2016年秋季新版北师大版八年级数学上册导学案:第三章《位置与坐标》复习小结
- 格式:doc
- 大小:148.50 KB
- 文档页数:3
北师大版八年级数学上第三章-位置与坐标--复习(教案)位置的确定考点1:直角坐标系(一)、考点讲解:1.平面直角坐标系:(1)在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系.通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向.水平的数轴叫做x轴或横轴,铅直的数轴叫做y轴或纵轴,x轴和y 轴统称坐标轴,它们的公共原点O称为直角坐标系的原点.这个平面叫做坐标平面.(2)两条坐标轴把平面分成四个部分:右上部分叫做第一象限,其他三个部分按逆时针方向依次叫做第二象限、第三象限和第四象限(如图1-5-1所示).2.点的坐标:(1)对于平面内任意一点P,过点P分别向x轴、y 轴作垂线,垂足在x轴y轴上对应的数a、b分别叫做点P的横坐标、纵坐标.有序数对(a、b)叫做点P的坐标.(2)坐标平面内的点可以用有序实数对来表示反过来每一个有序实数对都能用坐标平面内的点来表示;即坐标平面内的点和有序实数对是一一对应关系.(3)设P(a、b),若a=0,则P在y轴上;若b=0,则P在x轴上;若a+b=0,则P点在二、四象限两坐标轴夹角平分线上;若a=b,则P点在一、三象限两坐标轴夹角的平分线上.(4)设P1(a,b)、P2(c,d),若a=c,则P;P2∥y轴;若b=d,则P;P2∥x轴.(二)、经典考题剖析:【考题1-1】如图1-5-2所示,○士所在位置的坐标为(-1,-2),相所在位置的坐标为(2,2那么,"炮"所在位置的坐标为______.解:(-3,1)点拨:由图可知,帅上第二点为(0,0)即坐标原点.(三)、针对性训练:(10 分钟)1、已知点P在第二象限,且到x轴的距离是2,到y轴的距离是3,则P点坐标为___________2.坐标平面内的点与___________ 是一一对应关系.3.若点M (a,b)在第四象限,则点M(b-a,a-b)在()A.第一象限B.第二象限C.第三象限D.第四象限4.若P(x,y)中xy=0,则P点在()A.x轴上B.y轴上C.坐标原点D.坐标轴上5.若P(a,a-2)在第四象限,则a的取值范围为()A.-2<a<0 B.0<a<2 C.a>2 D.a<0A.第一象限B.第M象限C.第M象限D.第四象限5.已知点A(2,-3)它关于x轴的对称点为A1,它关于y轴的对称点为A2,则A1、A2的位置有什么关系?6.已知点A(2,-3)①试画出A点关于原点O的对称点A1;②作出点A关于一、三象限两坐标轴夹角平分线的对称点B,并求B点坐标.7.在平面直角坐标系中,如图1-5-4,矩形OABC的OA= 3 ,AB=l,将矩形OABC沿OB对折,点A落在点A′上,求A′点坐标.如图1-5-4考点3:确定位置(一)、考点讲解:确定位置的方法主要有两种:(1)由距离和方位角确定;(2)建立平面直角坐标系由一对有序实数对确定.(二)、经典考题剖析:【考题3-1】在一次中学生野外生存训练活动中,每位队员都配发了一张地图,并接到训练任务:要求36小时之内到达目的地,但是,地图上并未标明目的地的具体位置,仅知道AJ两地坐标分别为(-3,2)、B(5,2)且目的地离A、B两地距离分别为10、6,如图1-5-5(1)所示,则目的地的确切位置的坐标为___________.解:(5,8)或(5,-4)点拨:如图1-5-5(2)先由A或B位置确定坐标原点和目的地位置,再构造直角三角形求目的地的确切位置的坐标.【考题3-2】小明的爷爷退休后生活可丰富啦!下表是他某日的活动安排,和平广场位于爷爷家东400米,老年大学位于爷爷家西600米,从爷爷家到和平路小学需先向南走300米,再向西走400米.(1)请依据图1-5-6中给定的单位长度,在图中标出和平广场A、老年大学B与和平路小学C的位置;(2)求爷爷家到和平路小学的直线距离.(2)22+=即爷爷家到和平路小学的距离300400500为500米.点拨:可以用方向和距离确定一个点的位置,也可以用一对有序实数对确定一个点的位置.(三)、针对性训练:( 10分钟)1.若船A在灯塔B的西南方问,图上距离为3 cm,请画图确定船和灯塔的相对位置.2.如图1-5-8,A、B、C三点分别表示政府、学校、商场中的某一处,政府和商场分别在学校的北偏西方向,商场又在政府的北偏东方向,则图中A表示_________,B表示_______ ,C表示________3.电脑的屏幕可以看作由许多格点组成的,如果在电脑屏幕上建立平面直角坐标系,把屏幕左下方的点的坐标为(0,0),右上方的点的坐标为(640,480)则电脑屏幕中心的点的坐标为__________.4.李明、王超、张振家及学校的位置如图1-5-9所示.⑴学校在王超家的北偏东_______度方向上,与王超家大约_________米。
新北师大版八年级数学上册第四章位置与坐标一、生活中确定位置的方法(重难点)1、行列定位法把平面分成若干个行列的组合,然后用行号和列号表示平面中点的位置,要准确表示平面中的位置,需要行号、列号两个独立的数据,缺一不可。
2、方位角加距离定位法此方法也叫极坐标定位法,是生活中常用的方法。
在平面中确定位置时需要两个独立的数据:方位角、距离。
特别需要注意的是中心位置的确定。
3、方格定位法在方格纸上,一点的位置由横向方格数和纵向方格数确定,记作(横向方个数,纵向方个数)。
需要两个数据确定物体位置。
4、区域定位法是生活中常用的方法,也需要两个数据才能确定物体的位置。
此方法简单明了,但不够准确。
A1区,D3区等。
5、经纬度定位法利用经度和纬度来确定物体位置的方法,也同时需要两个数据才能确定物体的位置。
二、平面直角坐标系1、平面直角坐标系及相关概念(重点)在平面内,两条相互垂直且有公共原点的数轴组成平面直角坐标系,简称直角坐标系。
通常两条数轴位置水平和垂直位置,规定水平轴向右和垂直轴向上为两条数轴的正方向。
水平数轴称为x轴或横轴,垂直数轴称为y轴或者纵轴,x 轴、y轴统称坐标轴,公共原点O称为坐标系的原点。
两条数轴把平面划分为四个部分,右上部分叫做第一象限,其余部分按逆时针方向分别叫做第二、第三、第四象限。
2、点的坐标表示(重点)在平面直角坐标系中,平面上的任意一点P,都可以用坐标来表示。
过点P 分别向x轴、y轴作垂线,垂足在x轴、y轴上对应的数a、b分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标。
在平面直角坐标系中,平面上的任意一点P,都有唯一一对有序实数(即点的坐标)与它对应;反之,对于任意一对有序实数,都可以在平面上找到唯一一点与它对应。
3、特殊位置上点的坐标特点(难点)(1)坐标轴上点的坐标特点x轴上点的纵坐标为0;y轴上点的横坐标为0;原点的横坐标、纵坐标都为0。
(2)余坐标轴平行直线上点的坐标特点与x轴平行直线上所有点的纵坐标相同;与y轴平行直线上所有点的横坐标相同。
北师大版八年级数学上册
《第三章位置与坐标》复习课教案
阜新市二十四中学曹文君
学习目标:
1.从现实生活中体会确定位置的不同方法,感受确定位置的多样性;
2.掌握利用直角坐标系确定位置的方法;
3.会用平面直角坐标系来解决一些简单的实际问题;
学习过程:
活动1------知识梳理
1、举例说明:在平面内,确定点的位置一般需要几个数据?
2、举例说明:平面直角坐标系中,如何确定给定点的坐标?给定坐标,如何确定对应的点?
3、举例说明:平面直角坐标系中,坐标轴上点的坐标特点?平行于坐标轴的线段上点的坐标特点?
4.平面直角坐标系中,关于坐标轴对称的点的坐标之间关系?
5、通过上述知识的回顾,请你整理出本章的知识框架图:
活动2------典型例析
(四)求点的坐标
活动3------回顾与小结。
新北师大版八年级数学上册第三章位置与坐标导学案第三章位置与坐标第一节确定位置研究目标:1.了解确定位置的必要性,掌握确定位置的基本方法。
2.通过观察、操作和活动,感受现实背景,体验多种确定位置的方式,增强研究兴趣。
研究重难点:熟练掌握多种确定物体位置的方法,能够灵活运用不同的方式进行定位。
研究方法:自主探究和小组合作。
研究过程:模块一:预反馈一、研究准备1.数轴:画一条水平线,在直线上选取一点O作为起点,然后规定直线向右为正方向,这样就得到了数轴。
2.任何一个点都可以用数轴上的坐标来表示。
3.阅读教材:第一节“确定位置”。
二、教材精读4.行列定位法行列定位法通常将平面分成若干行和列,然后利用行号和列号来表示平面上点的位置。
为了准确标记某点的位置,需要两个独立的数据,缺一不可。
例如,XXX的座位号是(10,12),表示他在第10排第12座。
如果XXX的座位号是(10,14),那么他应该怎么找到自己的位置呢?我们可以先找到第10排,然后在第10排中找到第14座。
总结:在行列定位法中,确定行列的先后顺序是解决问题的关键。
实践练:1.在电影票上,“6排3号”和“3排6号”中的“6”分别表示什么?2.如果电影院中第3排第8座的位置记为(3,8),那么“第8排第3座”的位置应该记为什么?3.(5,6)表示什么位置?5.方位角加距离定位法方位角加距离定位法也叫做极坐标定位法,是生活中常用的一种方法。
使用这种方法,需要知道两个数据:一个是方位角,一个是距离。
特别要注意确定中心位置。
例如,在海战中,我方潜艇要确定XXX方向上的目标的位置,还需要什么数据呢?如果要确定敌舰B的位置,需要什么数据?如果要确定每艘敌舰的位置,需要几个数据?总结:方位角加距离定位法是确定位置的一种重要方法,需要注意数据的准确性。
6.方格定位法在方格纸上,一个点的位置由横向格数和纵向格数确定,可以表示为(横向格数,纵向格数)或者(水平距离,纵向距离)。
确定位置北师大数学八年级上第三章第一节一、教材分析与学情分析(一)教材分析:《确定位置》是八年级上册第三章《位置的确定》第一节内容。
本章是“图形与坐标”的主体内容,不仅呈现了“确定位置的多种方法、平面直角坐标系”等内容,而且也从坐标的角度使学生进一步体会图形平移、轴对称的数学内涵,同时又是一次函数的重要基础。
《确定位置》将现实生活中常用的定位方法呈现给学生,将进一步丰富学生的数学活动经验,提升学生观察、分析、归纳、概括的能力。
(二)学情分析:学生在小学已经接触了有关确定位置的知识,而对八年级学生而言,他们对新鲜事物特别有兴趣。
因此,教学过程中创设生动活泼、直观形象、且贴近他们生活的问题情境,会引起学生的极大关注,会有利于学生对内容的较深层次的理解;另一方面,学生已经具备了一定的学习能力,可多为学生创造自主学习、合作交流的机会,促使他们主动参与、积极探究。
二、教学目标:(一)知识技能1、通过丰富的现实情景,使学生感受确定物体位置的方法,进一步发展学生的数形结合意识、形象思维能力的和数学应用能力.2、通过例题、习题、以及生活中的实例,归纳出确定位置的条件和方法,并会用生动形象的语言概括总结的确定位置的方法.3、体会生活中平面物体位置的确定离不开两个数据,以及数学与生活的联系. (二)过程与方法1、通过学习与探究,学会确定物体位置的几种方法。
2、学会运用形象生动的语言归纳出确定位置的条件和方法。
3、学会比较灵活地选择和运用不同的方式确定物体的位置。
(三)情感态度1、通过体验实际情景,运用语言归纳概括确定物体的位置的方法,提高学生的语言表达能力,开拓学生的思路,发展学生的思维能力。
2、在与他人的合作过程中,培养学生敢于面对挑战和勇于克服困难的意志,鼓励学生大胆尝试,从中获得成功的体验,培养学生的合作意识和团队精神.3、培养良好的数学观,增强数学的应用意识。
三、教学重点、难点(一)重点:1.探索用行列发在平面上确定物体位置的方法。
新北师大版八年级数学上册第四章位置与坐标一、生活中确定位置的方法(重难点)1、行列定位法把平面分成若干个行列的组合,然后用行号和列号表示平面中点的位置,要准确表示平面中的位置,需要行号、列号两个独立的数据,缺一不可。
2、方位角加距离定位法此方法也叫极坐标定位法,是生活中常用的方法。
在平面中确定位置时需要两个独立的数据:方位角、距离。
特别需要注意的是中心位置的确定。
3、方格定位法在方格纸上,一点的位置由横向方格数和纵向方格数确定,记作(横向方个数,纵向方个数)。
需要两个数据确定物体位置。
4、区域定位法是生活中常用的方法,也需要两个数据才能确定物体的位置。
此方法简单明了,但不够准确。
A1区,D3区等。
5、经纬度定位法利用经度和纬度来确定物体位置的方法,也同时需要两个数据才能确定物体的位置。
二、平面直角坐标系1、平面直角坐标系及相关概念(重点)在平面内,两条相互垂直且有公共原点的数轴组成平面直角坐标系,简称直角坐标系。
通常两条数轴位置水平和垂直位置,规定水平轴向右和垂直轴向上为两条数轴的正方向。
水平数轴称为x轴或横轴,垂直数轴称为y轴或者纵轴,x轴、y轴统称坐标轴,公共原点O称为坐标系的原点。
两条数轴把平面划分为四个部分,右上部分叫做第一象限,其余部分按逆时针方向分别叫做第二、第三、第四象限。
2、点的坐标表示(重点)在平面直角坐标系中,平面上的任意一点P,都可以用坐标来表示。
过点P分别向x轴、y轴作垂线,垂足在x轴、y轴上对应的数a、b分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标。
在平面直角坐标系中,平面上的任意一点P,都有唯一一对有序实数(即点的坐标)与它对应;反之,对于任意一对有序实数,都可以在平面上找到唯一一点与它对应。
3、特殊位置上点的坐标特点(难点)(1)坐标轴上点的坐标特点x轴上点的纵坐标为0;y轴上点的横坐标为0;原点的横坐标、纵坐标都为0。
(2)余坐标轴平行直线上点的坐标特点与x轴平行直线上所有点的纵坐标相同;与y轴平行直线上所有点的横坐标相同。
北师大版八年级数学上册第三章位置与坐标章末单元复习导学案本章知识回顾1.在平面内确定物体位置的方法(1)在平面内,确定一个物体的位置一般需要2个数据.(2)在平面内,确定一个物体的位置的方法通常有以下四种:①行列定位法;②方向角+距离定位法;③经纬定位法;④区域定位法.2.在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系.两条坐标轴把平面分成四个部分,右上部分叫做第一象限,其他三个部分按逆时针方向依次叫做第二象限、第三象限和第四象限.3.在平面直角坐标系中,对于平面上的任意一点,都有唯一的一个有序数对(即点的坐标)与它对应;反过来,对于任意一个有序实数对,都有平面上唯一的一点与它对应.4.平面直角坐标系中点的坐标特点(1)坐标轴上的点的坐标:在x轴上的点的纵坐标为0,在y轴上的点的横坐标为0.(2)象限内的点的坐标:第一象限内的点的横、纵坐标都为正数;第二象限内的点的横坐标为负数,纵坐标为正数;第三象限内的点的横、纵坐标都为负数;第四象限内的点的横坐标为正数,纵坐标为负数.(3)平行于坐标轴的点的坐标:平行于x轴的直线上的点的纵坐标都相同;平行于y轴的直线上的点的横坐标都相同.(4)坐标轴夹角平分线上的点的坐标:第一、三象限两坐标轴夹角平分线上的点的横、纵坐标相等;第二、四象限两坐标轴夹角平分线上的点的横、纵坐标互为相反数.5.轴对称与点的坐标变化(1)关于x轴对称的两个点的坐标,横坐标相同,纵坐标互为相反数,即点(a,b)关于x轴对称的点的坐标为(a,-b).(2)关于y轴对称的两个点的坐标,纵坐标相同,横坐标互为相反数,即点(a,b)关于y轴对称的点的坐标为(-a,b).精讲精练【例1】如图,在平面直角坐标系中,AB∥CD,AB=CD,CD在x轴上,B点在y轴上,若OB=OC,点A的坐标为(-3-1,3).求:(1)点B ,C ,D 的坐标;(2)S △ACD .解:(1)因为点A 的坐标为(-3-1,3).所以点A 到y 轴的距离是|-3-1|=3+1,到x 轴的距离是3,所以AB =CD =3+1,OB =OC = 3.所以OD =1.所以点B 的坐标为(0,3),点C 的坐标为(3,0),点D 的坐标为(-1,0).(2)S △ACD =12CD·OB=12×(3+1)×3=3+32.【跟踪训练1】 已知点M(3a -2,a +6),分别根据下列条件求出点M 的坐标.(1)点M 在x 轴上;(2)点N 的坐标为(2,5),且直线MN∥x 轴;(3)点M 到x 轴、y 轴的距离相等.解:(1)因为点M 在x 轴上,所以a +6=0,解得a =-6.所以3a -2=-18-2=-20.所以点M 的坐标是(-20,0).(2)因为直线MN∥x 轴,所以a +6=5,解得a =-1.所以3a -2=3×(-1)-2=-5.所以点M 的坐标为(-5,5).(3)因为点M 到x 轴、y 轴的距离相等,所以|3a -2|=|a +6|,解得a =4或a =-1.所以点M 的坐标为(10,10)或(-5,5).【例2】 已知在平面直角坐标系中,点A ,B 的坐标分别为A(-3,4),B(4,-2).(1)求点A ,B 关于y 轴对称的点的坐标;(2)在平面直角坐标系中分别作出点A ,B 关于x 轴对称的点M ,N ,顺次连接AM ,BM ,BN ,AN ,求四边形AMBN 的面积.解:(1)根据轴对称的性质,得点A(-3,4)关于y 轴对称的点的坐标是(3,4);点B(4,-2)关于y 轴对称的点的坐标是(-4,-2).(2)由点M ,N 分别与点A ,B 关于x 轴对称,可得M(-3,-4),N(4,2),图略.S 四边形AMBN =(4+8)×7×12=42.【跟踪训练2】 如图,已知△ABC 的三个顶点的坐标分别为A(-2,3),B(-6,0),C(-1,0).(1)将△ABC 沿x 轴翻折,则翻折后点A 的对应点的坐标是(-2,-3);(2)求点A 关于第一、三象限的角平分线的对称点D 的坐标,请画图并说明理由.解:如图所示,由图中可以看出点D 的坐标为(3,-2).【例3】 如图,在平面直角坐标系中,已知A(0,a),B(b ,0),C(b ,c)三点,其中a ,b ,c 满足关系式|a -2|+(b -3)2=0,(c -5)2≤0.(1)求a ,b ,c 的值;(2)如果在第二象限内有一点P(m ,53),请用含m 的式子表示四边形APOB 的面积; (3)在(2)的条件下,是否存在点P ,使四边形AOBC 的面积是四边形APOB 的面积的2倍?若存在,求出点P 的坐标,若不存在,请说明理由.解:(1)由已知|a -2|+(b -3)2=0,(c -5)2≤0可得:a -2=0,b -3=0,c -5=0,解得a =2,b =3,c =5.(2)因为a =2,b =3,c =5,所以A(0,2),B(3,0),C(3,5).所以OA =2,OB =3.所以S 四边形ABOP =S △ABO +S △APO =12×2×3+12×(-m)×2=3-m. (3)存在.因为S 四边形AOBC =S △AOB +S △ABC =3+12×3×5=10.5, 所以2(3-m)=10.5,解得m =-94. 所以存在点P(-94,53),使四边形AOBC 的面积是四边形APOB 的面积的2倍.【跟踪训练3】 如图,在平面直角坐标系xOy 中,A ,B 两点分别在x 轴、y 轴的正半轴上,且OB =OA =3.(1)求点A ,B 的坐标;(2)若点C(-2,2),求△BOC 的面积;(3)点P 是第一,三象限角平分线上一点,若S △ABP =332,求点P 的坐标.解:(1)因为OB =OA =3,所以A ,B 两点分别在x 轴,y 轴的正半轴上.所以A(3,0),B(0,3).(2)S △BOC =12OB·|x C |=12×3×2=3. (3)因为点P 在第一,三象限的角平分线上,所以设P(a ,a).因为S △AOB =12OA·OB=92<332. 所以点P 在第一象限AB 的上方或在第三象限.当P 1在第一象限AB 的上方时,S △ABP 1=S △P 1AO +S △P 1BO -S △AOB =12OA·y P 1+12OB ·xP 1-12OA·OB, 所以12×3a+12×3a-12×3×3=332,解得a =7. 所以P 1(7,7).当P 2在第三象限时,S △ABP 2=S △P 2AO +S △P 2BO +S △AOB =12OA·y P 2+12OB ·xP 2+12OA·OB. 所以12×3×(-a)+12×3×(-a)+12×3×3=332,解得a =-4. 所以P 2(-4,-4).综上所述,点P 的坐标为(7,7)或(-4,-4).1、最困难的事就是认识自己。
第三章位置与坐标(复习学案)一、学习目标1、通过复习,掌握本章的知识网络结构及相互关系,在现实情境中能灵活的运用不同的方式确定物体的位置。
2、通过复习,进一步加深对平面直角坐标系的认识,并会解决一些简单的实际问题。
3、通过总结回顾全章知识,提升归纳总结的能力,感受学习数学的乐趣,增强学习数学的信心。
二、重点与难点1、重点:平面直角坐标系的相关概念机性质2、难点:利用平面直角坐标系解决实际问题三、知识梳理1、平面内确定位置一般需要个数据。
2、平面直角坐标系:在平面内,两条互相______且具有公共______的数轴组成平面直角坐标系.其中水平方向的数轴叫______或______,取向_____为正方向;竖直方向的数轴叫_______或______,取向______为正方向。
两条数轴交点叫平面直角坐标系的_______.和统称为坐标轴。
建立了平面直角坐标系的平面叫。
3、平面内点的坐标:对于平面内任意一点P,过P分别向x轴、y 轴作垂线,x轴上的垂足对应的数a叫P的____坐标,y轴上的垂足对应的数b叫P的_______坐标。
有序数对(a,b),叫点P的坐标。
记作P()。
坐标平面内的点可以用来表示,反过来,每一个都能用坐标平面内的点来表示;即坐标平面内的点和是一一对应关系.4、坐标轴把平面分隔成四个象限。
坐标平面内的点分两类:的点和的点。
坐标轴上的点不属于。
5、特殊点的位置的特殊坐标点P(a,b)在第一象限 a 0,b 0点P(a,b)在第二象限 a 0,b 0点P(a,b)在第三象限 a 0,b 0点P(a,b)在第四象限 a 0,b 0点P(a,b)在x轴上 a .b点P(a,b)在y轴上 a .b点P (a ,b a 与b点P (a ,b a 与b6、点的坐标的几何意义P (a ,b )到x 轴的距离是 ,到y 轴的距离是 ,P (a ,b )到 原点的距离是 。
7、特殊关系的点的坐标的特点:设P(a,b) Q(c,d)PQ ∥x 轴 (或 PQ ⊥y 轴) a c, b dPQ ∥y 轴 (或 PQ ⊥x 轴) a c, b dP(a,b) Q(c,d) 关于x 轴对称 a 与c , b 与dP(a,b) Q(c,d) 关于y 轴对称 a 与c , b 与dP(a,b) Q(c,d) 关于原点对称 a 与c , b 与d8、图形变换与坐标变化规律:一个图形上的点的纵坐标不变,横坐标×-1,得到的图形与原来的图形的位置关系是一个图形上的点的横坐标不变,纵坐标×-1,得到的图形与原来的图形的位置关系是 一个图形上的点的纵坐标与横坐标同时×-1,得到的图形与原来的图形的位置关系是四、基础知识夯实1、下列数据不能确定平面内物体位置的是( )A .4楼9号B .北偏东300C .希望路25号D .东经1180、北纬4502、下列语句中不正确的是( )A .平面直角坐标系把平面分成了四部分,坐标轴上的点不在任何一个象限内.B .在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系.C .坐标轴上的点与有序实数对是一一对应的.D .凡是两条互相垂直的直线,都能组成平面直角坐标系.3、在坐标平面内,有一点P (a,b ),若ab =0,那么点P 的位置在( )A .原点B .x 轴上C .y 轴D .坐标轴上4、若点M (a,b )在第四象限,则点M (b,a )在( )A .第一象限B .第二象限C .第三象限D .第四象限5、若0 xy ,则点P (x,y )的位置是( ) A. 在数轴上 B. 在去掉原点的横轴上C. 在纵轴上D. 在去掉原点的纵轴上6、已知点P (x ,y )在第四象限,且|x|=3,|y|=5,则P 点的坐标是( )A .(-3,5)B .(5,-3)C .(-3,-5)D .(3,-5)7、在直角坐标系中,已知A(1,3), B(-1,3),则下列说法正确的是( )A.点A、B关于x轴对称B.直线AB平行于y轴C.A、B间的距离是2D.A、B间的距离是68、如图,雷达探测器测得六个目标A、B、C、D、E、F出现按照规定的目标表示方法,目标C、F的位置表示为C(6,120°)、F(5,210°),按照此方法在表示目标A、B、D、E的位置时,其中表示不正确的是().A.A(5,30°)B.B(2,90°)C.D(4,240°)D.E(3,60°)9、如图,把长方形OABC放在直角坐标系中,OC在x轴上,OA在y轴上,且OC=2,OA=4,把矩形OABC绕着原点顺时针旋转90°得到矩形OA′B′C′,则点B′的坐标为()A.(2,3)B.(-2,4)C.(4,2)D.(2,-4)10、用两个数字来确定一个点的位置是常用的确定位置的方法,如图,A点用(2,3)来表示,那么B点的位置为.11、点P(a+5,a-2)在x轴上,则a =________.12、若点A(a,b)在第三象限,则点(-a+1,3b-5)在第______象限.13、A(8,-7)和点M关于y轴对称,则M点坐标为________.14、若A(-6,m2+3),则点A一定在第象限。
本章复习小结
【学习目标】
1.掌握平面直角坐标系的概念及组成,学会建立平面直角坐标系以及利用轴对称的坐标规律解决有关问题.
2.通过梳理本章知识点,充分利用平面直角坐标系与点的坐标之间一一对应关系,使数与形的相互转化得以体现,加深了对知识的理解.
【学习重点】
平面内点的坐标的表示方法及求法,能建立适当的平面直角坐标系来描述点所处的位置以及利用轴对称的坐标规律解决实际问题.
【学习难点】
建立适当的平面直角坐标系的优化方案和利用轴对称的坐标规律解决问题.
学习行为提示:点燃激情,引导学生思考本节课学什么.
学习行为提示:教会学生看书,独学时对于书中的问题一定要认真探究,书写答案.
教会学生落实重点.情景导入 生成问题
引导学生回顾本章知识点,展示本章知识结构图,让学生对本章所学知识有个系统地了解.教学时,可以边回顾边建立结构图.
位置与坐标⎩⎪⎨⎪⎧确定平面内点的位置→有序实数对→建立平面直角坐标系轴对称的坐标变化⎩
⎪⎨⎪⎧关于x 轴对称的坐标特点关于y 轴对称的坐标特点 自学互研 生成能力
知识模块一 知识清单 加深理解
1.平面直角坐标系与点的坐标
(1)一、三象限角平分线上的点横、纵坐标同号;二、四象限角平分线上的点横、纵坐标异号,但他们到两坐标轴的距离都相等,注意有时要考虑到这两种情况的存在.
(2)点的横坐标与该点到y 轴的距离有关,点的纵坐标与该点到x 轴的距离有关.不能理解为相反的意思.同时点的横、纵坐标的值可正可负,而距离只可能为非负数.
2.在坐标系中求几何图形的面积
在坐标系中求图形的面积一般从两个方面去把握:(1)通常向坐标轴作垂线,运用“割”或“补”的方法将要求的图形转化为一些特殊的图形,去间接计算面积;(2)需要将已知点的坐标转化为线段的长度,以备求面积的需要.
知识模块二 典例引路 全面复习
例1:等腰梯形的各点坐标为B(-1,0),A(0,2),C(4,0),则点D 的坐标为________. 分析:求一个点的坐标,首先求出它到x 轴与y 轴的距离,然后再看它所在的象限,确定其横、纵坐标的符号.
学习行为提示:教会学生怎么交流.先对学,再群学.充分在小组内展示自己,分析答案,提出疑惑,共同解决(可按结对子学—帮扶学—组内群学来开展).在群学后期教师可有意安排每组展示问题,并给学生板书题目和组内演练的时间.
解:如图,过点D 作DE ⊥x 轴.∵四边形ABCD 为等腰梯形.∴CE =BO =1.又∵C 点坐标为(4,0),∴OC =4.∴OE =4-1=3.∵AD ∥BC.∴点D 的纵坐标与点A 的纵坐标相等为2.∴D 点的坐标为(3,2).
例2:在平面直角坐标系中,A(-3,4),B(-1,2),O 为原点,如图所示.求三角形AOB 的面积.
分析:本题考查利用坐标求图形的面积.在平面直角坐标系中求图形的面积,通常将图形面积转化成边在两轴上的图形的面积的和或差,这样可以充分利用点的坐标求出图形中线段的长度.
解:过点作AE ⊥y 轴于E ,过点B 作BD ⊥y 轴于D.因为A(-3,4),B(-1,2),所以E(0,
4),D(0,2),所以OD =2,BD =1,AE =3,DE =OE -OD =4-2=2,所以S 三角形AOB =S 三角形AOE -S 三角形OBD -S 梯形BDEA =12AE·EO -12BD ·OD -12(BD +AE)·DE =12×3×4-12×1×2-12
×(1+3)×2=6-1-4=1.
交流展示 生成新知
1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.
2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.
知识模块一 知识清单 加深理解
知识模块二 典例引路 全面复习
检测反馈 达成目标
【当堂检测】见所赠光盘和学生用书;【课后检测】见学生用书.
课后反思查漏补缺
1.收获:________________________________________________________________________ 2.存在困惑:________________________________________________________________________。