y(t))+b*(z(t)*y(t))=(a*x(t)+b*z(t))*y(t)5.单位冲击响应函数的性质:线性时不变系统的冲击响应函数和移位后的冲击函数进行卷积运算等于移位后的输出:h(t)*δ(t-t0)=h(t-t0)6.单位冲击响应函数和冲击响应函数的性质:系统的输出信号可以由冲击响应函数与输入信号通过卷积运算得到:y(t)=x(t)*h(t)7.卷积和频率域的乘积:信号的卷积运算可以转化为信号的频率域乘积运算,即傅里叶变换的频率域乘积等于两个信号的傅里叶变换之间的乘积:F{x(t)*y(t)}=F{x(t)}*F{y(t)}8.线性相位系统的频率响应函数:对于一个线性相位系统,其频率响应函数H(f)满足以下公式:H(f) = ,H(f), * exp(j*ϕ(f))9.系统的频率响应函数与冲击响应函数的关系:系统的频率响应函数是冲击响应函数的傅里叶变换,即:H(f)=F{h(t)}10.系统的幅频特性:系统的幅频特性是指系统对不同频率的输入信号的幅度变化情况。
幅频特性可以通过频率响应函数的模进行描述,即:H(f)以上是《信号与系统》中的一些重要公式,它们是理解和分析信号与系统的重要工具。
信号与系统考研笔记一、信号与系统的基本概念1.信号的定义和分类:信号可以分为确定性信号和随机信号,周期信号和非周期信号,连续时间信号和离散时间信号等。
2.系统的定义和分类:系统可以分为线性系统和非线性系统,时不变系统和时变系统,连续时间和离散时间系统等。
3.信号的基本运算:包括信号的加法、减法、乘法、除法等基本运算。
4.系统的基本运算:包括系统的串联、并联、反馈等基本运算。
二、傅里叶变换1.傅里叶级数和傅里叶变换的定义:傅里叶级数用于表示周期信号,而傅里叶变换则用于表示非周期信号。
2.傅里叶变换的性质:包括对称性、线性(叠加性)、奇偶虚实性、尺度变换特性、时移特性、频移特性、微分特性、积分特性、卷积特性、相关与自相关特性等。
3.傅里叶变换的应用:包括频域分析、系统响应分析、滤波器设计等。
三、拉普拉斯变换和Z变换1.拉普拉斯变换的定义和性质:拉普拉斯变换是用来分析具有无穷大的时间域信号的一种方法。
2.Z变换的定义和性质:Z变换是用来分析离散时间信号的一种方法。
3.拉普拉斯变换和Z变换的应用:包括系统响应分析、控制系统设计等。
四、线性时不变系统1.LTI系统的定义和性质:LTI系统是指具有线性特性和时不变特性的系统。
2.LTI系统的分析和设计:包括系统的频率响应分析、系统稳定性分析、系统均衡和滤波等。
3.LTI系统的状态空间表示:包括状态空间模型的建立、系统的稳定性和可控性分析等。
五、采样定理和离散傅里叶变换1.采样定理的理解和应用:采样定理规定了采样频率和信号带宽之间的关系,对于连续时间信号的离散化采样具有重要意义。
2.DFT的理解和应用:DFT是离散时间信号的一种基本运算,可以用于信号的分析和处理。
3.快速傅里叶变换(FFT)的理解和应用:FFT是一种高效计算DFT的算法,可以大大提高信号处理的速度和效率。
六、信号与系统的应用和实践1.数字信号处理的应用和实践:包括数字滤波器设计、数字波形合成、数字音频处理等。
信号与系统公式总结在信号与系统的学习过程中,公式总结是非常重要的,它可以帮助我们更好地理解和掌握知识。
下面将对信号与系统中常见的公式进行总结,希望能够对大家的学习有所帮助。
一、基本概念公式总结。
1. 信号的分类:连续时间信号,x(t)。
离散时间信号,x[n]2. 基本信号:单位冲激函数,δ(t)或δ[n]阶跃函数,u(t)或u[n]3. 基本性质:奇偶性,x(t) = x(-t),x[n] = x[-n]周期性,x(t) = x(t+T),x[n] = x[n+N]二、时域分析公式总结。
1. 基本运算:时移性质,x(t-t0)或x[n-n0]反褶性质,x(-t)或x[-n]放大缩小,Ax(t)或Ax[n]2. 基本运算公式:加法,x1(t) + x2(t)或x1[n] + x2[n]乘法,x1(t)x2(t)或x1[n]x2[n]三、频域分析公式总结。
1. 傅里叶变换:连续时间信号,X(ω) = ∫x(t)e^(-jωt)dt。
离散时间信号,X(e^jω) = Σx[n]e^(-jωn)。
2. 傅里叶变换性质:线性性质,aX1(ω) + bX2(ω)。
时移性质,x(t-t0)对应X(ω)e^(-jωt0)。
频移性质,x(t)e^(jω0t)对应X(ω-ω0)。
四、系统分析公式总结。
1. 系统性质:线性性,y(t) = ax1(t) + bx2(t)。
时不变性,y(t) = x(t-t0)对应h(t-t0)。
2. 系统时域分析:离散卷积,y[n] = Σx[k]h[n-k]连续卷积,y(t) = ∫x(τ)h(t-τ)dτ。
3. 系统频域分析:系统函数,H(ω) = Y(ω)/X(ω)。
五、采样定理公式总结。
1. 采样定理:连续信号采样,x(t)对应x[n],x[n] = x(nT)。
重建滤波器,h(t) = Tsinc(πt/T)。
六、傅里叶级数公式总结。
1. 傅里叶级数:周期信号的傅里叶级数展开。
信号与系统实验报告一、信号的时域基本运算1.连续时间信号的时域基本运算两实验之一实验分析:输出信号值就等于两输入信号相加(乘)。
由于b=2,故平移量为2时,实际是右移1,符合平移性质。
两实验之二心得体会:时域中的基本运算具有连续性,当输入信号为连续时,输出信号也为连续。
平移,伸缩变化都会导致输出结果相对应的平移伸缩。
2.离散时间信号的时域基本运算两实验之一实验分析:输出信号的值是对应输入信号在每个n值所对应的运算值,当进行拉伸变化后,n值数量不会变,但范围会拉伸所输入的拉伸系数。
两实验之二心得体会:离散时间信号可以看做对连续时间信号的采样,而得到的输出信号值,也可以看成是连续信号所得之后的采样值。
二、连续信号卷积与系统的时域分析1.连续信号卷积积分两实验之一实验分析:当两相互卷积函数为冲激函数时,所卷积得到的也是一个冲激函数,且该函数的冲激t值为函数x,函数y冲激t值之和。
两实验之二心得体会:连续卷积函数每个t值所对应的卷积和可以看成其中一个在k值取得的函数与另外一个函数相乘得到的一个分量函数,并一直移动k值直至最后,最后累和出来的最终函数便是所得到的卷积函数。
3.RC电路时域积分两实验之一实验分析:全响应结果正好等于零状态响应与零输入响应之和。
两实验之二心得体会:具体学习了零状态,零输入,全响应过程的状态及变化,与之前所学的电路知识联系在一起了。
三、离散信号卷积与系统的时域分析1.离散信号卷积求和两实验之一实验分析:输出结果的n值是输入结果的k号与另一个n-k的累和两实验之二心得体会:直观地观察到卷积和的产生,可以看成连续卷积的采样形式,从这个方面去想,更能深入地理解卷积以及采样的知识。
2.离散差分方程求解两实验之一实验分析:其零状态响应序列为0 0 4 5 7.5,零输入响应序列为2 4 5 5.5 5.75,全状态响应序列为2 4 9 10.5 13.25,即全状态=零输入+零状态。
两实验之二心得体会:求差分方程时,可以根据全状态响应是由零输入输入以及零状态相加所得,分开来求,同时也加深了自己对差分方程的求解问题的理解。
信号与系统实验_信号的基本运算单元学号:2 姓名:实验⼀信号的基本运算单元⼀、实验⽬的1.掌握信号与系统中基本运算单元的构成;2.掌握基本运算单元的特点;3.掌握对基本运算单元的测试⽅法;⼆、预备知识1.学习“信号的运算”⼀节;2.复习matlab软件的使⽤⽅法。
三、实验原理在“信号与系统”中,最常⽤的信号运算单元有:减法器、加法器、倍乘器、反相器、积分器、微分器等,通过这些基本运算单元可以构建⼗分复杂的信号处理系统。
因⽽,基本运算单元是“信号与系统”的基础。
四、实验内容1、⽤matlab编写两个正弦信号(⼀个⾼频,⼀个低频)相加,相减,相乘。
绘出频谱图,并说明意义clc,clearsyms t w;N = 6724;t =0:0.01:(N-1)/100;W =t*100/N;%产⽣⾼频以及低频信号并进⾏运算f1 = 4/8*sin(10^4*t);f2 = 4/10*sin(t+pi/5);f3 = f1+f2;f4 = f1-f2;f5 = f1.*f2;%进⾏傅⾥叶变换F1w = abs(fft(f1,N))*2/N;F2w = abs(fft(f2,N))*2/N;F3w = abs(fft(f3,N))*2/N;F4w = abs(fft(f4,N))*2/N;F5w = abs(fft(f5,N))*2/N;%%绘图%f1学号:2 姓名:subplot(5,2,1),plot(t,f1);title('f1');subplot(5,2,2),plot(W,F1w); title('F1w');%f2subplot(5,2,3),plot(t,f2);title('f2');subplot(5,2,4),plot(W,F2w); title('F2ww');%f3subplot(5,2,5),plot(t,f3);title('f3=f1+f2');subplot(5,2,6),plot(W,F3w); title('F3w');%f4subplot(5,2,7),plot(t,f4);title('f4=f1-f2');subplot(5,2,8),plot(W,F4w); title('F4w');%f5subplot(5,2,9),plot(t,f5);title('f5=f1*f2');subplot(5,2,10),plot(W,F5w); title('F5ww');学号:2 姓名:解释:两个正弦信号的相加、相减、相乘,周期为两正弦信号周期的最⼩公倍数,包络线是低频正弦信号的分量,⾼频信号主要影响包络线内信号的频率,相加、相乘和相减幅值、相位都会发⽣改变。
•第一章信号与系统•1、会做信号的基本运算(移位、反褶、尺度)•2、会利用冲激信号的抽样特性求函数值•3、会判断信号的周期•4、会判断系统的线性、时不变性、因果性、稳定性第二章连续系统的时域分析•会用拉式变换求LTI离散系统的响应•用拉式变换求单位序列响应和单位阶跃响应•会利用定义式,图解法,性质求卷积积分第三章离散系统的时域分析•会用Z变换求LTI离散系统的响应•用Z变换求单位序列响应和单位阶跃响应•会利用定义式,图解法,不进位乘法,性质求卷积和•第四章傅里叶变换和系统的频域分析•1、会表示信号指数形式的傅立叶级数(利用单脉冲的傅立叶变换式求周期性脉冲序列的傅立叶系数)•2、奇偶函数傅立叶级数的特点•3、周期信号频谱的特点和功率•4、帕斯瓦尔关系、能量谱、功率谱•5、会利用傅立叶变换的定义、性质求傅立叶变换•6、周期信号傅立叶变换•7、LTI系统的频域分析、系统无失真的传输条件•8、理想低通滤波器的冲激响应、阶跃响应,佩利维纳准则•9、时域、频域抽样定理,会求奈奎斯特频率、奈奎斯特间隔第五章连续系统的S域分析1、会利用拉式变换的定义和性质求拉式变换(灵活应用拉式变换的性质定理)2、会用部分分式分解法求拉式逆变换3、会求系统函数4、会根据系统函数画出零极点图或由零极点图写出系统函数5、系统稳定条件下拉式变换和付式变换的关系(s=jw)第六章离散系统z域分析•1、利用z变换定义式求z变换及收敛域,表示出零极点•2、利用部分分式展开法求逆z变换•3、灵活应用z变换的线性性、位移性、指数加权、反褶性、初值定理、终值定理、时域卷积定理•4、由连续信号的拉氏变换求离散(抽样)信号的Z变换;S平面与Z平面的映象关系•5、利用z变换解差分方程•6、求离散系统的系统函数,单位样值响应•7、会由系统函数判断因果性和稳定性或满足系统因果、稳定的收敛域•8、离散系统的频率响应特性第七章系统函数•1、会求系统函数的零极点•2、连续系统函数H(s)的极点与所对应响应函数的特点•3、离散系统函数H(z)的极点与所对应响应函数的特点•4、会由连续系统函数求其频域响应•5、会由离散系统函数求其频域响应•6、由收敛域判定系统的因果性和稳定性•7、由梅森公式求信号流图的系统函数第八章系统状态变量分析1、连续时间系统状态方程的建立:会由电路图直接建立状态方程和输出方程;会由模拟框图信号流图建立状态方程和输出方程2、离散时间系统状态方程的建立:会由模拟框图信号流图建立状态方程和输出方程。
信号与系统复习书中最重要的三大变换几乎都有。
第一章 信号与系统 1、信号的分类 ①连续信号和离散信号 ②周期信号和非周期信号 连续周期信号f (t )满足f (t ) = f (t + m T ), 离散周期信号f(k )满足f (k ) = f (k + m N ),m = 0,±1,±2,…两个周期信号x(t),y(t)的周期分别为T 1和T 2,若其周期之比T 1/T 2为有理数,则其和信号x(t)+y(t)仍然是周期信号,其周期为T 1和T 2的最小公倍数。
③能量信号和功率信号 ④因果信号和反因果信号 2、信号的基本运算(+ - × ÷) 2.1信号的(+ - × ÷)2.2信号的时间变换运算 (反转、平移和尺度变换) 3、奇异信号3.1 单位冲激函数的性质f (t ) δ(t ) = f (0) δ(t ) , f (t ) δ(t –a) = f (a) δ(t –a)例: 3.2序列δ(k )和ε(k )f (k )δ(k ) = f (0)δ(k ) f (k )δ(k –k 0) = f (k 0)δ(k –k 0)4、系统的分类与性质?d )()4sin(91=-⎰-t t t δπ)0()()(f k k f k =∑∞-∞=δ4.1连续系统和离散系统4.2 动态系统与即时系统4.3 线性系统与非线性系统①线性性质T[a f (·)] = a T[ f (·)](齐次性)T[ f1(·)+ f2(·)] = T[ f1(·)]+T[ f2(·)] (可加性)②当动态系统满足下列三个条件时该系统为线性系统:y(·) = y f(·) + y x(·) = T[{ f(·) }, {0}]+ T[ {0},{x(0)}] (可分解性)T[{a f(·) }, {0}] = a T[{ f(·) }, {0}]T[{f1(t) + f2(t) }, {0}] = T[{ f1(·) }, {0}] + T[{ f2(·) }, {0}](零状态线性) T[{0},{a x1(0) +b x2(0)} ]= aT[{0},{x1(0)}] +bT[{0},{x2(0)}](零输入线性) 4.4时不变系统与时变系统T[{0},f(t -t d)] = y f(t -t d)(时不变性质)直观判断方法:若f (·)前出现变系数,或有反转、展缩变换,则系统为时变系统。