钢材技术要求-钢材热处理
- 格式:docx
- 大小:36.81 KB
- 文档页数:3
钢的五种热处理工艺热处理工艺——表面淬火、退火、正火、回火、调质工艺:1、把金属材料加热到相变温度(700度)以下,保温一段时间后再在空气中冷却叫回火。
2、把金属材料加热到相变温度(800度)以上,保温一段时间后再在炉中缓慢冷却叫退火。
3、把金属材料加热到相变温度(800度)以上,保温一段时间后再在特定介质中(水或油)快速冷却叫淬火。
◆表面淬火•钢的表面淬火有些零件在工件时在受扭转和弯曲等交变负荷、冲击负荷的作用下,它的表面层承受着比心部更高的应力。
在受摩擦的场合,表面层还不断地被磨损,因此对一些零件表面层提出高强度、高硬度、高耐磨性和高疲劳极限等要求,只有表面强化才能满足上述要求。
由于表面淬火具有变形小、生产率高等优点,因此在生产中应用极为广泛。
根据供热方式不同,表面淬火主要有感应加热表面淬火、火焰加热表面淬火、电接触加热表面淬火等。
感应表面淬火后的性能:1.表面硬度:经高、中频感应加热表面淬火的工件,其表面硬度往往比普通淬火高2~3单位(HRC)。
2.耐磨性:高频淬火后的工件耐磨性比普通淬火要高。
这主要是由于淬硬层马氏体晶粒细小,碳化物弥散度高,以及硬度比较高,表面的高的压应力等综合的结果。
3.疲劳强度:高、中频表面淬火使疲劳强度大为提高,缺口敏感性下降。
对同样材料的工件,硬化层深度在一定范围内,随硬化层深度增加而疲劳强度增加,但硬化层深度过深时表层是压应力,因而硬化层深度增打疲劳强度反而下降,并使工件脆性增加。
一般硬化层深δ=(10~20)%D。
较为合适,其中D。
为工件的有效直径。
◆退火工艺退火是将金属和合金加热到适当温度,保持一定时间,然后缓慢冷却的热处理工艺。
退火后组织亚共析钢是铁素体加片状珠光体;共析钢或过共析钢则是粒状珠光体。
总之退火组织是接近平衡状态的组织。
•退火的目的①降低钢的硬度,提高塑性,以利于切削加工及冷变形加工。
②细化晶粒,消除因铸、锻、焊引起的组织缺陷,均匀钢的组织和成分,改善钢的性能或为以后的热处理作组织准备。
钢的热处理第一章钢的热处理热处理工艺包括:将钢材或钢制件加热到预定温度,在此温度下保温一定时间。
然后一定的冷却速度冷却下来,达到热处理所预定的对钢材及钢制件的组织与性能的要求。
1□□钢的加热1.1□制定钢的加热制度加热温度、加热速度、保温时间。
1.1.1加热温度的选择加热温度取决于热处理的目的。
热处理分为:淬火、退火、正火、和回火等。
淬火的目的是为了得到细小的马氏体组织,使钢具有高的硬度;退火及正火的目的是获得均匀的珠光体组织,因此其加热温度不同。
在具体制定加热温度时应按以下原则:热处理工艺种类及目的要求;被加热钢材及钢制件的化学成分和原始状态;钢材及钢制件的尺寸和形状以及加热条件来制定。
对于碳钢及低合金钢的加热温度:亚共析钢淬火温度:A C3以上30~50℃;过共析钢淬火温度:A C3以上30~50℃;亚共析钢完全退火:A C3以上20~30℃;过共析钢不完全退火:A C3以上20~30℃;正火A C3或A CM以上30~50℃;1.1.2加热速度的选择必须根据钢的化学成分及导热性能;钢的原始状态及应力状态;钢的尺寸及形状来确定加热速度。
如钢的原始状态存在着铸造应力或轧煅热变形残余应力时,在加热是应特别注意。
对这类钢要特别控制低温阶段的加热速度。
钢的变形与热裂倾向是以钢的化学成分及原始状态不同而不同,主要有以下几点:a) 低碳钢比高碳钢热烈倾向小;b) 碳钢比合金钢变形开裂倾向小;c) 钢坯和成品件比钢锭变形和开裂倾向小;d) 小截面比大截面的钢变形和开裂倾向小。
1.1.3钢在加热时的缺陷a) 过热:过热就是由于加热温度过高,加热时间过长使奥氏体晶粒过分长大。
粗大的奥氏体晶粒在冷却时产生粗大的组织,并往往出现魏氏组织,结果是钢的冲击韧性、塑性明显下降。
已过火的钢可以在次正火或退火加以纠正。
b) 强烈过热:加热温度过高或加热保温时间过长,使氧或硫沿晶界渗入钢中或者钢中的硫与氧在高温下溶解于奥氏体中,在冷却过程中硫或氧以化合物形态沿粗大的奥氏体晶界析出。
产品常用钢材热处理硬度的一般要求
钢材热处理是一种通过控制材料的加热和冷却过程来改变其物理和机械性能的方法。
其中,硬度是衡量材料抵抗变形和划痕的重要指标之一。
对于不同的产品和应用,钢材热处理硬度要求也有所不同。
1. 低硬度要求
对于一些需要具有良好韧性和可加工性的产品,如汽车车身件、机械零件等,常常要求钢材经过热处理后具有较低的硬度。
这样可以保证材料具备一定的延展性和可塑性,以便在使用过程中能够承受一定的冲击和变形。
2. 中等硬度要求
在一些工程结构中,需要钢材具有一定的硬度和强度,同时又要保持一定的可加工性。
这些产品包括建筑结构用钢、机械设备用钢等。
在热处理过程中,通过控制加热和冷却的速度,可以使钢材达到中等硬度要求。
这样可以保证产品具备足够的强度和硬度,以满足使用要求。
3. 高硬度要求
一些特殊应用领域,如刀具、模具等,对钢材的硬度要求非常高。
这些产品需要具备较高的耐磨性和切削性能。
在热处理过程中,通过控制加热和冷却的方式和时间,可以使钢材达到较高的硬度。
常用的热处理方法包括淬火、回火等,可以使钢材达到所需的高硬度
要求。
总结起来,产品常用钢材热处理硬度的一般要求可以分为低硬度要求、中等硬度要求和高硬度要求三个层次。
根据不同的产品和应用领域,可以选择适当的热处理方法和工艺参数,使钢材具备所需的硬度和性能。
在实际生产中,需要根据具体的材料和要求来确定热处理过程,以保证产品的质量和性能。
希望以上对于产品常用钢材热处理硬度的一般要求的讨论能够对你有所帮助。
常用钢材热处理方法及目的常用钢材热处理方法一.淬火将钢制零件加热到临界温度以上40~60℃,保持一定时间并快速冷却的热处理方法称为淬火。
常用的快速冷却介质为油、水和盐水溶液。
淬火加热温度及冷却介质热处理规范见表淬火的目的是:使钢件获得高的硬度和耐磨性,通过淬火钢件的硬度一般可达hrc60~65,但淬火后钢件内部产生了内应力,使钢件变脆,因此,要经过回火处理加以消除。
钢件的淬火处理,在机械制造过程中应用比较普遍,它常用的方法有:1.单液淬火:将钢件加热至淬火温度,并在一种冷却剂中冷却一段时间。
这种热处理方法称为单液淬火。
适用于形状简单、技术要求低的碳钢或合金钢,以及工件直径或厚度大于5~8mm的碳钢,用盐水或水冷却;油冷却用于合金钢。
在单液淬火中,水冷容易变形和开裂;油冷却容易产生硬度不足或不均匀。
2.双液淬火:将钢件加热到淬火温度,经保温后,先在水中快速冷却至300~400℃,在移入油中冷却,这种处理方法,称为双液淬火。
形状复杂的钢件,常采用此方法。
它既能保证钢件的硬度,又能防止变形和裂纹。
缺点是操作难度大,不易掌握。
3.火焰表面淬火:将乙炔和氧气的混合燃烧火焰喷在工件表面,加热至淬火温度,然后立即向工件表面喷水。
这种处理方法称为火焰表面淬火。
适用于单件生产,要求高表面或局部表面硬度和耐磨钢件。
缺点是操作困难。
4.表面感应淬火:将钢件放人感应器内,在中频或高频交流电的作用下产生交变磁场,钢件在磁场作用下产生了同频率的感应电流,使钢件表面迅速加热(2-10s)至淬火温度,立即把水喷射到钢件表面。
这种热处理方法,称为表面感应淬火。
经表面感应淬火的零件,表面硬而耐磨,而内部有较好的强度和韧性。
这种方法适用于中碳钢和中等含碳量的合金钢件。
根据电流频率的不同,表面感应淬火可分为高频淬火、中频淬火和工频淬火。
高频淬火电流频率为100~150kHz,硬化层深度为1~3mm。
适用于齿轮、花键轴、活塞等小零件的淬火;中频淬火电流频率为500~10000Hz,硬化层深度为3~10mm。
常用钢热处理工艺热处理是一种通过改变金属结构来改善其力学性能的方法。
常用钢热处理工艺包括退火、正火、淬火、回火和表面淬火等。
下面对这几种常用钢热处理工艺进行详细介绍。
1. 退火退火是指将钢加热到一定温度,然后缓慢冷却。
退火工艺分为完全退火和等温退火两种。
完全退火是将钢材加热至超过临界温度,然后慢慢降温。
等温退火是将钢材加热至超过临界温度,然后在等温时间内,使钢材的温度均匀,从而使钢材的组织变得均匀,于是提高了钢材的韧性。
2. 正火正火是将钢加热到一定温度,然后快速冷却。
正火一般分为低温正火,中温正火和高温正火三种。
低温正火使钢材的硬度提高,但是韧性降低。
高温正火使钢材的韧性提高,但是硬度降低。
中温正火平衡了钢材的硬度和韧性。
3. 淬火淬火是指将钢加热到超过临界温度,然后快速冷却。
淬火一般分为油淬、水淬和气淬三种。
油淬适用于要求较低的钢材,水淬适用于要求较高的钢材,气淬适用于要求最高的钢材。
淬火后钢材的硬度很高,但是韧性降低,此时需要回火来消除内部应力,提高钢材的韧性。
4. 回火回火是将淬火后的钢在一定温度下加热一段时间,然后由于自然冷却所形成的工艺。
回火分为低温回火和高温回火两种。
低温回火提高了钢材的韧性,但是硬度降低。
高温回火提高了钢材的韧性,但是硬度降低。
5. 表面淬火表面淬火是一种特殊的热处理工艺,用于提高钢材的表面硬度和耐磨性。
表面淬火和淬火不同的是,只在钢材表面进行加热和快速冷却。
这种技术对钢材表面的耐磨性提高很大,但是对钢材硬度的提高不大。
总之,钢材热处理是提高钢材力学性能的重要方法,常用的钢热处理工艺包括退火、正火、淬火、回火和表面淬火等。
选择适当的热处理工艺可以使钢材达到最佳的机械性能。
钢管的热处理,退火与正火最常用的无缝钢管,精密网管的热处理工艺分为两大类:预备热处理目的:消除坯料、半成品中的某些缺陷,为后续冷加工,最终热处理作组织准备。
最终热处理目的:使工件获得所要求的性能。
退火与正火的目的:消除钢材经热加工所引起的某些缺陷,或为以后的切削加工及最终热处理做好组织准备。
一、钢的退火1、概念:将钢件加热到适当温度 (Ac 1 以上或以下),保持一定时间,然后缓慢冷却以获得近于平衡状态组织的热处理工艺称为退火。
2、目的:(1)降低硬度,提高塑性,(2)细化晶粒,消除组织缺陷(3)消除内应力(4)为淬火作好组织准备3、类型:(根据加热温度可分为在临界温度(Ac1或Ac3)以上或以下的退火,前者又称相变重结晶退火,包括完全退火、扩散退火均匀化退火、不完全退火、球化退火;后者包括再结晶退火及去应力退火。
)(1)完全退火:1)概念:将亚共析钢(Wc=0.3%~0.6%)加热到AC3+(30~50)℃,完全奥氏体化后,保温缓冷(随炉、埋入砂、石灰中),以获得接近平衡状态的组织的热处理工艺称为完全退火。
2)目的:细化晶粒、均匀组织、消除内应力、降低硬度、改善切削加工性能。
3)工艺:完全退火采用随炉缓冷可以保证先共析铁素体的析出和过冷奥氏体在Ar1以下较主温度范围内转变为珠光体。
工件在退火温度下的保温时间不仅要使工件烧透,即工件心部达到要求的加热温度,而且要保证全部看到均匀化的奥氏体,达到完全重结晶。
完全退火保温时间与钢材成分、工件厚度、装炉量和装炉方式等因素有关。
实际生产时,为了提高生产率,退火冷却至600℃左右即可出炉空冷。
4)适用范围:中碳钢和中碳合金钢的铸,焊,锻,轧制件等。
注意事项:低碳钢和过共析钢不宜采用完全退火。
低碳钢完全退火后硬度偏低,不利于切削加工。
过共析钢加热至Accm以上奥氏体状态缓冷退火时,有网状二次渗碳体析出,使钢的强度、塑性和冲击韧性显著降低。
文章来自网络由"常州精密钢管博客"整理发布,转载请注明出处.(2)球化退火1)概念:使钢中碳化物球状化而进行的退火工艺称为球化退火。
钢材热处理硬度标准
一、低碳钢
低碳钢是指碳含量较低的钢材,其热处理硬度标准通常在HRC (Rockwell硬度)标度下进行评估。
以下是低碳钢热处理硬度标准的一般范围:
1. 软态(软退火):HRC 20-30
2. 中态(退火):HRC 30-45
3. 硬态(正火):HRC 45-60
4. 过热(淬火):HRC 60-75
5. 回火:根据回火温度的不同,硬度会有所变化,回火温度越高,硬度越低。
二、中碳钢
中碳钢是指碳含量适中的钢材,其热处理硬度标准范围较广。
以下是中碳钢热处理硬度标准的一般范围:
1. 软态(软退火):HRC 20-30
2. 中态(退火):HRC 30-45
3. 硬态(正火):HRC 45-65
4. 过热(淬火):HRC 65-80
5. 回火:根据回火温度的不同,硬度会有所变化,回火温度越高,硬度越低。
三、高碳钢
高碳钢是指碳含量较高的钢材,其热处理硬度标准通常在HRC标
度下进行评估。
以下是高碳钢热处理硬度标准的一般范围:
1. 软态(软退火):HRC 20-30
2. 中态(退火):HRC 30-45
3. 硬态(正火):HRC 45-70
4. 过热(淬火):HRC 70-85
5. 回火:根据回火温度的不同,硬度会有所变化,回火温度越高,硬度越低。
需要注意的是,具体的热处理硬度标准可能会因不同的钢材类型、制造工艺和应用要求而有所差异。
在实际操作中,应根据具体的钢材类型和制造要求来确定热处理工艺和硬度标准。
钢的热处理及机械性能表机械性能钢号热处理技术要求工艺规范бsN/㎜2бb N/㎜2δs (%)ψ%akJ/cm 2HBSHRS应 用 范 围 举 例表面硬度能达到要求的最大断面寸 ㎜Q235-A热 轧185~235375~46021~26————————用于轻负荷、不受摩擦的地脚螺钉、螺母、垫圈等零件和水槽、油箱、电器柜、防护罩、盖板、托盘等焊接构件。
16Mn热 轧274.5~235460.7-509.919~21————————用于强度较高的焊接构件和磨床砂轮罩壳等热 轧——510-655≥15≥25——≤187——Y30冷 拉——540-825≥6————174-223——用于在自动机上大量加工,强度要求不高的各种紧固件等热 轧——590-735≥14≥20——≤207——Y40Mn冷拉后高温回火——590-785 ≥17————179-229——用于要求切削加工性好、表面粗糙度低,精度为7-9级的丝杠等零件。
YF40M nV不热处理热 轧≥490≥780≥15≥40≥39230-260——用于强度、硬度均与45钢调质状态水平相当。
精度7-9级的丝杠、光杠、轴类等零件。
Th≤131960-1000℃炉冷——————————≤131——用于要求磁导率较高,剩磁较少的电磁铁、电磁吸盘等电器零件。
08Z 910-940℃空冷≥195≥325≥33≥60——————用于深冲、冷作的零件15Z≤143910-940℃空冷≥225≥375≥27≥55≥63.7≤143——用于离心浇铸双金属套的基体材料Z≤187850-870℃空冷≥314≥529≥20≥45≥88≤187用于负荷较小和无耐磨性要求的轴、拉杆、手柄等零件。
不限35C35830-850℃淬火380-420℃回火≥637≥980≥8≥30≥59——35-40用于具有较高强度的螺钉、螺母、销、挡铁、垫圈等各种标准件≤50Z170~217840-860℃空冷≥353≥598≥16≥40≥49170-217——用于负荷不大的轴、丝杠、套筒、齿轮等零件不限45T215820-840℃淬火600-640℃≥54474026.568159200-230——用于要求强度不高的齿轮、蜗杆、丝杠等零件≤804 131 2016机械性能钢号热处理技术要求工艺规范бsN/㎜2бbN/㎜2δs(%)ψ%akJ/cm2HBS HRS应用范围举例表面硬度能达到要求的最大断面尺寸㎜T235820-840℃淬火570-600℃回火60882423.565171220-250——用于承受中等负荷、低速工作的轴、花键套、套、大型定位销等零件250-280T265T285820-840℃淬火530-580℃回火72694118.561156270-300——用于主轴、套筒、花键轴、丝杆、中等模数的齿轮等零件C35810-830℃淬火400-450℃回火≥637≥882≥15≥40≈39——35-40用于具有较高强度的螺钉、螺母、销、垫圈等各种标准件≤80 C42810-830℃淬火350-370℃回火≥980≥1176≥10≥40≥59——42-47用于要求强度、硬度较高、形状简单的离合器、齿轮、轴、销、挡铁等零件≤50 C48810-830℃淬火240-280℃回火≥931≥1176≥6≥22————48-53用于要求强度、硬度、耐磨性较高、且不受冲击的轴、齿轮、卡爪等零件≤30G48T-G48860-900℃淬火180-200℃回火————————————48-53用于小负荷、中等速度工作尺寸较大的齿轮、离合器和大轴零件。
钢的普通热处理方法:
1.正火:将钢加热到适当温度,保温一段时间后取出在空气中
冷却。
正火的主要应用范围有:用于低碳钢,正火后硬度略高于退火,韧性也较好,可作为切削加工的预处理;用于中碳钢,可代替调质处理作为最后热处理,也可作为用感应加热方法进行表面淬火前的预备处理;用于工具钢、轴承钢、渗碳钢等,可以消降或抑制网状碳化物的形成,从而得到球化退火所需的良好组织;用于铸钢件,可以细化铸态组织,改善切削加工性能;用于大型锻件,可作为最后热处理,从而避免淬火时较大的开裂倾向;用于球墨铸铁,使硬度、强度、耐磨性得到提高,如用于制造汽车、拖拉机、柴油机的曲轴、连杆等重要零件。
2.淬火:将钢加热至高温后快速冷却,使其硬化。
淬火的主要
目的是提高钢的硬度、强度和耐磨性。
3.回火:将淬火后的钢加热到一定温度并保温一段时间,然后
冷却。
回火的主要目的是消除淬火产生的内应力,降低硬度和脆性,以取得预期的力学性能。
4.退火:将钢加热至适当温度并保温一段时间后缓慢冷却。
退
火的主要目的是调整硬度以方便切削加工,消除内应力,稳定尺寸,防止加工中变形。
退火还能细化晶粒,改善组织。
5.表面热处理:包括表面淬火和火焰加热表面淬火等。
表面热
处理的主要目的是提高材料表面的硬度和耐磨性。
6.化学热处理:包括渗碳、渗氮、碳氮共渗等。
化学热处理的
主要目的是改变材料表面的化学成分,以提高其耐腐蚀性和耐磨性。
钢材常用的热处理方法及常见零件的热处理工艺一、钢材常用的热处理方法1、正火钢的正火就是将钢加热到适当温度,保温一定时间,然后在空气中进行冷却。
正火的目的是为了材料的组织均匀,增加强度与靭性,消除粗切削加工后的加工硬化现象,改善切削加工性能,并为其后的淬火做细化晶粒的组织准备。
2、淬火钢的淬火就是将钢加热到临界温度以上,保持一定时间,然后在适当的淬火介质中进行冷却,以获得较好的组织结构和性能。
钢经过淬火后,其硬度和强度均显著提高。
钢的加热情况可以其灼热的颜色来判定。
钢加热温度的选择见表1。
钢经过淬火,虽然会提高其硬度和强度,但由于淬火会产生内应力使钢变脆,所以淬火后必须进行回火。
3、回火钢的回火就是将钢件淬火后再加热到适当温度,并保温一定时间,然后在空气中或在水、油等介质中冷却到室温。
回火的目的是为了消除淬火时产生的内应力,减少脆性,提高钢的塑性和韧性,改善加工性能。
钢的回火分为高温回火、中温回火和低温回火3种。
碳素工具钢的回火温度见表2。
表2碳素工具钢的回火温度4、退火钢的退火就是将钢加热到临界温度以上,保温适当时间,然后在炉中缓缓冷却。
退火的目的是为了消除内应力和组织不均匀及晶粒粗大等现象,降低硬度,消除坯件的冷硬现象,提岛切削加工性能。
碳钢的退火规范见表3。
表3碳钢的退火规范注:临界温度是指在该温度下,钢的组织发生了变化。
二、几种常见零件的热处理1、齿轮机床齿轮的热处理见表3。
2、蜗轮蜗轮的热处理见表43、丝杠丝杠广泛应用于机床和各种机械的传动机构中。
丝杠传动能保证直线移动有较高的精确性和均匀性。
为此,丝杠必须具有一定的强度及较高的耐磨性和精度保持性。
丝杠的材料必须具有足够的机械性能和良好的切削加工性。
经过热处理后,应具有较高的硬度和最小的变形。
为了避免弯曲变形,丝杠的热处理通常都在井式炉中进行。
丝杠如果变形,必须进行校直(并且,最好是热校直)。
但是经过校直的丝杠,必须进行彻底的消除内应力的处理。
第五章钢的热处理热处理——固态下,通过加热、保温、冷却、改变组织得到所需性能的工艺方法。
•特点:在固态下,只改变工件的组织,不改变形状和尺寸•目的:改善材料的使用、工艺性能•基本过程:加热→保温→冷却•分类:1、普通热处理——退火、正火、淬火、回火2、表面热处理——表面淬火、化学热处理第一节钢在加热时的组织转变实际加热和冷却时的相变点:平衡时—— A1 A3 Acm加热时—— Ac1 Ac3 Accm冷却时—— Ar1 Ar3 Arcm一、奥氏体的形成加热工序的目的:得到奥氏体F + Fe3C → A结构体心复杂面心含碳量 0.0218 6.69 0.77共析钢奥氏体形成过程:1、形核(在 F / Fe3C相界面上形核)2、晶核长大(F→ A晶格重构,Fe3C溶解,C→ A中扩散)3、残余Fe3C溶解4、奥氏体均匀化保温工序的目的:得到成分均匀的奥氏体,消除内应力,促进扩散对亚共析钢: P + F → A + F → A对过共析钢: P + Fe3CⅡ→ A + Fe3CⅡ→ A二、奥氏体晶粒长大及其影响因素1、奥氏体晶粒度•晶粒度——晶粒大小的尺度。
•本质粗晶粒钢——长大倾向较大(Al脱氧)•本质粗晶粒钢——长大倾向较小(Mn,Si脱氧)2、影响奥氏体晶粒长大的因素(1)加热温度↑,保温时间↑→ A晶粒长大快(2)加热速度↑→ A晶粒细(3)加入合金元素→ A晶粒细(4)原始组织细→ A晶粒细第二节钢在冷却时的组织转变冷却方式:等温冷却和连续冷却。
45钢加热后,随冷却速度的增加,强度、硬度增加,但塑性、韧性降低。
冷却是热处理的关键,故必须研究奥氏体冷却过程的变化规律。
一、过冷奥氏体等温转变1、共析钢过冷奥氏体等温转变曲线(C曲线或TTT线)的建立•过冷奥氏体:在A1以下,未发生转变的不稳定奥氏体。
•孕育期——表示过冷A 的稳定程度•四个区域——奥氏体稳定区、过冷奥氏体区、转变产物区、转变区•三种转变类型:高温转变(A1~550℃):A → P中温转变(550~230℃):A → B低温转变(230℃以下):A → M2、过冷奥氏体等温转变产物的组织和性能(1)珠光体转变•珠光体组成:F 和 Fe3C 的机械混合物•形成特点:在固态下形核、长大是扩散型相变•形态:A1~650℃:珠光体 P 20HRc 片状650~600℃:索氏体 S(细P)…600~550℃:托氏体 T(极细P又称屈氏体)40HRc 球状—— Fe3C 呈球状•珠光体性能珠光体片越细→ HB↑,σb↑且δ↑,αk↑C%相同时,球状 P 比片状 P 相界面少→HB↓,σb↓,δ↑,αk↑(2)贝氏体转变•贝氏体组成:过饱和F 和碳化物的机械混合物•形成特点:在固态下形核、长大是半扩散型相变•形态:550~350℃:上贝氏体(B上)羽毛状组织塑性差40-45HRc 350℃~ Ms:下贝氏体(B下)针片状组织综合性能好45-50HRc过冷奥氏体在Ms点以下,A→M属连续冷却转变。
钢材技术要求-钢材热处理
本文档旨在提供钢材热处理的技术要求,以确保钢材达到所需
的性能和质量标准。
1. 热处理方法
钢材的热处理可以采用以下方法之一:
- 火焰加热:通过高温火焰将钢材加热至所需温度,然后冷却。
- 感应加热:利用电磁感应将钢材加热至所需温度,然后冷却。
- 轧制加热:将钢材通过轧机滚动加热至所需温度,然后冷却。
- 电阻加热:利用电流通过钢材产生热量将其加热至所需温度,然后冷却。
2. 温度控制
在热处理过程中,必须严格控制钢材的加热和冷却温度。
具体
要求如下:
- 加热温度:根据钢材类型及所需性能确定加热温度范围。
- 保温时间:根据钢材的尺寸和厚度,以及所需性能,确定保
持所需温度的时间。
- 冷却速率:根据钢材的组织结构和性能要求,确定合适的冷
却速率。
3. 热处理工艺
热处理工艺是指采用特定的加热、保温和冷却方法来改变钢材
的性能和组织结构。
具体工艺应根据钢材的类型和性能要求来确定。
- 淬火工艺:通过迅速冷却钢材以获得高硬度和高强度。
- 回火工艺:在淬火后将钢材加热至适当温度并保持一段时间,以减轻内应力并提高韧性。
- 规定温度回火:在回火时严格控制温度,以确保钢材达到特
定的硬度要求。
4. 检测和验收
完成热处理后,应对钢材进行检测和验收,以确保其满足技术要求。
可采用以下检测方法:
- 硬度测试:通过测量钢材硬度来评估其机械性能。
- 组织观察:通过金相显微镜观察钢材的组织结构来评估其质量。
- 化学成分分析:对钢材的化学成分进行分析以确保其符合规定标准。
以上就是钢材热处理的技术要求。
通过遵循这些要求,您可以确保钢材达到所需的性能和质量标准。