教程-训练-指数运算与指数函数
- 格式:doc
- 大小:258.00 KB
- 文档页数:6
第五节指数与指数函数1.根式(1)如果x n =a ,那么01x 叫做a 的n 次方根,其中n >1,且n ∈N *.(2)式子na 叫做02根式,其中n 叫做根指数,a 叫做被开方数.(3)(na )n =03a.当n 为奇数时,na n =04a ;当n 为偶数时,na n =|a |,a ≥0,a ,a <0.2.分数指数幂正数的正分数指数幂,a mn =na m (a >0,m ,n ∈N *,n >1).正数的负分数指数幂,a-m n =1a m n=1n a m(a >0,m ,n ∈N *,n >1).0的正分数指数幂等于050,0的负分数指数幂没有意义.3.指数幂的运算性质a r a s =06a r +s ;(a r )s =07a rs ;(ab )r =08a r b r (a >0,b >0,r ,s ∈R ).4.指数函数及其性质(1)概念:函数y =a x (a >0,且a ≠1)叫做指数函数,其中指数x 是自变量,定义域是R ,a 是底数.(2)指数函数的图象与性质a>10<a <1图象定义域R 值域09(0,+∞)性质图象过定点10(0,1),即当x=0时,y =1当x >0时,11y >1;当x <0时,120<y <1当x <0时,13y >1;当x >0时,140<y <1在(-∞,+∞)上是15增函数在(-∞,+∞)上是16减函数(1)任意实数的奇次方根只有一个,正数的偶次方根有两个且互为相反数.(2)画指数函数y =a x (a >0,且a ≠1)的图象,应抓住三个关键点:(1,a ),(0,1)1(3)如图是指数函数①y =a x ,②y =b x ,③y =c x ,④y =d x 的图象,底数a ,b ,c ,d 与1之间的大小关系为c >d >1>a >b >0.由此我们可得到以下规律:在第一象限内,指数函数y =a x (a >0,a ≠1)的图象越高,底数越大.(4)指数函数y =a x 与y (a >0,且a ≠1)的图象关于y 轴对称.1.概念辨析(正确的打“√”,错误的打“×”)(1)4(-4)4=-4.()(2)2a·2b=2ab.()(3)na n=(na)n=a.()(4)6(-3)2=(-3)13.()(5)函数y=2x-1是指数函数.()答案(1)×(2)×(3)×(4)×(5)×2.小题热身(1)(人教A必修第一册习题4.1T1改编)下列运算中正确的是()A.(2-π)2=2-πB.a-1a=-aC.(m 14n-38)8=m2n3D.(x3-2)3+2=x9答案C解析对于A,因为2-π<0,所以(2-π)2=π-2,故A错误;对于B,因为-1a>0,所以a<0,则a-1a=-(-a)·1-a=--a,故B错误;对于C,因为(m14n-38)8=(m14)8·(n-38)8=m2n3,故C正确;对于D,因为(x3-2)3+2=x9-2=x7,故D错误.(2)已知指数函数y=f(x)的图象经过点(-1,2),那么这个函数也必定经过点()21C.(1,2)答案D(3)函数y=2x+1的图象是()答案A(4)若函数y=a x(a>0,且a≠1)在区间[0,1]上的最大值与最小值之和为3,则a的值为________.答案2考点探究——提素养考点一指数幂的运算例1(1)(2024·湖北宜昌高三模拟)已知x,y>03x-34y12-14x14y-1y__________.答案-10y解析原式=3x -34y12-3 10 x -34y-12=-10y.(2)-0.752+6-2-23=________.答案1解析+136×-23=32-+136×2=32-916+136×94=1.【通性通法】【巩固迁移】-12·(4ab-1)3(0.1)-1·(a3·b-3)12(a>0,b>0)=________.答案85解析原式=2·432a 32b -3210a 32b-32=85.2.若x 12+x -12=3,则x 2+x -2=________.答案47解析由x 12+x -12=3,得x +x -1=7,再平方得x 2+x -2=47.考点二指数函数的图象及其应用例2(1)(2024·安徽合肥八中月考)函数①y =a x ;②y =b x ;③y =c x ;④y =d x 的图象如图所示,a ,b ,c ,d 分别是下列四个数:54,3,13,12中的一个,则a ,b ,c ,d 的值分别是()A.54,3,13,12 B.3,54,13,12C.12,13,3,54 D.13,12,54,3答案C解析由题图,直线x =1与函数图象的交点的纵坐标从上到下依次为c ,d ,a ,b ,而3>54>12>13,故选C.(2)(2024·江苏南京金陵高三期末)若直线y =3a 与函数y =|a x -1|(a >0,且a ≠1)的图象有两个公共点,则a 的取值范围为________.答案解析当0<a <1时,y =|a x -1|的图象如图1所示,由已知得0<3a <1,∴0<a <13;当a >1时,y =|a x -1|的图象如图2所示,由已知可得0<3a <1,∴0<a <13,结合a >1可得a 无解.综上可知,a【通性通法】(1)根据指数函数图象判断底数大小的问题,可以通过直线x =1与图象的交点进行判断.(2)对于有关指数型函数的图象可从指数函数的图象通过平移、伸缩、对称变换而得到.特别地,当底数a 与1的大小关系不确定时应注意分类讨论.(3)已知函数解析式判断其图象一般是取特殊点,判断选项中的图象是否过这些点,若不满足则排除.【巩固迁移】3.(2024·广东深圳中学高三摸底)函数y =e -|x |(e 是自然对数的底数)的大致图象是()答案C解析y =e -|x |,x ≥0,x <0,易得函数y =e -|x |为偶函数,且图象过(0,1),y =e -|x |>0,函数在(-∞,0)上单调递增,在(0,+∞)上单调递减,故C 符合题意.故选C.4.(多选)若实数x ,y 满足4x +5x =5y +4y ,则下列关系式中可能成立的是()A .1<x <yB .x =yC .0<x <y <1D .y <x <0答案BCD解析设f (x )=4x +5x ,g (x )=5x +4x ,则f (x ),g (x )都是增函数,画出函数f (x ),g (x )的图象,如图所示,根据图象可知,当x =0时,f (0)=g (0)=1;当x =1时,f (1)=g (1)=9,依题意,不妨设f (x )=g (y )=t ,则x ,y 分别是直线y =t 与函数y =f (x ),y =g (x )图象的交点的横坐标.当t >9时,若f (x )=g (y ),则x >y >1,故A 不正确;当t =9或t =1时,若f (x )=g (y ),则x =y =1或x =y =0,故B 正确;当1<t <9时,若f (x )=g (y ),则0<x <y <1,故C 正确;当t <1时,若f (x )=g (y ),则y <x <0,故D 正确.故选BCD.考点三指数函数的性质及其应用(多考向探究)考向1比较指数式的大小例3(2023·天津高考)若a =1.010.5,b =1.010.6,c =0.60.5,则a ,b ,c 的大小关系为()A .c >a >bB .c >b >aC .a >b >cD .b >a >c答案D解析解法一:因为函数f (x )=1.01x 是增函数,且0.6>0.5>0,所以1.010.6>1.010.5>1,即b >a >1.因为函数φ(x )=0.6x 是减函数,且0.5>0,所以0.60.5<0.60=1,即c <1.综上,b >a >c .故选D.解法二:因为函数f (x )=1.01x 是增函数,且0.6>0.5,所以1.010.6>1.010.5,即b >a .因为函数h (x )=x 0.5在(0,+∞)上单调递增,且1.01>0.6>0,所以1.010.5>0.60.5,即a >c .综上,b >a >c .故选D.【通性通法】比较两个指数式的大小时,尽量化成同底或同指.(1)当底数相同,指数不同时,构造同一指数函数,然后利用指数函数的性质比较大小.(2)当指数相同,底数不同时,构造两个指数函数,利用图象比较大小;或构造同一幂函数,然后利用幂函数的性质比较大小.(3)当底数不同,指数也不同时,常借助1,0等中间量进行比较.【巩固迁移】5.(2023·福建泉州高三质检)已知a -13,b -23,c ()A .a >b >cB .c >b >aC .c >a >bD .b >a >c答案C解析-13-23,y 在R 上是增函数,-13-23,即c >a >b .考向2解简单的指数方程或不等式例4(1)(多选)若4x -4y <5-x -5-y ,则下列关系式正确的是()A .x <yB .y -3>x -3C.x >y <3-x答案AD解析由4x -4y <5-x -5-y ,得4x -5-x <4y -5-y ,令f (x )=4x -5-x ,则f (x )<f (y ).因为g (x )=4x ,h (x )=-5-x 在R 上都是增函数,所以f (x )在R 上是增函数,所以x <y ,故A 正确;因为G (x )=x -3在(0,+∞)和(-∞,0)上都单调递减,所以当x <y <0时,x -3>y -3,故B 错误;当x <0,y <0时,x ,y 无意义,故C 错误;因为y 在R 上是减函数,且x <y ,,<3-x ,故D 正确.故选AD.(2)已知实数a ≠1,函数f (x )x ,x ≥0,a -x ,x <0,若f (1-a )=f (a -1),则a 的值为________.答案12解析当a <1时,41-a =21,解得a =12;当a >1时,2a -(1-a )=4a -1,无解.故a 的值为12.【通性通法】(1)解指数方程的依据:a f (x )=a g (x )(a >0,且a ≠1)⇔f (x )=g (x ).(2)解指数不等式的思路方法:对于形如a x >a b (a >0,且a ≠1)的不等式,需借助函数y =a x 的单调性求解,如果a 的取值不确定,则需分a >1与0<a <1两种情况讨论;而对于形如a x >b 的不等式,需先将b 转化为以a 为底的指数幂的形式,再借助函数y =a x 的单调性求解.【巩固迁移】6.函数y =(0.5x-8)-12的定义域为________.答案(-∞,-3)解析因为y =(0.5x -8)-12=10.5x -8,所以0.5x -8>0,则2-x >23,即-x >3,解得x <-3,故函数y =(0.5x-8)-12的定义域为(-∞,-3).7.当0<x <12时,方程a x =1x (a >0,且a ≠1)有解,则实数a 的取值范围是________.答案(4,+∞)解析依题意,当x ,y =a x 与y =1x 的图象有交点,作出y =1x的部分图象,如图所示,>1,12>2,解得a>4.考向3与指数函数有关的复合函数问题例5(1)函数f(x)=3-x2+1的值域为________.答案(0,3]解析设t=-x2+1,则t≤1,所以0<3t≤3,故函数f(x)的值域为(0,3].(2)函数yx-+17的单调递增区间为________.答案[-2,+∞)解析设t>0,又y=t2-8t+17=(t-4)2+1在(0,4]上单调递减,在(4,+∞)上单调递增.≤4,得x≥-2,>4,得x<-2,而函数t在R上单调递减,所以函数yx-+17的单调递增区间为[-2,+∞).【通性通法】涉及指数函数的综合问题,首先要掌握指数函数的相关性质,其次要明确复合函数的构成,涉及值域、单调区间、最值等问题时,都要借助“同增异减”这一性质分析判断.【巩固迁移】8.(多选)已知定义在[-1,1]上的函数f(x)=-2·9x+4·3x,则下列结论中正确的是() A.f(x)的单调递减区间是[0,1]B.f(x)的单调递增区间是[-1,1]C.f(x)的最大值是f(0)=2D.f(x)的最小值是f(1)=-6答案ACD解析设t=3x,x∈[-1,1],则t=3x是增函数,且t∈13,3,又函数y=-2t2+4t=-2(t-1)2+2在13,1上单调递增,在[1,3]上单调递减,因此f(x)在[-1,0]上单调递增,在[0,1]上单调递减,故A正确,B错误;f(x)max=f(0)=2,故C正确;f(-1)=109,f(1)=-6,因此f (x )的最小值是f (1)=-6,故D 正确.故选ACD.9.若函数f (x )2+2x +3,19,则f (x )的单调递增区间是________.答案(-∞,-1]解析∵y 是减函数,且f (x ),19,∴t =ax 2+2x +3有最小值2,则a >0且12a -224a =2,解得a =1,因此t =x 2+2x +3的单调递减区间是(-∞,-1],故f (x )的单调递增区间是(-∞,-1].课时作业一、单项选择题1.(2024·内蒙古阿拉善盟第一中学高三期末)已知集合A ={x |32x -1≥1},B ={x |6x 2-x -2<0},则A ∪B =()A.12,-12,12-12,+∞答案D解析集合A ={x |32x -1≥1}=12,+B ={x |6x 2-x -2<0}={x |(3x -2)(2x +1)<0}=-12,所以A ∪B -12,+故选D.2.(2024·山东枣庄高三模拟)已知指数函数y =a x 的图象如图所示,则y =ax 2+x 的图象顶点横坐标的取值范围是()-12,-12,+∞答案A解析由图可知,a ∈(0,1),而y =ax 2+x =-14a (a ≠0),其顶点横坐标为x =-12a,所以-12a∈∞,故选A.3.已知函数f (x )=11+2x ,则对任意实数x ,有()A .f (-x )+f (x )=0B .f (-x )-f (x )=0C .f (-x )+f (x )=1D .f (-x )-f (x )=13答案C解析f (-x )+f (x )=11+2-x +11+2x =2x 1+2x +11+2x =1,故A 错误,C 正确;f (-x )-f (x )=11+2-x-11+2x =2x 1+2x -11+2x =2x -12x +1=1-22x +1,不是常数,故B ,D 错误.故选C.4.已知a =243,b =425,c =513,则()A .c <b <aB .a <b <cC .b <a <cD .c <a <b答案A 解析因为a =243=423,b =425,所以a =423>425=b ,因为b =425=(46)115=4096115,c =513=(55)115=3125115,所以b >c .综上所述,a >b >c .故选A.5.(2024·江苏连云港海滨中学高三学情检测)若函数f (x )=a x (a >0,且a ≠1)在[-1,2]上的最大值为4,最小值为m ,则实数m 的值为()A.12B.1142C.116D.12或116答案D解析当a >1时,f (x )=a x 在[-1,2]上单调递增,则f (x )max =f (2)=a 2=4,解得a =2,此时f (x )=2x ,m =f (x )min =2-1=12;当0<a <1时,f (x )=a x 在[-1,2]上单调递减,所以f (x )max =f (-1)=a -1=4,解得a =14,此时f (x ),m =f (x )min =f (2)=116.综上所述,实数m 的值为12或116.故选D.6.(2023·新课标Ⅰ卷)设函数f (x )=2x (x -a )在区间(0,1)上单调递减,则a 的取值范围是()A .(-∞,-2]B .[-2,0)C .(0,2]D .[2,+∞)答案D解析函数y =2x 在R 上单调递增,而函数f (x )=2x (x -a )在区间(0,1)上单调递减,则函数y =x (x -a )-a 24在区间(0,1)上单调递减,因此a2≥1,解得a ≥2,所以a 的取值范围是[2,+∞).故选D.7.(2023·辽宁名校联盟联考)已知函数f (x )满足f (x )x -2,x >0,-2-x ,x <0,若f (a )>f (-a ),则实数a 的取值范围是()A .(-1,0)∪(0,1)B .(-1,0)∪(1,+∞)C .(-∞,-1)∪(1,+∞)D .(-∞,-1)∪(0,1)答案B解析当x >0时,-x <0,f (-x )=2-2x =-(2x -2)=-f (x );当x <0时,-x >0,f (-x )=2-x-2=-(2-2-x )=-f (x ),则函数f (x )为奇函数,所以f (a )>f (-a )=-f (a ),即f (a )>0,作出函数f (x )的图象,如图所示,由图象可得,实数a 的取值范围为(-1,0)∪(1,+∞).故选B.8.(2024·福建漳州四校期末)已知正数a ,b ,c 满足2a -1=4,3b -1=6,4c -1=8,则下列判断正确的是()A .a <b <cB .a <c <bC .c <b <aD .c <a <b答案A解析由已知可得a =2,b =2,c =2,则a ,b ,c 可分别看作直线y =2-x 和y ,y ,y 的图象的交点的横坐标,画出直线y =2-x 和y ,y ,y 的大致图象,如图所示,由图象可知a <b <c .故选A.二、多项选择题9.下列各式中成立的是()=n 7m 17(n >0,m >0)B .-1234=3-3C.39=33D .[(a 3)2(b 2)3]-13=a -2b -2(a >0,b >0)答案BCD解析=n 7m7=n 7m -7(n >0,m >0),故A 错误;-1234=-3412=-313=3-3,故B 正确;39=332=332=33,故C 正确;[(a 3)2(b 2)3]-13=(a 6b 6)-13=a -2b -2(a >0,b >0),故D 正确.故选BCD.10.已知函数f (x )=3x -13x +1,下列说法正确的是()A .f (x )的图象关于原点对称B .f (x )的图象关于直线x =1对称C .f (x )的值域为(-1,1)D .∀x 1,x 2∈R ,且x 1≠x 2,f (x 1)-f (x 2)x 1-x 2<0答案AC解析由f (-x )=3-x -13-x +1=-3x -13x +1=-f (x ),可得函数f (x )为奇函数,所以A 正确;因为f (0)=0,f (2)=45,f (0)≠f (2),所以B 错误;设y =3x -13x +1,可得3x =1+y 1-y ,所以1+y 1-y >0,即1+y y -1<0,解得-1<y <1,即函数f (x )的值域为(-1,1),所以C 正确;f (x )=3x -13x +1=1-23x +1为增函数,所以D 错误.故选AC.三、填空题11.0.25-12-(-2×160)2×(2-23)3+32×(4-13)-1=________.答案3解析原式=[(0.5)2]-12-(-2×1)2×2-2+213×2231-4×14+2=2-1+2=3.12.不等式10x -6x -3x ≥1的解集为________.答案[1,+∞)解析由10x -6x -3x ≥1,≤1.令f (x ),因为y =,y ,y 均为R 上的减函数,则f (x )在R 上单调递减,且f (1)=1,所以f (x )≤f (1),所以x ≥1,故不等式10x -6x -3x ≥1的解集为[1,+∞).13.若函数f (x )=|2x -a |-1的值域为[-1,+∞),则实数a 的取值范围为________.答案(0,+∞)解析令g (x )=|2x -a |,由题意得g (x )的值域为[0,+∞),又y =2x 的值域为(0,+∞),所以-a <0,解得a >0.14.已知函数f (x )x -a ,x ≤0,x +a ,x >0,关于x 的不等式f (x )≤f (2)的解集为I ,若I(-∞,2],则实数a 的取值范围是________.答案(-∞,-1)解析当a ≥0时,结合图象可得f (x )≤f (2)的解集是(-∞,2],不符合题意.当a <0时,2-a>2a ,由于f (x )在区间(-∞,0]和(0,2]上单调递增,所以要使f (x )≤f (2)的解集I 满足I(-∞,2],则2-a >f (2)=22+a ,解得a <-1.综上,实数a 的取值范围是(-∞,-1).四、解答题15.(2024·辽宁沈阳东北育才学校高三月考)已知函数f (x )是定义在R 上的奇函数,且函数g (x )=f (x )+e x 是定义在R 上的偶函数.(1)求函数f (x )的解析式;(2)求不等式f (x )≥34的解集.解(1)∵g (x )=f (x )+e x 是定义在R 上的偶函数,∴g (-x )=g (x ),即f (-x )+e -x =f (x )+e x ,∵f (x )是定义在R 上的奇函数,∴f (-x )=-f (x ),∴-f (x )+e -x =f (x )+e x ,∴f (x )=e -x -e x2.(2)由(1),知e -x -e x 2≥34,得2e -x -2e x -3≥0,即2(e x )2+3e x -2≤0,令t =e x ,t >0,则2t 2+3t -2≤0,解得0<t ≤12,∴0<e x ≤12,∴x ≤-ln 2,∴不等式f (x )≥34的解集为(-∞,-ln 2].16.(2024·山东菏泽高三期中)已知函数f (x )3+x.(1)解关于x 的不等式f (x 3+ax +1,a ∈R ;(2)若∃x ∈(1,3),∀m ∈(1,2),f (2mnx -4)-f (x 2+nx )+x 2+nx -2mnx +4≤0,求实数n 的取值范围.解(1)3+x3+ax +1,得x 3+x <x 3+ax +1,即(1-a )x <1.当1-a =0,即a =1时,不等式恒成立,则f (x 3+ax +1的解集为R ;当1-a >0,即a <1时,x <11-a,则f (x 3+ax +1|x 当1-a <0,即a >1时,x >11-a,则f (x 3+ax +1|x 综上所述,当a =1时,不等式的解集是R ;当a <1时,|x当a >1时,|x (2)因为y =x 3和y =x 均为增函数,所以y =x 3+x 是增函数,因为y 是减函数,所以f (x )是减函数,则g (x )=f (x )-x 是减函数.由f (2mnx -4)-f (x 2+nx )+x 2+nx -2mnx +4≤0可得,g (2mnx -4)=f (2mnx -4)-(2mnx -4)≤f (x 2+nx )-(x 2+nx )=g (x 2+nx ),所以2mnx -4≥x 2+nx ,所以2mn -n ≥x +4x ,又x +4x≥2x ·4x =4,当且仅当x =4x,即x =2时,不等式取等号,即∀m ∈(1,2),2mn -n ≥4恒成立,由一次函数性质可知n -n ≥4,n -n ≥4,解得n ≥4,所以实数n 的取值范围是[4,+∞).17.(多选)已知函数f (x )=a |+b 的图象经过原点,且无限接近直线y =2,但又不与该直线相交,则下列说法正确的是()A .a +b =0B .若f (x )=f (y ),且x ≠y ,则x +y =0C .若x <y <0,则f (x )<f (y )D .f (x )的值域为[0,2)答案ABD解析∵函数f (x )=a |+b 的图象过原点,∴a +b =0,即b =-a ,则f (x )=a |-a ,又f (x )的图象无限接近直线y =2,但又不与该直线相交,∴b =2,a =-2,f (x )=-|+2,故A 正确;由于f (x )为偶函数,且f (x )在[0,+∞)上单调递增,故若f (x )=f (y ),且x ≠y ,则x =-y ,即x +y =0,故B 正确;由于f (x )=2-|在(-∞,0)上单调递减,故若x <y <0,则f (x )>f (y ),故C 错误;|∈(0,1],∴f (x )=-|+2∈[0,2),故D 正确.故选ABD.18.(多选)已知实数a ,b 满足3a =6b ,则下列关系式可能成立的是()A .a =bB .0<b <aC .a <b <0D .1<a <b答案ABC解析由题意,在同一坐标系内分别画出函数y =3x 和y =6x 的图象,如图所示,由图象知,当a =b =0时,3a =6b =1,所以A 可能成立;作出直线y =k ,当k >1时,若3a =6b =k ,则0<b <a ,所以B 可能成立;当0<k <1时,若3a =6b =k ,则a <b <0,所以C 可能成立.故选ABC.19.(2023·广东珠海一中阶段考试)对于函数f (x ),若其定义域内存在实数x 满足f (-x )=-f (x ),则称f (x )为“准奇函数”.若函数f (x )=e x -2e x +1,则f (x )________(是,不是)“准奇函数”;若g (x )=2x +m 为定义在[-1,1]上的“准奇函数”,则实数m 的取值范围为________.答案不是-54,-1解析假设f (x )为“准奇函数”,则存在x 满足f (-x )=-f (x ),∴e -x -2e -x +1=-e x -2e x +1有解,整理得e x =-1,显然无解,∴f (x )不是“准奇函数”.∵g (x )=2x +m 为定义在[-1,1]上的“准奇函数”,∴2-x+m =-2x -m 在[-1,1]上有解,∴2m =-(2x +2-x)在[-1,1]上有解,令2x =t ∈12,2,∴2m t ∈12,2上有解,又函数y =t +1t在12,,在(1,2]上单调递增,且t =12时,y =52,t =2时,y =52,∴y min =1+1=2,y max =52,∴y =t +1t 的值域为2,52,∴2m ∈-52,-2,解得m ∈-54,-1.。
指数与指数函数【知识梳理】1.根式 (1) 根式的概念如果一个数的n 次方等于a (n >1且n ∈N +),那么这个数叫做a 的n 次方根.也就是,若x n=a ,则x 叫做a 的n 次方根,其中n>l 且n ∈N +根式,这里n 叫做根指数,a 叫做被开方数.(2) 根式的性质①当n 为奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数,这时,a 的n②当n 为偶数时,正数的n 次方根有两个,它们互为相反数,这时,正数a 的正的n 表示,负的n 次方根用符号na 表示.正负两个n a >0).③na④当n a ;当n (0)(|)|0a a a a a ==≥⎧⎨-<⎩ ⑤负数没有偶次方根. 2. 有理数指数幂 (1)幂的有关概念①正整数指数幂:a n = a ·a · … ·a .(n ∈N *) n 个 ②零指数幂:a 0=1(a ≠0). ③负整数指数幂:pa -=1p a(a ≠0,p ∈N *). ④正分数指数幂:m m nna a (a >0,m 、n ∈N *,且n>1).⑤负分数指数幂:11(0,mnm nmna am aa 、n ∈N *,且n>1)⑥0的正分数指数幂等于0,0的负分数指数幂没有意义 (2)有理数指数幂的性质 ①(0,r rs sr a a aa 、s ∈Q ); ②()(0,r r ss a ar a 、s ∈Q );③()rr r ab a b (a >0,b>0,r ∈Q).3.指数函数的图象与性质,如右表:【例题解析】题型一 指数式与根式的计算 例1、(1)2325= ; (2)32254-⎛⎫⎪⎝⎭=变式训练:1、(A )44等于( ) A 、16aB 、8aC 、4aD 、2a2、(B )若103,104xy==,则10x y -=例2、(1) 112032170.027()(2)1)79----+-; (2) 211511336622(2)(6)(3)a b a b a b .例3、计算下列各式:(1) 4160.250321648200549-+----)()(); (2) 213323121)()1.0()4()41(----⨯b a ab .题型二 指数函数的图象及应用例4、指出下列函数哪些是指数函数(1)y =4x ; (2)y =x 4; (3)y =-4x ; (4)y =(-4)x; (5)y =4x 2; (6)y =x x ; (7)y =(2a -1)x(a >12,且a ≠1).变式体验:若y =(a -3)·(a -2)x是指数函数,求a 的值.例5、(1)在同一坐标系中,函数y =2x 与y =⎝⎛⎭⎫12x的图象之间的关系是( ) A .关于y 轴对称 B .关于x 轴对称 C .关于原点对称D .关于直线y =x 对称(2)如图所示的曲线是指数函数y =a x 的图象,已知a ∈{2,43,310,15},则相应于曲线C 1,C 2,C 3,C 4的a 值依次是________.例6、函数y =a x -1a(a >0,且a ≠1)的图象可能是( )变式训练:1、函数()2()1xf x a =-在R 上是减函数,则a 的取值范围是( )A 、1>aB 、2<aC 、a <D 、1a <<2、若1a >,那么函数1x y a =-的图像一定不经过( ) A .第一象限 B.第二象限 C.第三象限 D.第四象限3、已知01,1a b <<<-,则函数x y a b =+的图像必定不经过( ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限 例7、变式训练:例8、比较下列各组数的大小变式训练:已知a =0.80.7,b =0.80.9,c =1.20.8,则a 、b 、c 的大小关系是( ) A .a >b >c B .b >a >c C .c >b >a D .c >a >b五.课后训练1.下列以x 为自变量的函数中是指数函数的是( )A .y =3x +1 B .y =-3x C .y =(13)-x D .y =(2x +1)x2.若集合A ={y |y =2x ,x ∈R},B ={y |y =x 2,x ∈R},则( ) A .A B B .A ⊆B C .A B D .A =BA .R 、RB .R 、(0,+∞)C .{x ∈R|x ≠0},{y ∈R|y ≠1}D .{x ∈R|x ≠0},{y >0|y ≠1} 4.设y 1=40.9,y 2=80.48,y 3=(12)-1.5,则( )A .y 3>y 1>y 2B .y 2>y 1>y 3C .y 1>y 2>y 3D .y 1>y 3>y 25.当x >0时,指数函数f (x )=(a -1)x ,且(a -1)x <1恒成立,则实数a 的取值范围是( ) A .a >2 B .1<a <2 C .a >1 D .a ∈R6.若函数f (x )与g (x )=(12)x 的图象关于y 轴对称,则满足f (x )>1的x 的范围是________.7.设23-2x<0.53x -4,则x 的取值范围是________.8.设函数f (x )=⎩⎪⎨⎪⎧(12)x -7,x <0,x ,x ≥0,若f (a )<1,则实数a 的取值范围是________.9. 已知函数)1,0(≠>=a a a y x在[]2,1上的最大值比最小值多2,求a 的值 。
指数的运算与指数函数4.1指数的运算【知识梳理】1. 整数指数幂1)定义:我们把n a 叫做a 的n 次幂,a 叫做幂的底数,n 叫做幂的指数。
在上述定义中,n 为整数时,这样的幂叫做整数指数幂。
2)整数指数幂的运算法则:(1)n m a a = (2)=n m a )((3)=n maa (4)=m ab )(3)此外,我们作如下规定:零次幂:)0(10≠=a a ; 负整数指数幂:),0(1+-∈≠=N n a a a nn; 2. 根式:1)n 次方根:一般地,如果a x n =,那么x 叫做a 的n 次方根,其中n >1,且n ∈N *。
注:①当n 是偶数时,正数的n 次方根有两个,这两个数互为相反数,分别表示为n a -,n a ;负数的偶次方根在实数范围内不存在;②当n 是奇数时,正数的n 次方根是一个正数;负数的n 次方根是一个负数,都表示为na ;③0的任何次方根都是0,记作00=n。
2)正数a 的正n 次方根叫做a 的n 次算数根。
当na 有意义时,n a 叫做根式,这里n 叫做根指数,a 叫做被开方数.注:当n 是奇数时,a a nn =;当n 是偶数时,⎩⎨⎧<≥-==)0()0(||a a a a a a nn ;3. 有理指数幂1)我们进行如下规定: n na a=1 (0>a )那么,我们就将整数指数幂推广到分数指数幂。
此外,下面定义也成立: )1,,,0(*>∈>=n N n m a a a n m nm)1,,,0(11*>∈>==-n N n m a a aanmnm nm注:0的正分数指数幂等于0,0的负分数指数幂没有意义。
2)规定了分数指数幂的意义后,指数的概念就从整数指数幂推广到了有理数指数幂。
3)有理指数幂的运算性质:(1)r a ·sr r aa +=),,0(Q s r a ∈>; (2)rs s r a a =)(),,0(Q s r a ∈>;(3)s r r a a ab =)(),0,0(Q r b a ∈>> 题型一 根式与幂的化简与求值 【例1】.求下列各式的值:(1)223223-++ (2)347246625-+--+【例2】.计算下列各式的值: (1)()[]75.0343031162)87(064.0---+-+-- (2)()()()012132232510002.0833-+--+⎪⎭⎫⎝⎛----【例3】.化简下列各式:(1)()0,0332>>b a b a ab ba (2)212121211111a a a a a ++------【过关练习】1.求值:(1)335252-++ (2)3332332313421248a a b a ab b ba a ⋅⎪⎪⎭⎫ ⎝⎛-÷++-2.化简:(1)111113131313132---+++++-x xx x x x x x(2)()()14214214433332)1()1(1))((----------++-++-++-+a a a a a a a a a a a a a a a a3.下列关系式中,根式与分数指数幂的互化正确的是_____.())0()4)(0()1()3();0()2();0()1(434334316221>=>=<=>-=--a a a a x xxy y y x x x题型二 含附加条件的求值问题 【例1】(1)若3193=⋅ba,则下列等式正确的是( ) A. 1-=+b a B. 1=+b a C. 12-=+b a D.12=+b a(2)若,123-=++x x x 则2827211227281x x x x x x x x ++⋅⋅⋅++++++⋅⋅⋅++----的值是_____.【例2】(1)已知,32,21==y x 求yx y x y x y x +---+的值; (2)已知b a ,是方程0462=+-x x 的两个根,且0>>b a ,求ba ba +-的值.【过关练习】 1.已知.88(22的值常数),求x x xxa --+=+2.已知32121=+-a a ,求21212323----aa a a 的值.3. 已知122+=xa ,求xx xx aa a a --++33的值题型三 解含幂的方程与等式的证明 【例1】解下列方程 (1)x x )41(212=+ (2)03241=-++x x【例2】已知433cz by ax ==,且1111=++zy x ,求证31313131222)(c b a cz by ax ++=++【过关练习】 1. 解下列方程(1)2291381+⎪⎭⎫⎝⎛=⨯x x (2)0123222=-⨯++x x2.设c b a ,,都是正数,且cb a 643==,求证ba c 122+=.4.2 指数函数及其性质【知识梳理】1. 指数函数 函数 )1,0(≠>=a a a y x叫做指数函数. 2. 指数函数的性质(1)定义域 :实数集合R ; (2)值域 :0>y ;(3) 奇偶性:指数函数是非奇非偶函数(4)单调性:1>a 时,函数 )1,0(≠>=a a a y x在),(+∞-∞上为增函数;10<<a 时,函数)1,0(≠>=a a a y x 在),(+∞-∞上为减函数;(5)函数值:0=x 时,1=y ,图象恒过点(0,1);(6)当0,1>>x a 时1>y ;0,1<>x a 时,10<<y .当10<<a ,0>x 时,10<<y ;0,10<<<x a 时,1>y .题型一 指数函数的概念例1 .已知指数函数)3)(2(--+=a a a y x的图像经过点(2,4),求a 的值.【过关练习】.若指数函数)(x f 的图像经过点(2,9),求)(x f 的解析式及)1(-f 的值.题型二 指数型复合函数的定义域和值域 【例1】.求下列函数的定义域和值域 (1) xy 31-= (2)412-=x y(3)xy -=)32( (4)32221--⎪⎭⎫ ⎝⎛=x x y【例2】.求函数[]2,2,221341-∈+⎪⎭⎫⎝⎛⨯-⎪⎭⎫ ⎝⎛=x y xx 的值域.【例3】.如果函数[]1,1-)1,0(122在且≠>-+=a a a a y x x上有最大值14,试求a 的值.【过关练习】1.求函数xy ⎪⎭⎫⎝⎛-=211的定义域和值域.2.已知集合⎭⎬⎫⎩⎨⎧∈==+R x y y A x,)21(12,则满足B B A =⋂的集合B 可以是( )A. ⎭⎬⎫⎩⎨⎧21,0 B. ⎭⎬⎫⎩⎨⎧<<210x x C.{}11≤≤-x x D.{}0>x x 3.函数22212+-=+x xy 的定义域为M ,值域[]2,1P ,则下列结论一定正确的个数是( )。
模块一:指数的运算(1)根式的概念:①定义:若一个数的n 次方等于),1(*∈>N n n a 且,则这个数称a 的n 次方根。
即若a x n=,则x 称a 的n 次方根)1*∈>N n n 且,1)当n 为奇数时,n a 的次方根记作n a ;2)当n 为偶数时,负数a 没有n 次方根,而正数a 有两个n 次方根且互为相反数,记作)0(>±a a n 。
②性质:1)a a n n =)(;2)当n 为奇数时,a a n n =; 3)当n 为偶数时,⎩⎨⎧<-≥==)0()0(||a a a a a a n 。
(2).幂的有关概念①规定:1)∈⋅⋅⋅=n a a a a n( N *;2))0(10≠=a a ; n 个 3)∈=-p aap p(1Q ,4)m a a a n m n m,0(>=、∈n N * 且)1>n 。
②性质:1)r a aa a sr sr,0(>=⋅+、∈s Q );2)r a a a sr sr ,0()(>=⋅、∈s Q ); 3)∈>>⋅=⋅r b a b a b a rrr,0,0()( Q )。
(注)上述性质对r 、∈s R 均适用。
知识内容指数运算与指数函数题型一 指数数与式的运算 【例1】 求下列各式的值:⑴⑵⑶⑷)a b <;⑸238; ⑺1225-; ⑻512-⎛⎫ ⎪⎝⎭; ⑼341681-⎛⎫⎪⎝⎭.【巩固】求值:⑴238, ⑵12100-, ⑶ 314-⎛⎫ ⎪⎝⎭, ⑷ 341681-⎛⎫ ⎪⎝⎭.【例2】 用分数指数幂表示下列各式:(1)32x(2)43)(b a +(a +b >0)(3)56q p ⋅(p >0)(4)mm 3【巩固1】用分数指数幂表示下列分式(其中各式字母均为正数)(1)43a a ⋅(2)aa a(3典型例题【巩固2】用分数指数幂表示下列各式(其中各式字母均为正数):⑴⑵; ⑶54m ⋅.【例3】 求下列各式的值:(1)432981⨯ (2)(3)【例4】 计算下列各式:⑴ 111344213243(,0)6a a b a b a b ---⎛⎫- ⎪⎝⎭>-. (2) 211511336622(2)(6)(3);a b a b a b -÷-题型二 指数运算求值【例5】 a 的取值范围是( )A .a ∈RB .12a =C .12a >D .12a ≤ 【例6】 下列判断正确的有①有理数的有理数次幂一定是有理数 ②有理数的无理数次幂一定是无理数 ③无理数的有理数次幂一定是有理数 ④无理数的无理数次幂一定是无理数 A .3个B .2个C .1个D .0个【例7】 已知21na =,求33n nn na a a a --++的值.【巩固1】已知13x x -+=,求下列各式的值:(1)1122x x -+ (2)3322.x x -+【巩固2】已知31x a -+=,求2362a ax x ---+的值.【巩固4】化简:)()(41412121y x y x -÷-【例8】 解方程0633232=-⨯-x x【巩固】解方程024254=-⨯-xx模块二:指数函数1.指数函数:一般地,函数x y a =(0a >,1a ≠,R)x ∈叫做指数函数. 2.指数函数的图象和性质对比题型一 指数函数的概念【例9】 判断下列函数是否为指数函数。
§1.4指数运算、指数函数【复习要点】1.指数、对数的概念、运算法则; 2.指数函数的概念, 性质和图象. 【知识整理】1.指数的概念;运算法则:2.指数函数的概念, 性质和图象如表:3.比较大小是幂、指、对数函数中的常见题型,要熟悉解答这类问题的常用方法与基本技巧。
其中利用函数的图象来比较大小是一般的方法。
4.会求函数y =a f (x)的单调区间。
5.含参数的指数函数问题,是函数中的难点,应初步熟悉简单的分类讨论。
向x 轴正负方向无限延伸 函数的值域为【基础训练】1.化简[]的结果为()A.5B.C.-5D.-52.将化为分数指数幂的形式为()A.B. C.D.3.下列等式一定成立的是()A.=a B.=0 C.(a3)2=a9D.4.下列命题中,正确命题的个数为()①=a②若a∈R,则(a2-a+1)0=1 ③④A.0 B.1 C.2 D.35.化简,结果是()A.B. C. D.6.等于()A.B.C.D.【例题选讲】1.设,其中a>0,a≠1,问x为何值时有(1)y1=y2?(2)y1<y2?2.比较下列各组数的大小,并说明理由(1),,(2),,(3),3.已知函数的值域为[7,43],试确定的取值范围.4.设,解关于x的不等式5.已知,求的最小值与最大值6.设,,试确定的值,使为奇函数【反馈练习】1.已知函数,当时,有,则有()A.B.C.D.2.若函数,则的值为()A. B. C. D.3.函数的值域是().A. B. C. D.4.设满足,且对任意,都有,则().A. B. C. D. 与不可能比较5.已知,下列不等式(1);(2);(3);(4);(5)中恒成立的有()A.1个 B.2个 C.3个 D.4个6.函数是()A.奇函数 B.偶函数 C.既奇又偶函数 D.非奇非偶函数7.是偶函数,且()f x是f x不恒等于零,则()( )A.奇函数 B.既奇又偶函数 C.偶函数 D.非奇非偶函数8.一批设备价值a万元,由于使用磨损,每年比上一年价值降低b%,则n年后这批设备的价值为()A.na(1-b%) B. a(1-nb%) C. a[1-(b%)n] D.a(1-b%)n9.函数的单调减区间是________,值域为________.10.设函数,若,则实数a的取值范围是________________.11.函数的值域是12.若f(52x-1)=x-2,则f(125)=13.求函数的单调区间和值域.14.已知函数,(1)判断函数的奇偶性;(2)求该函数的值域;(3)证明()f x是上的增函数。
指数与指数函数指数与指数函数1.1 指数与指数幂的运算1) 根式的概念如果$x=a$,$a\in R$,$x\in R$,$n>1$,且$n\in N^+$,那么$x$叫做$a$的$n$次方根。
当$n$是奇数时,$a$的正的$n$次方根用符号$n\sqrt{a}$表示,负的$n$次方根用符号$-n\sqrt{a}$表示。
当$n$是偶数时,正数$a$的正的$n$次方根用符号$n\sqrt{a}$表示,负的$n$次方根用符号$-n\sqrt{a}$表示。
负数$a$没有$n$次方根。
式子$n\sqrt{a}$叫做根式,这里$n$叫做根指数,$a$叫做被开方数。
当$n$为奇数时,$a$为任意实数;当$n$为偶数时,$a\geq0$。
根式的性质:$(n\sqrt{a})^n=a$;当$n$为奇数时,$n\sqrt{a^n}=a$;当$n$为偶数时,$n\sqrt{a^2}=|a|$,即$\begin{cases}a&(a\geq0)\\-a&(a<0)\end{cases}$。
2) 分数指数幂的概念正数的正分数指数幂的意义是:$a^{m/n}=\sqrt[n]{a^m}$。
正数的负分数指数幂的意义是:$a^{-m/n}=\dfrac{1}{\sqrt[n]{a^m}}$。
正分数$a^{1/m}=\sqrt[m]{a}$,负分数指数幂没有意义。
注意口诀:底数取倒数,指数取相反数。
3) 分数指数幂的运算性质a^r\cdot a^s=a^{r+s}$($a>0,r,s\in R$)。
a^r)^s=a^{rs}$($a>0,r,s\in R$)。
ab)^r=a^rb^r$($a>0,b>0,r\in R$)。
例题精讲例1】求下列各式的值:1) $n(3-\pi)$($n>1$,且$n\in N^+$);2) $(x-y)^2$。
1) 当$n$为奇数时,$n\sqrt{3-\pi}=|\sqrt{3-\pi}|=\sqrt{3-\pi}$。
3-1指数运算与指数函数1、 理解根式、分数指数幂的概念,掌握有理指数幂的运算性质.2、 掌握指数函数的概念、图像和性质。
一、有理数指数幂及运算性质 1、有理数指数幂的分类(1)正整数指数幂()n na a a a a n N *=⋅⋅⋅⋅∈64748L 个;(2)零指数幂)0(10≠=a a ;(3)负整数指数幂()10,n n a a n N a-*=≠∈(4)0的正分数指数幂等于0, 0的负分数指数幂没有意义。
2、有理数指数幂的性质(1)()0,,mn m naa aa m n Q +=>∈(2)()()0,,nm mn a a a m n Q =>∈(3)()()0,0,mm m ab a b a b m Q =>>∈二、根式1、根式的定义:一般地,如果a x n =,那么x 叫做a 的n 次方根,其中()*∈>N n n ,1,na 叫做根式,n 叫做根指数,a 叫被开方数。
2(1)n N ∈,且1n >;(2)当n 是奇数,则a a n n=;当n 是偶数,则⎩⎨⎧<-≥==0a a a a a a n n ;(3)负数没有偶次方根;(4)零的任何次方根都是零。
3、规定: (1))0,,,1m naa m n N n *=>∈>;(2))10,,,1mnm na a m n N n a-*==>∈>三、对指数函数定义的理解一般地,函数)10(≠>=a a a y x且叫做指数函数。
1、定义域是R 。
因为指数的概念已经扩充到有理数和无理数,所以在0a >的前提下,x 可以是任意实数。
2、规定0a >,且1a ≠的理由:(1)若0a =,000xxx a x a ⎧>⎪⎨≤⎪⎩当时,恒等于;当时,无意义。
(2)若0a <, 如(2)xy =-,当14x =、12等时,在实数范围内函数值不存在。
专题一 指数与指数函数题型一 指数幂的化简与求值指数幂运算的一般原则(1)有括号的先算括号里的,无括号的先算指数运算. (2)先乘除后加减,负指数幂化成正指数幂的倒数.(3)底数是小数,先化成分数;底数是带分数的,先化成假分数.(4)若是根式,应化为分数指数幂,尽可能用幂的形式表示,运用指数幂的运算性质来解答. 运算结果不能同时含有根号和分数指数幂,也不能既有分母又含有负指数,形式力求统一. 【例1】化简:(a 2·5a 3)÷(a ·10a 9)=________(用分数指数幂表示). 【解析(a 2·5a 3)÷(a ·10a 9)=(a 2·a 35)÷(a 12·a 910)=a 135÷a 75=a 135-75=a 65.【例2】614+0.002-12-10×(5-2)-1-295-⎪⎭⎫ ⎝⎛+[(-2)3]-23的值为________. 【解析】原式=225⎪⎭⎫⎝⎛+50012-10×(5+2)-1+(23)-23=52+105-105-20-1+2-2=2.5-21+0.25=-18.25.【例3】.若x 12+x -12=3,则x 32+x -32+2x 2+x -2+3的值为________.【解析】由x 12+x -12=3,得x +x -1+2=9,所以x +x -1=7,所以x 2+x -2+2=49,所以x 2+x -2=47. 因为x 32+x -32=(x 12+x -12)3-3(x 12+x -12)=27-9=18,所以原式=18+247+3=25.题型二 指数函数的图象及应用1.准确把握指数函数图象的特征(1)画指数函数y =a x (a >0,且a ≠1)的图象,应抓住三个关键点:(1,a ),(0,1),⎪⎭⎫ ⎝⎛a 11-,. (2)指数函数在同一坐标系中的图象的相对位置与底数大小关系,如图所示其中0<c <d <1<a <b ,在y 轴右侧,图象从上到下相应的底数由大变小,在y 轴左侧,图象从下到上相应的底数由大变小,即无论在y 轴的左侧还是右侧,底数按逆时针方向变大.如举例说明3.2.关注含参指数型函数图象恒过定点问题 (1)依据:恒等式a 0=1(a ≠0).(2)方法:求形如f (x )=M ·a kx +b +N 的图象恒过的定点,首先由kx +b =0求定点的横坐标,计算定点纵坐标.3.有关指数函数图象问题的解题思路(1)已知函数解析式判断其图象,一般是取特殊点,判断选项中的图象是否过这些点,若不满足则排除.(2)对于有关指数型函数的图象问题,一般是从最基本的指数函数的图象入手,通过平移、伸缩、对称变换而得到.特别地,当底数a 与1的大小关系不确定时应注意分类讨论. (3)有关指数方程、不等式问题的求解,往往是利用相应的指数型函数图象,数形结合求解. 【例1】已知函数f (x )=4+2a x-1的图象恒过定点P ,则点P 的坐标是( )A .(1,6)B .(1,5)C .(0,5)D .(5,0) 【解析】由x -1=0得x =1,f (1)=4+2a 0=6.所以函数f (x )=4+2a x -1的图象恒过定点(1,6).【例2】函数f (x )=2|x -1|的大致图象为( )【解析】因为f (x )=2|x -1|=⎩⎪⎨⎪⎧21-x ,x ≤1,2x -1,x >1,所以f (x )在(-∞,1]上单调递减,在(1,+∞)上单调递增,故排除A ,C ,D.【例3】若关于x 的方程|a x -1|=2a (a >0,且a ≠1)有两个不等实根,则a 的取值范围是________.【解析】方程|a x -1|=2a (a >0,且a ≠1)有两个不等实根转化为函数y =|a x -1|与y =2a 有两个交点.(1)当0<a <1时,如图①,所以0<2a <1,即0<a <12;(2)当a >1时,如图②,而y =2a >1不符合要求.所以0<a <12.题型三 指数函数的性质及应用考查视角一 比较指数幂的大小 比较幂值大小的常见类型及解决方法【例1】(2020·许昌四校联考)设a ,b 满足0<a <b <1,则下列不等式中正确的是( ) A .a a <a b B .b a <b b C .a a <b a D .b b <a b 【解析】指数函数y =a x (0<a <1)为减函数,因为a <b ,所以a a >a b ,A 错误; 指数函数y =b x (0<b <1)为减函数,因为a <b ,所以b a >b b ,B 错误; 幂函数y =x a (0<a <1)在(0,+∞)上为增函数,又a <b ,所以a a <b a ,C 正确; 由幂函数y =x b (0<b <1)在(0,+∞)上为增函数,又a <b ,所以b b >a b ,D 错误.【例2】(2020·闽粤赣三省十校联考)已知a =243,b =425,c =2513,则( ) A .b <a <c B .a <b <c C .b <c <a D .c <a <b 【解析】因为a =243,b =425=245,由函数y =2x 在R 上为增函数知,b <a ; 又因为a =243=423,c =2513=523由函数y =x 23在(0,+∞)上为增函数知,a <c . 综上得b <a <c .故选A.考查视角二 解指数不等式利用指数函数的性质解简单的指数方程或不等式的方法先利用幂的运算性质化为同底数幂,再利用单调性转化为一般不等式求解【例3】若偶函数f (x )满足f (x )=2x -4(x ≥0),则不等式f (x -2)>0的解集为________.【解析】因为f (x )为偶函数,当x <0时,-x >0,则f (x )=f (-x )=2-x-4,所以f (x )=⎩⎪⎨⎪⎧2x -4,x ≥0,2-x -4,x <0当f (x -2)>0时,有⎩⎪⎨⎪⎧x -2≥0,2x -2-4>0或⎩⎪⎨⎪⎧x -2<0,2-x +2-4>0,,解得x >4或x <0,所以不等式的解集为{x |x >4或x <0}.考查视角三 指数型复合函数的单调性 1.两类复合函数的最值(或值域)问题(1)形如y =a 2x +b ·a x +c (a >0,且a ≠1)型函数最值问题多用换元法,即令t =a x 转化为y =t 2+bt +c 的最值问题,注意根据指数函数求t 的范围.(2)形如y =a f (x )(a >0,且a ≠1)型函数最值问题,可令t =f (x ),则y =a t ,先由x 的取值范围求t 的取值范围,再求y =a t 的最值. 2.对于形如y =a f (x )的函数的单调性(1)若a >1,函数f (x )的单调增(减)区间即函数y =a f (x )的单调增(减)区间; (2)若0<a <1,函数f (x )的单调增(减)区间即函数y =a f (x )的单调减(增)区间. 【例4】已知函数f (x )=2|2x -m |(m 为常数),若f (x )在区间[2,+∞)上是增函数,则m 的取值范围是________.【解析】令t =|2x -m |,则t =|2x -m |在区间⎪⎭⎫⎢⎣⎡+∞,2m 上单调递增,在区间⎥⎦⎤ ⎝⎛∞2-m ,上单调递减.而y =2t 为R 上的增函数,所以要使函数f (x )=2|2x -m |在[2,+∞)上单调递增,则有m2≤2,即m ≤4【例5】已知函数f (x )=34231+-⎪⎭⎫ ⎝⎛x ax .(1)若a =-1,求f (x )的单调区间; (2)若f (x )有最大值3,求a 的值; (3)若f (x )的值域是(0,+∞),求a 的值.【解析】(1)当a =-1时,f (x )=34-231+-⎪⎭⎫⎝⎛x x ,令u =-x 2-4x +3=-(x +2)2+7.则u 在(-∞,-2)上单调递增,在(-2,+∞)上单调递减,而y =u⎪⎭⎫⎝⎛31在R 上单调递减,所以f (x )在(-∞,-2)上单调递减,在(-2,+∞)上单调递增, 即函数f (x )的单调递增区间是(-2,+∞),单调递减区间是(-∞,-2).(2)令h (x )=ax 2-4x +3,f (x )=)(31x h ⎪⎭⎫⎝⎛,由于f (x )有最大值3,所以h (x )应有最小值-1, 因此必有⎩⎪⎨⎪⎧a >0,12a -164a=-1,解得a =1,即当f(x)有最大值3时,a的值为1.(3)由f(x)的值域是(0,+∞)知,ax2-4x+3的值域为R,则必有a=0. 巩固提升1.(2020·上饶摸底)已知a=20.4,b=90.2,c=(43)3,则( )A.a<b<c B.a<c<b C.c<a<b D.c<b<a【解析】因为c=(43)3=334=30.75>30.4,b=90.2=30.4,所以b<c,又20.4<30.4,即a<b,所以a<b<c.2.(2020·宜宾模拟)若函数f(x)=2·a x+m-n(a>0且a≠1)的图象恒过定点(-1,4),则m+n=( )A.3 B.1C.-1 D.-2【解析】因为函数f(x)=2·a x+m-n(a>0且a≠1)的图象恒过定点(-1,4),所以-1+m=0,且2·a0-n=4.解得m=1,n=-2,所以m+n=-1.3.已知a=log20.2,b=20.2,c=0.20.3,则( )A.a<b<c B.a<c<bC.c<a<b D.b<c<a【解析】因为a=log20.2<0,b=20.2>1,c=0.20.3∈(0,1),所以a<c<b.故选B.4.(2020·安徽皖江名校模拟)若e a+πb≥e-b+π-a,则有( )A.a+b≤0B.a-b≥0C.a-b≤0D.a+b≥0【解析】令f(x)=e x-π-x,则f(x)在R上单调递增,因为e a+πb≥e-b+π-a,所以e a-π-a≥e-b-πb,则f(a)≥f(-b),所以a≥-b,即a+b≥0.故选D.5.已知函数f(x)=a x,其中a>0,且a≠1,如果以P(x1,f(x1)),Q(x2,f(x2))为端点的线段的中点在y轴上,那么f(x1)·f(x2)等于( )A .1B .aC .2D .a 2【解析】∵以P (x 1,f (x 1)),Q (x 2,f (x 2))为端点的线段的中点在y 轴上,∴x 1+x 2=0.又f (x )=a x ,∴f (x 1)·f (x 2)=ax 1·ax 2=ax 1+x 2=a 0=1,故选A. 6.(2019·凌源模拟)设a =7375⎪⎭⎫⎝⎛,b =7573⎪⎭⎫ ⎝⎛,c =7373⎪⎭⎫⎝⎛,则a ,b ,c 的大小关系为( ) A .b <c <a B .a <b <c C .a <c <b D .c <a <b【解析】因为函数y =x73⎪⎭⎫⎝⎛在R 上单调递减.所以7573⎪⎭⎫ ⎝⎛<7373⎪⎭⎫ ⎝⎛,即b <c .又函数y =x 37在(0,+∞)上单调递增,所以7373⎪⎭⎫ ⎝⎛<7375⎪⎭⎫⎝⎛,即c <a .综上,b <c <a .7.若函数f (x )=2x +12x -a是奇函数,则使f (x )>3成立的x 的取值范围为( )A .(-∞,-1)B .(-1,0)C .(0,1)D .(1,+∞) 【解析】∵f (x )为奇函数,∴f (-x )=-f (x ),即2-x +12-x -a =-2x +12x -a ,整理得(a -1)(2x +2-x +2)=0,∴a =1,∴f (x )>3,即为2x +12x -1>3,当x >0时,2x -1>0,∴2x +1>3·2x -3,解得0<x <1;当x <0时,2x -1<0,∴2x +1<3·2x -3,无解.∴x 的取值范围为(0,1).8.设y =f (x )在(-∞,1]上有定义,对于给定的实数K ,定义f K (x )=⎩⎪⎨⎪⎧f (x ),f (x )≤K ,K ,f (x )>K .给出函数f (x )=2x +1-4x ,若对于任意x ∈(-∞,1],恒有f K (x )=f (x ),则( )A .K 的最大值为0B .K 的最小值为0C .K 的最大值为1D .K 的最小值为1【解析】对于任意x ∈(-∞,1],若恒有f K (x )=f (x ),则f (x )≤K 在x ≤1上恒成立,即f (x )最大值小于或等于K 令2x =t ,则t ∈(0,2],f (t )=-t 2+2t =-(t -1)2+1,可得f (t )的最大值为1,所以K ≥1,故选D.9.(2020·湖南株洲月考)如图,四边形OABC 是面积为8的平行四边形,AC ⊥CO ,AC 与BO 交于点E ,某指数函数y =a x (a >0且a ≠1)的图象经过点E ,B ,则a =( )A. 2B. 3 C .2 D .3【解析】设C (0,y C ),因为AC ⊥CO ,则设A (x A ,y C ),于是B (x A ,2y C ),E ⎪⎭⎫⎝⎛C A y x ,21 因为平行四边形OABC 的面积为8,所以y C ·x A =8,因为点E ,B 在y =a x 的图象上,则axA =2y C ,a xA2=y C ,所以y 2C =2y C ,解得y C =2或y C =0(舍去),则x A =4,于是a 4=4,因为a >0,所以a = 2.10.已知函数f (x )=|2x -1|,a <b <c 且f (a )>f (c )>f (b ),则下列结论中,一定成立的是( ) A .a <0,b <0,c <0 B .a <0,b ≥0,c >0 C .2-a <2c D .2a +2c <2 【解析】作出函数f (x )=|2x -1|的图象,如图,因为a <b <c 且f (a )>f (c )>f (b ), 结合图象知,0<f (a )<1,a <0,c >0, 所以0<2a <1,所以f (a )=|2a -1|=1-2a <1, 所以f (c )<1,所以0<c <1.所以1<2c <2,所以f (c )=|2c -1|=2c -1, 又因为f (a )>f (c ),所以1-2a >2c -1, 所以2a +2c <2,故选D.11.函数y =a x -b (a >0,且a ≠1)的图象经过第二、三、四象限,则a b 的取值范围是________. 【解析】因为函数y =a x -b 的图象经过第二、三、四象限,所以函数y =a x -b 单调递减且其图象与y 轴的交点在y 轴的负半轴上. 令x =0,则y =a 0-b =1-b ,由题意得⎩⎪⎨⎪⎧0<a <1,1-b <0,解得⎩⎪⎨⎪⎧0<a <1,b >1.故a b ∈(0,1).12.定义区间[x 1,x 2]的长度为x 2-x 1,已知函数f (x )=3|x |的定义域为[a ,b ],值域为[1,9],则区间[a ,b ]长度的最小值为________.【解析】∵函数f (x )=3|x |的定义域为[a ,b ],值域为[1,9], ∴0∈[a ,b ].2和-2至少有一个属于区间[a ,b ],故区间[a ,b ]的长度最小时为[-2,0]或[0,2].即区间[a ,b ]长度的最小值为2. 13.(2020·中山一中摸底)化简:(23a 2·b )(-6a ·3b )÷(-36a ·6b 5)=________. 【解析】原式=(2a 23·b 12)(-6a 12b 13)÷(-3a 16b 56)=[2×(-6)÷(-3)]a 23+12-16b 12+13-56=4a .14.已知函数f (x )=(a -2)a x (a >0,且a ≠1),若对任意x 1,x 2∈R ,f (x 1)-f (x 2)x 1-x 2>0,则a 的取值范围是________.【解析】由题意知f (x )在R 上是单调递增函数,当0<a <1时,a -2<0,y =a x 单调递减,所以f (x )单调递增; 当1<a <2时,a -2<0,y =a x 单调递增,所以f (x )单调递减; 当a =2时,f (x )=0;当a >2时,a -2>0,y =a x 单调递增,所以f (x )单调递增. 故a 的取值范围是(0,1)∪(2,+∞).15.若不等式(m 2-m )2x -x⎪⎭⎫⎝⎛21<1对一切x ∈(-∞,-1]恒成立,则实数m 的取值范围是___.【解析】(m 2-m )2x -x⎪⎭⎫ ⎝⎛21<1可变形为m 2-m <x⎪⎭⎫⎝⎛21+221⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛x.设t =x⎪⎭⎫⎝⎛21(t ≥2),则原条件等价于不等式m 2-m <t +t 2在t ≥2时恒成立.显然t +t 2在t ≥2时的最小值为6,所以m 2-m <6,解得-2<m <3.16.不等式2221212-++⎪⎭⎫ ⎝⎛<⎪⎭⎫⎝⎛a x axx 恒成立,则a 的取值范围是________.【解析】由题意,y =x⎪⎭⎫⎝⎛21是减函数,因为2221212-++⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛a x axx 恒成立,所以x 2+ax >2x +a -2恒成立,所以x 2+(a -2)x -a +2>0恒成立,所以Δ=(a -2)2-4(-a +2)<0,即(a -2)(a -2+4)<0,即(a -2)(a +2)<0, 故有-2<a <2,即a 的取值范围是(-2,2).17.已知实数a ,b 满足等式a ⎪⎭⎫ ⎝⎛21=b⎪⎭⎫⎝⎛31,下列五个关系式:①0<b <a ;②a <b <0;③0<a <b ;④b <a <0;⑤a =b ,其中可能成立的关系式有________.(填序号) 【解析】函数y 1=x ⎪⎭⎫ ⎝⎛21与y 2=x ⎪⎭⎫ ⎝⎛31的图象如图所示.由a ⎪⎭⎫ ⎝⎛21=b⎪⎭⎫⎝⎛31得,a <b <0或0<b <a 或a=b =0.故①②⑤可能成立,③④不可能成立.18.设a >0,且a ≠1,函数y =a 2x +2a x -1在[-1,1]上的最大值是14,则实数a 的值为________. 【解析】令t =a x (a >0,且a ≠1), 则原函数化为y =f (t )=(t +1)2-2(t >0).①当0<a <1,x ∈[-1,1]时,t =a x ∈⎥⎦⎤⎢⎣⎡a a 1,,此时f (t )在⎥⎦⎤⎢⎣⎡aa 1,上为增函数.所以f (t )max =⎪⎭⎫ ⎝⎛a f 1=211⎪⎭⎫⎝⎛+a -2=14.所以211⎪⎭⎫⎝⎛+a =16,解得a =-15(舍去)或a =13.②当a >1时,x ∈[-1,1],t =a x ∈⎥⎦⎤⎢⎣⎡a a,1, 此时f (t )在⎥⎦⎤⎢⎣⎡a a,1上是增函数.所以f (t )max =f (a )=(a +1)2-2=14,解得a =3或a =-5(舍去).综上得a =13或3. 19.已知函数f (x )=2a ·4x -2x -1.(1)当a =1时,求函数f (x )在x ∈[-3,0]上的值域;(2)若关于x 的方程f (x )=0有解,求a 的取值范围.【解析】(1)当a =1时,f (x )=2·4x -2x -1=2(2x )2-2x -1,令t =2x ,x ∈[-3,0],则t ∈⎥⎦⎤⎢⎣⎡181,. 故y =2t 2-t -1=2241⎪⎭⎫ ⎝⎛-t -98,t ∈⎥⎦⎤⎢⎣⎡181,,故值域为⎥⎦⎤⎢⎣⎡089-, (2)关于x 的方程2a (2x )2-2x -1=0有解,设2x =m >0,等价于方程2am 2-m -1=0在(0,+∞)上有解,记g (m )=2am 2-m -1,当a =0时,解为m =-1<0,不成立.当a <0时,开口向下,对称轴m =14a<0, 过点(0,-1),不成立.当a >0时,开口向上,对称轴m =14a>0,过点(0,-1),必有一个根为正, 综上得a >0.20.已知定义域为R 的函数f (x )=-2x +b 2x +1+a是奇函数. (1)求a ,b 的值;(2)若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求k 的取值范围.【解析】(1)因为f (x )是定义在R 上的奇函数,所以f (0)=0,即-1+b 2+a=0,解得b =1,所以f (x )=-2x +12x +1+a .又由f (1)=-f (-1)知-2+14+a =--12+11+a,解得a =2. (2)由(1)知f (x )=-2x +12x +1+2=-12+12x +1,由上式易知f (x )在R 上为减函数, 又因为f (x )是奇函数,从而不等式f (t 2-2t )+f (2t 2-k )<0等价于f (t 2-2t )<-f (2t 2-k )=f (-2t 2+k ).因为f (x )是R 上的减函数,由上式推得t 2-2t >-2t 2+k ,即对一切t ∈R 有3t 2-2t -k >0, 从而Δ=4+12k <0,解得k <-13,故k 的取值范围为⎪⎭⎫⎝⎛∞31--,.。
指数运算与指数函数1、 理解根式、分数指数幂的概念,掌握有理指数幂的运算性质.2、 掌握指数函数的概念、图像和性质。
一、有理数指数幂及运算性质 1、有理数指数幂的分类(1)正整数指数幂()n n a a a a a n N *=⋅⋅⋅⋅∈个;(2)零指数幂)0(10≠=a a ; (3)负整数指数幂()10,n n a a n N a-*=≠∈ (4)0的正分数指数幂等于0, 0的负分数指数幂没有意义。
2、有理数指数幂的性质 (1)()0,,mn m n aa a a m n Q +=>∈(2)()()0,,nm mn a a a m n Q =>∈(3)()()0,0,mm m ab a b a b m Q =>>∈二、根式1、根式的定义:一般地,如果a x n =,那么x 叫做a 的n 次方根,其中()*∈>Nn n ,1,na 叫做根式,n 叫做根指数,a 叫被开方数。
2(1)n N ∈,且1n >;(2)当n 是奇数,则a a nn=;当n 是偶数,则⎩⎨⎧<-≥==00a a a a a a nn;(3)负数没有偶次方根;(4)零的任何次方根都是零。
3、规定: (1)()0,,,1mn m n a a a m n N n *=>∈>; (2)()10,,,1m nm nmnaa m n N n a a-*==>∈>三、对指数函数定义的理解一般地,函数)10(≠>=a a a y x且叫做指数函数。
1、定义域是R 。
因为指数的概念已经扩充到有理数和无理数,所以在0a >的前提下,x 可以是任意实数。
2、规定0a >,且1a ≠的理由:(1)若0a =,000xxx a x a ⎧>⎪⎨≤⎪⎩当时,恒等于;当时,无意义。
(2)若0a <, 如(2)xy =-,当14x =、12等时,在实数范围内函数值不存在。
指数运算与指数函数
【知识概述】
一、根式的性质:
1.a a n
n =)(
2.当n 为奇数时,a a n n
=
3.当n 为偶数时,⎩⎨⎧<-≥==)0()0(||a a a a a a n
二、幂的有关概念:
正整数指数幂:()n
a a a a n N *=⋅⋅
⋅∈n 个
零指数幂:)0(10
≠=a a , 负指数幂:∈=-p a a p
p (1
Q , 正分数指数幂:m a a a
n m n
m ,0(>=、∈n N * 且)1>n
三、有理指数幂的运算性质 1.r a a a a s
r s
r
,0(>=⋅+、∈s Q ),
2.r a a
a s
r s r ,0()(>=⋅、∈s Q ),
3.∈>>⋅=⋅r b a b a b a r
r
r ,0,0()( Q ) 四、指数函数
1.指数函数定义:函数)1,0(≠>=a a a y x
且称指数函数,函数的定义域为R ,值域为
),0(+∞
2.函数图像:
3.性质:(1)图象都经过点(0,1)
(2)1a >时,x
y a =为增函数;10a >>时,x
y a =为减函数 (3)x
y a =为非奇非偶函数
【学前诊断】
1. [难度]易
计算:(1)(
)
)
12
10
2
3
170.0272179--⎛⎫⎛⎫--+- ⎪ ⎪⎝⎭⎝⎭
;
(2
(3
. 2. [难度]中
函数e e e e
x x
x x
y --+=-的图象大致为( ).
3. [难度]中
若函数x
x
x f -+=3
3)(与x
x x g --=3
3)(的定义域均为R ,则( ).
A. )(x f 与)(x g 与均为偶函数
B.)(x f 为奇函数,)(x g 为偶函数
C. )(x f 与)(x g 与均为奇函数
D.)(x f 为偶函数,)(x
g 为奇函数
D
【经典例题】
例1. 已知13x x -+=,求下列各式的值:
(1)1
12
2
x x
-+; (2)332
2
x x
-+.
解:题目中给出的关于x 与1x -的式子,观察到2
12
x x ⎛⎫= ⎪⎝⎭
,2
112x x --⎛⎫= ⎪⎝⎭,而
3312
2x x ⎛⎫= ⎪⎝⎭,3
31
22x x --⎛
⎫= ⎪⎝⎭
.
(1)∵ 1
111112
2
2
112
222
2
2()()2()2325x x x x x
x x x ---
-+=+⋅+=++=+=.
由1
3x x
-+=, 可知0x >, ∴112
2
x x
-+=
(2)∵33111111113
3
2
2
2
2
222
2
22
2
2)()()[()()]x x x x x x x x x
x ---
--
++=+-⋅+=(
1112
2
()[()1]1)x x x x -
-=++-=-=
例2. 函数2
2x
y x =-的图象大致是( ).
解:因为当2x =或4时,2
20x
x -=,即函数图象在y 轴右侧与x 轴有两个交点,所以排除B ,C ;
当2x =-时,2
1
2404
x
x -=-<,故排除D ,所以选A .
例3. 函数41
()2
x x
f x +=的图象( ). A. 关于原点对称
B. 关于直线y x =对称
C. 关于x 轴对称
D. 关于y 轴对称
解:根据选项特点,只需确定函数是奇函数、偶函数,或点(x ,y )是否在函数图象上.
∵)(2
41214)(x f x f x
x
x x =+=+=--- )(x f ∴是偶函数,图象关于y 轴对称.
例4. 图中曲线表示指数函数
(1)x
y a =,(2)x
y b =,(3)x
y c =,(4)x
y d =
的图象,则,,,a b c d 与1的关系是( ) A.1a b c d <<<< B.1b a d c <<<< C.1a b c d <<<< D.1a b d c <<<<
解法1:指数函数x
y a =中,当1a >时,函数是单调递增
的,当01a <<时,函数是单调递减的,所以③④的底数大于1,①②的底数小于1.
当指数函数底数大于1时,图象随底数越大越靠近y 轴,即1d c <<;当指数函数底数小于1时,图象随底数越小越靠近y 轴,即1b a <<,所以1b a d c <<<<,选B .
解法2:令1x =,则四个函数所得的函数值分别为,,,a b c d ,从图象可以明显看出
1b a d c <<<<.
例5. 函数11()(
),,,,02x
f x x a b x x b a =+∈∈≠+R R 定义域为且,已知5
(2)3
f =. (1) 求函数()f x 的解析表达式; (2) 判断函数()f x 的奇偶性.
解:(1)∵函数()f x 的定义域为()(),00,-∞⋃+∞,即当x =0时函数解析式没有意义,
∴当0x =时,210x
b b +=+=, ∴1b =-. ∵()523f =
,∴2
1152213a ⎛⎫+= ⎪-⎝⎭,∴2a =.∴()1
1212x f x x ⎛⎫=+ ⎪-⎝⎭
.
(2)证法1:∵函数()f x 的定义域为()(),00,-∞⋃+∞,
∴()()2112212212212
x
x x x x x x x x x x
f x -⋅-+--⋅-=+=-=----
()212212
x x
x x x x
x f x =+
-=+=--, ∴函数()f x 为偶函数. 证法2:∵函数()f x 的定义域为()(),00,-∞⋃+∞,
∴()()22122121221x x x x x x x x x x x
f x f x x ----⋅--=+--=------()
21021
x x x x ⋅-=-=-.
即()()f x f x -=.∴函数()f x 为偶函数.
【本课总结】
指数函数x
a y =的相关性质: (1)定义域为R ; (2)值域为()+∞,0;
(3)单调性:当1>a 时在定义域内为增函数;当10<<a 时在定义域内为减函数; (4)奇偶性:是非奇非偶函数; (5)对称性:x
a y =与x
a
y -=的图象关于y 轴对称;x
a y =与x
a y -=的图象关于
x 轴对称;x a y =与x a y --=的图象关于坐标原点对称;x a y =与x y a log =的图象关于
直线x y =对称;
(6)有两个特殊点:)1,0(,不变点),1(a ;
(7)抽象性质:对于x
a x f =)((0>a ,且1≠a )有f (x y )f (x )f (y )+=,
)
()
()(y f x f y x f =
-.
【活学活用】
1. [难度]中
比较下列各题中两个值的大小:
(1) 2.51.7与31.7; (2)0.10.8-与0.21.25; (3)0.31.7与 3.10.9; (4) 4.14.5与 3.63.7. 2. [难度]中
设()f x 为定义在R 上的奇函数,当0x ≥时,()22x
f x x b =++(b 为常数),则
(1)f -=( )
A.3-
B.1-
C.1
D.3 3. [难度]难
讨论函数()2213x x
f x -⎛⎫
= ⎪⎝⎭
的单调性,并求其值域.。