基本不等式
- 格式:ppt
- 大小:2.11 MB
- 文档页数:42
基本不等式全部公式1.三角不等式:对于任意实数a和b,有,a+b,≤,a,+,b2. Cauchy-Schwarz 不等式:对于任意实数 a1, a2,...,an 和 b1, b2,...,bn,有(a1b1 + a2b2 + ... + anbn)² ≤ (a₁² + a₂² + ... + an²)(b₁² + b₂² + ... + bn²)3. 二次平均不等式:对于任意非负实数 x1, x2,...,xn,有√((x₁² + x₂² + ... + xn²)/n) ≥ ((x₁ + x₂ + ... + xn)/n)4. 广义平均不等式:对于任意非负实数 x1, x2,...,xn 和实数 p ≠ 0,有(x₁ᵖ + x₂ᵖ + ... + xnᵖ)/n ≥ ((x₁ + x₂ + ... + xn)/n)ᵖ5. AM-GM 不等式:对于任意非负实数 x₁, x₂,...,xn,有(x₁x₂...xn)^(1/n) ≤ (x₁ + x₂ + ... + xn)/n6. Jensen 不等式:设 f 是凸函数,则对于非负实数 x₁, x₂, (x)和非负实数权重 w₁, w₂,...,wn,有f(w₁x₁ + w₂x₂ + ... + wnxn) ≥ w₁f(x₁) + w₂f(x₂) + ... +wnfn(xn)7. Hessemberg 不等式:对于非负实数 x₁, x₂,...,xn,有(x₁ + t)ⁿ ≤ x₁ⁿ + nx₁ⁿ⁻¹t + n(n-1)x₁ⁿ⁻²t²/2 + ... + tⁿ8. Bernoulli 不等式:对于实数x ≥ -1 和正整数 n,有(1+x)ⁿ ≥ 1 + nx9. Muirhead 不等式:对于非负实数 a₁, a₂,...,an 和 b₁,b₂,...,bn 满足 a₁ + a₂ + ... + an = b₁ + b₂ + ... + bn,有a₁ᵖ₁a₂ᵖ₂...anᵖₙ + permutations ≥ b₁ᵖ₁b₂ᵖ₂...bnᵖₙ + permutations10. 反柯西不等式:对于任意非负实数 a₁, a₂,...,an,有(a₁/a₂ + a₂/a₃ + ... + an-₁/an + an/a₁) ≥ n以上是一些常见的基本不等式公式。
基本不等式的所有公式及常用解法1.加减法不等式公式:若a>b,则a+/-c>b+/-c,其中c为任意实数。
2.乘法不等式公式:若a>b且c>0,则a*c>b*c;若a>b且c<0,则a*c<b*c。
3.幂次不等式公式:对任意非零实数a和b若a>b且n>0且n为正整数,则a^n>b^n;若a>b且0<n<1,则a^n<b^n。
4.倒数不等式公式:若a>b>0,则1/a<1/b。
5.奇偶性不等式公式:若a>0且n为正整数,则a^n>0。
若a<0且n为奇数整数,则a^n<0。
常用的解基本不等式的方法有:1.用数轴法解:将不等式绘制在数轴上,根据不等式的性质找出符合条件的x的取值范围。
2.用代数方法解:针对不等式上的加减法、乘法、幂次或倒数等,利用基本不等式公式进行运算,化简不等式,最终得到x的取值范围。
3.用平方差、立方差或更高次差法解:对于特定形式的不等式,如二次函数不等式(即含有二次项的不等式),可使用平方差公式将其转化为不等式的标准形式;同样,对于三次函数不等式(即含有三次项的不等式),可使用立方差公式将其转化为不等式的标准形式。
通常,对高次不等式的解法需要更高级的数学知识,此处不再详细介绍。
4.用函数图像解:对于一些特定函数,如一次函数、二次函数等,可通过绘制函数图像来判断不等式的解集。
5.用不等式链解:若能将一个不等式化为多个简单的不等式,即不等式的解集满足一系列条件,可通过每个条件对应的不等式求解解集。
以上是基本不等式的一些公式和常用解法。
对于不同的不等式,我们需要根据具体情况选择合适的解法。
希望以上内容对您有所帮助。
基本不等式一、 基本不等式的依据由于无论x ,y 取何值,都有()20x y -≥成立,则必有222x y xy +≥,显然当x y =时()2x y -有最小值0,于是我们得到:”成立时,“当且仅当==≥+∈∀y x xy y x R y x ,2,,22同样的,当x y ==”成立时,“当且仅当==≥+>>∀b a ab b a b a ,2,0,0,我们称之为基本不等式基本不等式的公示变形:()()210,0,20,0,22a b a b a b a b ab ++⎛⎫>>≥>>≤ ⎪⎝⎭变形变形, ※ 其中2ba +叫做a ,b 的算术平均数,ab 称作a ,b 的几何平均数二、 几何意义如右图所示:显然2a b +DE 的一半DC由于ADC ∆∽DBC,∆则2DC AC BC =⋅,即DC =.即,任意圆的半径都不小于圆内的任何一条弦长的一半三、 例题1.10,x x x>+已知求的最小值110,0,2x x x x >>+≥=因为则,则当11x x x==±时,即,而0x >, 所以当11x x x=+时,有最小值2 2.已知01x <<,求函数()1y x x =-的最大值因为01x <<,则0,10x x >->,则()211124x x y x x +-⎛⎫=-≤= ⎪⎝⎭ 即当()1x x =-时,12x =时,y 有最大值14总结:基本不等式的作用可以用来求函数的最值以及式子的范围,但基本不等式的应用需要条件注意:先要验证是否满足基本不等式的前提条件:,x y 均大于零然后,验证式子是否存在,x y xy +其中一个是固定的值,则另一个必有最值 最后,则要求出取得最值时的x ,y 的值,x ,y 的值必须满足第一个条件我们称利用基本不等式时,要满足:一正,二定,三相等,缺一不可,依次递推四、 基本不等式的常见题型1. 积时定值,和有最值例1:已知1x >,求11y x x =+-的最值 分析:显然第一个条件满足,而第二个积不是定值,不能使用,可以进行变形为1111y x x =-++-,即可求出例2:已知0x <,求1y x x=+的最值 分析:第一个条件10,0x x<<不成立,所以无法直接利用基本不等式,需要进行简单变形:()1y x x ⎡⎤⎛⎫=--+- ⎪⎢⎥⎝⎭⎣⎦,这时10,0x x ->->,12x x ⎛⎫-+-≥= ⎪⎝⎭ 即1[]2y x x ⎛⎫=--+-≤- ⎪⎝⎭,当且仅当1x x -=-时, 1x =±,又因为0x <, 则1x =-时,函数y 有最大值-2练习:112,33y x x x =+>-求时的最小值512,42445x y x x <=-+-求函数的最大值2313,0x x y x x++=>求时的最小值24)y x R =∈求的最小值2. 和是定值,积有最值例:当302x <<,求()32y x x =⋅-的最值 分析:第一个条件满足.而和不是定值,故需要适当变形: ()()1322322y x x x x =⋅-=⋅⋅- 这样就可以求出函数的最值了()()2112329322322228x x y x x x x +-⎛⎫=⋅-=⋅⋅-≤= ⎪⎝⎭, 当且仅当()232x x =-时,即34x =时,函数y 有最大值98练习: 104(82)x y x x <<=-当时,求的最大值22111x y x -≤≤=-,求函数的最大值33.利用条件化为1,借助1进行代换810,0,1,2x y x y x y>>+=+例:已知且求的最小值 分析: ()()811621282x yx y x y x y y x ⎛⎫+⋅=+⋅+=+++ ⎪⎝⎭,显然就可以求出最值了练习:141,,2,x y R x y x y+∈+=+已知求的最小值<2>已知0,0,a b >>a+b=2,则14y a b=+的最小值<3>若正数x ,y 满足35x y xy +=,求3x+4y 的最小值4.利用基本不等式转化成不等式求解,,3,xy x y x y R xy x y +∈=+++例:已知求,的范围练习:10,0,80,xy x y x y xy >>++-=已知求的最大值20,0,228,2x y x y xy x y >>++=+求的最小值<3>若对于任意的正数x ,231x a x x ≤++恒成立,则a 的取值范围5.扩展21,112a b a b x y a b +≤≤≤=+若都是正数,则时成立33332,,,3,,,,,3a b c R a b c abc a b c a b c R a b c a b c a b c abc a b c ++∈++≥==∈++≥==++⎛⎫≤== ⎪⎝⎭当且仅当时,等号成立当且仅当时,等号成立当且仅当时,等号成立例题:29104x y x x>=+当时,求的最小值2320(32)2x y x x <<=-当时,求的最大值22233332019,,1,1111(2)()()()24a b c abc a b c a b ca b b c a c =⎡⎤⎣⎦++≤+++++++≥全国均为正数,且证明:()6.实际应用:<1>某工厂要建造一个长方体的无盖存水池,其容积为4800立方米,深为3米,如果池底造价为每平方米150元,池壁每平方造价为120元,怎么设计水池能使总造价最低?最低造价是多少?<2>十九大提出中国的电动汽车革命早已展开,通过新能源汽车替代汽油车,中国正大力实施一项计划,某企业计划引进新能源汽车生产设备,通过市场分析,全年需投入固定成本2500万元,当生产量为x(百辆)时,需另外投入成本C(x)万元,且210100,040()10000501,40x x xC xx xx⎧+<<⎪=⎨+≥⎪⎩,由市场调研可知,每辆车的售价为5万元,且全年内生产的车辆当年能全部销售完.(1)求今年的利润()L x(万元)关于生产量x(百辆)的函数关系式(2)今年生产量为多少百辆时,该企业获得的利润最大?并求出最大利润.。
基本不等式完整版一、知识点总结1.基本不等式原始形式:若 $a,b\in\mathbb{R}$,则 $a^2+b^2\geq 2ab$。
2.基本不等式一般形式(均值不等式):若 $a,b\in\mathbb{R^*}$,则 $a+b\geq 2\sqrt{ab}$。
3.基本不等式的两个重要变形:1)若 $a,b\in\mathbb{R^*}$,则 $\frac{a+b}{2}\geq \sqrt{ab}$。
2)若 $a,b\in\mathbb{R^*}$,则 $ab\leq\left(\frac{a+b}{2}\right)^2$。
总结:当两个正数的积为定值时,它们的和有最小值;当两个正数的和为定值时,它们的积有最小值。
特别说明:以上不等式中,当且仅当 $a=b$ 时取“=”。
4.求最值的条件:“一正,二定,三相等”。
5.常用结论:1)若 $x>0$,则 $x+\frac{1}{x}\geq 2$(当且仅当$x=1$ 时取“=”)。
2)若 $x<0$,则 $x+\frac{1}{x}\leq -2$(当且仅当 $x=-1$ 时取“=”)。
3)若 $a,b>0$,则 $\frac{a}{b}+\frac{b}{a}\geq 2$(当且仅当 $a=b$ 时取“=”)。
4)若 $a,b>0$,则 $ab\leq \left(\frac{a+b}{2}\right)^2\leq \frac{a^2+b^2}{2}$。
5)若 $a,b\in\mathbb{R^*}$,则 $\frac{1}{a+b}\leq\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\leq\frac{1}{2}\sqrt{\frac{1}{a^2}+\frac{1}{b^2}}$。
特别说明:以上不等式中,当且仅当 $a=b$ 时取“=”。
6.柯西不等式:1)若 $a,b,c,d\in\mathbb{R}$,则$(a^2+b^2)(c^2+d^2)\geq (ac+bd)^2$。
基本不等式基本不等式是数学中一个重要的概念。
其中,重要不等式指的是a²+b²≥2ab,当且仅当a=b时等号成立。
而基本不等式则是指a+b≥2√(ab),当且仅当a=b时等号成立。
此外,还有一条基本不等式是任意两个正数的算术平均数不小于它们的几何平均数。
在利用基本不等式求函数的最大值、最小值时,需要注意函数式中各项必须都是正数,含变数的各项的积或者必须是常数,等号成立条件必须存在。
举例来说,如果0<a<b且a+b=1,则a²+b²>2ab,a+b≥2√(ab),2ab<2(1/2-a)²,a²+b²>(1/2-a)²+(1/2-b)²,因此b 最大。
又如,如果a、b、c都是正数,则(a+b+c)(1/a+1/b+1/c)≥9,即a/b+b/a+b/c+c/b+c/a+a/c≥6,证明过程中利用了基本不等式。
例3、已知$a,b,c$为不等正实数,且$abc=1$。
求证:$a+b+c<\sqrt{a}+\sqrt{b}+\sqrt{c}$。
证明:根据柯西不等式,$(1+1+1)(a+b+c)\geq(\sqrt{a}+\sqrt{b}+\sqrt{c})^2$,即$3(a+b+c)\geq(a+b+c+2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ca})$。
因为$abc=1$,所以$2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ca}=2\sqrt{abc}(1/\sqrt{a}+1/\sqrt {b}+1/\sqrt{c})\leq3\sqrt[3]{abc}\cdot3=9$。
所以$3(a+b+c)\geq(a+b+c+9)$,即$2(a+b+c)\geq9$,即$a+b+c\geq\frac{9}{2}$。
又因为$a,b,c$不全相等,所以$a+b+c>\frac{9}{2}$。
基本不等式大全基本不等式是数学中的一个重要概念,有许多种不同的形式和用途。
以下是一些常见的基本不等式:1.均值不等式:a+b≥2\sqrt{ab} ,当且仅当a=b 时等号成立。
2.柯西不等式:如果a_i > 0, i=1,2,...,n, 则\sum_{i=1}^{n} a_i * b_i≥(\sum_{i=1}^{n} a_i)(\sum_{i=1}^{n} b_i)。
3.伯努利不等式:如果x > 0, n > 0, 则(1 + x)^n ≥1 + nx。
4.赫尔德不等式:如果f(x) 是[a, b] 上的非负连续函数,则对于所有满足a ≤x ≤b 的x,有\int_{a}^{b} f(x) dx ≤(b-a) * f(a) + f(b)。
5.琴声不等式:如果a_i > 0, i=1,2,...,n, 则\sum_{i=1}^{n} a_i^n ≥(\sum_{i=1}^{n} a_i)^n。
6.杨氏不等式:对于任意的实数a, b,都有a^2+b^2≥2ab,当且仅当a=b时等号成立。
7.三角不等式:对于任意的实数x, y,都有|x+y|≤|x|+|y|,当且仅当x与y同号时等号成立。
8.绝对值不等式:对于任意的实数x, y,都有|x-y|≤|x|+|y|,当且仅当x与y异号时等号成立。
9.权方和不等式:如果a_i > 0, i=1,2,...,n, 则\sum_{i=1}^{n} a_i *\frac{b_i}{a_i} ≥(\sum_{i=1}^{n} b_i)(\sum_{i=1}^{n} \frac{1}{a_i})。
以上这些基本不等式在数学学习和应用中都非常重要,希望能帮助到你。