最优捕鱼策略KYM)
- 格式:ppt
- 大小:603.50 KB
- 文档页数:36
最优捕鱼策略问题摘要本文以最优捕鱼策略为主题,在logistic模型基础上建立了可持续发展捕鱼策略模型,并借助计算机Matlab,运用二分法近似求得了模型最优解。
在此基础上提出了灵敏度函数S,并由此判断死亡率w和捕捞强度E的变化对产量变化的影响。
最后根据实际生产需求,分析死亡率w对最大产量Qm的影响。
对于问题1,我们首先考虑不存在捕捞情况下的模型,再加入捕捞强度分析,最后根据问题1的条件(每年开始捕捞时渔场中各种年龄组鱼群条数不变)建立方程组,得到可持续发展捕鱼策略模型,解得方程组后在w=0.8时绘图得到最大产量Qm=3.8871*10^11。
对于问题2,我们引用了灵敏度函数S(ω,Q),起意义为ω变化率与Q变化率的比值,例如S=0.1,即表示当死亡率变化1%的时候,产量Q变化0.1%。
发现在问题1取得最大产量的情况下,死亡率每增加1%,最大产量减少1.743%。
并给出了不同死亡率w和产量下S的函数。
对于问题3,方法与问题2相似,灵敏度函数S(E,Q)在问题1的情况下,捕捞强度系数E每增加1%,产量Q减少0.0010%。
并给出了不同捕捞强度E和产量Q下S的函数。
对于问题4,我们取不同的死亡率w,得到不同的最大产量Q,利用MATLAB用函数拟合的方法得到了相似度很高的4阶拟合函数Qm(w)仿照问题2求解了灵敏度函数S(E,Qm),发现了在问题1求得最大产量的时候,死亡率的波动对最大产量的影响是相对较大的。
现实生产中可表现为一段时间内大量鱼群的死亡对渔民的收获量会造成比较大的损失。
为此我们找到了影响较小的点,当把死亡率控制在0.957附近时,鱼群的突然大数目死亡短时间内对渔民造成的损失最小。
对此我们提出了一些策略。
关键词:可持续发展捕鱼策略模型,灵敏度分析,函数拟合,微分方程。
一、问题重述以鳀鱼为例,制定一种最优的捕鱼策略,要求实现可持续捕捞,并且在此前提下得到最高的年收获量,并进一步考虑自然死亡率和捕捞强度系数,提出相关建议。
精心整理西安邮电大学(理学院)数学建模报告摘要为了保护人类赖以生存的自然环境,可再生资源(如渔业、林业资源)的开发必须适度。
本文实际上就是为了解决渔业上最优捕鱼策略问题,即在可持续捕捞的前提下,追求捕捞量的最大化。
问题一采用条件极值列方程组的方法求解,即1龄鱼的数量由3龄鱼和4龄鱼的产卵孵化而来;2,3龄鱼的数量分别由上一年1龄鱼,2龄鱼生长而来;4龄鱼由上一年的3龄鱼和上一年末存活的4龄鱼组成。
最后得到:只要每年1-8月份3、4龄鱼捕捞总量小于、,就可以实现总捕捞量最大为;对结果分析得到捕捞的对象主要是3龄鱼,当3龄与4龄鱼的捕捞系数发生变化时,总的捕捞量变化不大。
???问题二给出年初各龄鱼的数量,要求在5年后鱼群的生产能力没有受到太大条),如果仍用固定努力量的捕捞方式,该公司采取怎样的策略才能使总收获量最高。
二、模型假设1、这种鱼分为四个年龄组:1龄鱼,2龄鱼,3龄鱼,4龄鱼;2、各年龄组每条鱼的平均重量分别为5.07克,11.55克,17.86克,22.99克;3、各年龄组鱼的自然死亡率均为0.8(1/年);m……i龄鱼每条鱼的平均重量in……9月底该种鱼总共产卵数量*n……卵孵化成幼鱼进入1龄鱼阶段的数量k……对i龄鱼活鱼的捕捞强度系数i四、问题分析针对问题一:如何在满足可持续捕捞的前提下,实现每一年捕鱼的最大量(重量),文中给出各龄鱼在年底转化的具体情况:1龄鱼数量由3龄鱼和4龄鱼的产卵孵化而来;2,3龄鱼的数量分别由上一年龄段的鱼经自然死亡以及捕捞生长而来;4龄鱼是由上一年段3龄鱼经自然死亡以及捕捞后生长的和原有的4龄鱼组成的,并且规定只在每年的前八个月出船捕捞。
那么根据以上信息我们可以建立动态整型规划模型,即以每年的前八个月作为动态规划中的8种状态,在满足文中的可持续捕捞的约束条件下,先确定这前八个月中,每个月的捕捞量,最后求得这八个月总捕捞量的最大值;当然我们还可以建立微分方程模型,把每一龄鱼的数量变化看成是随时间连续变化的,将每一龄鱼的初始数量减去第八个月末的数量⎪⎩⎪⎨≤≤-=---129,1,1,1,,j c x x i j i j i i i j i j i 这个等式说明了该模型中我们把每一个月看做一个时间单位,鱼的数量随时间的变化是离散的,当每个月月初各龄鱼的数量固定时,该月要捕捞的总的活鱼数量也就固定了。
最优捕鱼策略为了保护人类赖以生存的自然环境,可再生资源(如渔业、林业资源)的开发必须适度。
一种合理、简化的策略是,在实现可持续收获的前提下,追求最大产量或最佳效益。
考虑对某种鱼的最优捕捞策略:假设这种鱼分4 个年龄组,称1龄鱼,…,4龄鱼.各年龄组每条鱼的平均重量(单位:g)分别为5.07,11.55,17.86,22.99,各年龄组鱼的自然死亡率均为0.8(1/年),这种鱼为季节性集中产卵繁殖,平均每条4龄鱼的产卵量为510109.1⨯个,3龄鱼的产卵量为这个数的一半,2 龄鱼和1龄鱼不产卵, 产卵和孵化期为每年的最后4个月,卵孵化并成活为1龄鱼,成活率(1龄鱼条数与产卵总量比n 之比)为()n +⨯⨯11111022.1/1022.1渔业管理部门规定,每年只允许在产卵孵化期前8个月内进行捕捞作业。
如果每年投入的捕捞能力(如渔船数、下网次数等)固定不变,这时单位时间捕捞量将与各年龄组鱼群条数成正比,比例系数不妨称捕捞强度系数。
通常使用13mm 网眼的拉网,这种网只能捕3龄鱼和4龄鱼,其两 个捕捞强度系数之比为0.42:1.渔业上称这种方式为固定努力量捕捞.(1)建立数学模型分析如何实现可持续捕获(即每年开始捕捞时渔场中各年龄组鱼群条数不变),并且在此前提下得到最高的年收获量(捕捞总重量).(2)某渔业公司承包这种鱼的捕捞业务5年,合同要求5年后鱼群的生产能力不能受到太大破坏。
已知承包时各年龄组鱼群的数量(单位:条)分别为:99991029.3101.10107.2910122⨯⨯⨯⨯,,, 如果仍用固定努力量的捕捞方式,该公司应采取怎样的策略才能使总收获量最高。
摘要本文讨论了渔业资源开发项目中在实现可持续收获的前提下对某种鱼的最优捕捞策略。
一、问题简要分析对于问题一,要实现可持续捕捞,即每年开始捕捞时渔场的各年龄鱼群条数不变。
因此我们算出了各个龄鱼的随时间变化的趋势,得出各龄鱼组的数量。
因为捕鱼在1到8月期间,所以把一年的时间分为了捕鱼期和产卵期。
最优捕鱼策略原稿捕鱼作为一项常见的娱乐活动,已经成为许多人闲暇时消遣的选择。
然而,对于那些希望在捕鱼中获得最佳结果的人来说,制定一种最优捕鱼策略是非常重要的。
以下为一些关键的策略,可以帮助提高捕鱼的成功率。
1.了解目标鱼种:不同的鱼类有着不同的特点和习性。
因此,在捕鱼之前,首先要了解目标鱼种的喜好、聚集地以及食物偏好。
这将有助于找到更多的目标鱼,并提高捕获的概率。
2.选择合适的钓具:根据目标鱼种的大小和习性,选择合适的钓具对成功捕鱼至关重要。
如果目标鱼种较大而有力,选择一根更坚固的渔杆和更强大的渔线是必要的。
另外,鱼饵的选择也是一项关键决策,只有符合目标鱼种的偏好,才能吸引它们上钩。
4.运用适当的技巧:在捕鱼过程中运用适当的技巧是非常重要的。
例如,使用正确的投掷技巧可以使鱼饵更加准确地落入目标位置。
此外,在操作钓杆和渔线时要注意技巧,保持稳定和平稳的动作,以提高捕鱼的概率。
5.尊重渔业法规:为了保护渔业资源和环境,许多地区都设有相关的渔业法规和限制。
在进行捕鱼活动时,要了解和遵守当地的渔业法规,遵循合理的捕鱼限额和尺寸限制。
只有通过遵守法规,才能保护渔业资源的可持续性并促进保护生态平衡。
6.保持耐心和冷静:捕鱼是需要耐心和冷静的活动。
有时鱼儿不一定会立刻上钩,这时候保持耐心是非常重要的。
遇到挫折时,要保持冷静,分析原因并尝试调整策略,而不是仓促行事。
最后,捕鱼策略的最重要的一点是享受过程。
不论是单独垂钓还是与朋友家人一起垂钓,都要专注于过程的乐趣和享受,而不仅仅局限于对捕鱼结果的追求。
总之,最优捕鱼策略需要综合考虑多种因素,包括了解目标鱼种、选择合适的钓具、确定合适的时间和地点、运用适当的技巧、遵守渔业法规以及保持耐心和冷静。
通过制定最优的捕鱼策略,我们可以提高捕获的概率并获得更好的捕鱼体验。
最优捕鱼策略问题捕鱼问题【摘要】当今社会的发展越来越多的依赖于节约资源,保护环境。
而在渔业生产方面,采取何种捕捞生产策略以实现渔业的可持续发展关系重大,因此有必要进一步的研究最优的捕鱼策略既兼顾鱼类的可持续收获又达到最大的经济收益。
针对问题一,由题目给定的条件及查阅的相关资料作出基本假设,并依据假设与已知数据作出微分方程模型,得出描述各龄鱼的数量与时间的关系式,并通过鱼的产卵孵化及生长条件进一步得出鱼在各个时刻的数量。
由以上关系式及积分计算出捕捞量函数。
以捕捞量最大作为优化目标,以各龄鱼的数量关系方程作为约束条件及可得到一个非线性的数学规划模型。
用MATLAB,软件进行编程求解即可得到符合要求的各龄鱼数量以及最大捕捞量。
结果如下表所示:最大捕捞量Q 3.8871×1011捕捞强度系数l17.35X1(0) 1.1961×1011X2(0) 5.3743×1010X3(0) 2.4148×1010X4(0)8.4266×107针对问题二,题目已经给出各个年龄组鱼的数量的初值,只需设出每年的固定捕捞强度,并由问题1的关系式得出相应的鱼群各年龄组的数量等式作为优化问题的约束条件。
以五年间的捕捞量最大和五年后的鱼群年龄分布与可持续捕捞的鱼群的一龄鱼数量最接近作为优化问题的双目标,并赋予两个目标不同的权重,得到了综合效益评价函数。
并利用MATLAB软件编程求解,得出最优的捕捞强度系数。
当权重120.5c c==时,121.604910Q=×。
最后,针对已建立的模型及得到的数值计算结果进行分析检验,并结合模型建立、计算求解等过程中遇到的问题评价模型的优缺点,并提出了模型改进与推广建议。
关键词:微分方程多目标非线性规划年自然生存率年捕捞生存率目录1问题重述 (3)1.1问题背景 (3)1.2待解决的问题 (3)2分析假设 (3)2.1问题分析 (3)2.2模型假设 (3)3符号说明 (4)4模型一的建立与求解 (4)4.1问题一的分析 (4)4.2模型一的建立 (5)4.3模型一的求解 (7)5模型二的建立与求解 (8)5.1问题二的分析 (8)5.2模型二的建立 (8)5.3模型二的求解 (9)6模型的检验 (10)6.1模型一的检验 (10)6.2模型二的检验 (10)7模型的评价 (11)7.1模型的优点 (11)7.2模型的缺点 (12)8模型的改进与推广 (12)8.1模型的改进 (12)8.2模型的推广 (12)9参考文献 (12)10附录 (12)10.1附录1(问题一程序代码) (12)10.2附录2(问题二程序代码1) (13)10.3附录3(问题二程序代码2) (13)1问题重述1.1问题背景为了保护自然环境,使自然资源达到最优配置以实现可持续发展,在给定的条件下研究一种合理的捕鱼策略势在必行。
最优捕鱼策略的研究摘要建立决策优化模型,在保证“持续捕捞”的前提下,使捕捞量达到最大。
分析过程中,我们深度分析了自然死亡率与捕捞强度系数,将捕捞强度系数视为捕捞死亡率,给我们解决实际问题带来了很大的方便。
针对问题一,问题一涉及的是渔业管理,即对一固定的渔场如何实现在保证可持续发展的同时得到最大的收益。
我们的基本思路是:考虑鱼类生灭过程中两个相互制约的因素,捕捞能力与自然死亡造成的减少量和产卵孵化成功的增长量,从而确定在什么样的约束条件下进行最优规划。
我们用微分方程来描述鱼群数量随时间变化的动态特征规律,在此基础上用年捕捞总量作为目标函数,以稳定性可持续发展作为约束条件进行最优捕鱼的非线性规划。
针对问题二,问题二讨论的是各年龄组的自然死亡率对收获量的影响。
自然死亡率不会是一成不变的。
我们的思路是分别对各个年龄组鱼群的自然死亡率做灵敏度分析。
将自然死亡率看成变量重新建模进行最优规划,利用LINGO求值列表MATLAB 画图的方式将一表两图展示出来得出初步的分析结果。
利用衡量相对改变量的办法对新目标函数求导算出敏感度。
再根据四种鱼不同的敏感度得出不同年龄鱼群自然死亡率对最大年收获量以及最优捕鱼强度系数的影响。
针对问题三,问题三研究的是不同的捕捞系数对年收获量的影响,我们的想法是在死亡率为0.8的前提下,求出年收获量与捕捞强度系数之间的函数关系式,同样利用LINGO求值列表,再用MATLAB拟合出图象,利用衡量相对改变量的办法算出年收获量对捕捞强度系数的敏感度,进而得出捕捞强度系数的变化对年收获量的影响关系。
针对问题四,问题四要求我们对渔业发展部门提出鳀鱼捕捞策略建议。
我们首先查阅相关资料,得到现实情况下的鳀鱼死亡率、鳀鱼资源储存量等相关数据,了解鳀鱼资源发展现状,并结合我们所建立的最优捕鱼策略模型对渔业管理部门提出相应建议以保证鳀鱼资源的可持续发展和人类经济效益的最大化。
关键词:捕捞强度系数、死亡率、年最大收获量、最优解、灵敏度分析、LINGO⒈问题的重述随着人口的发展,人类对资源巨大需求和大规模开采消耗已导致资源基础的退化。
最优捕鱼策略原稿在捕鱼游戏中,深入研究和掌握最优捕鱼策略是非常重要的。
这将帮助玩家提高捕鱼效率,最大化收益。
下面将介绍一些常用的最优捕鱼策略。
1.鱼群分析在开始游戏之前,玩家应该仔细观察鱼群的分布和行为习惯。
通常来说,不同种类的鱼群在不同的水域和深度中出现。
一些稀有鱼种可能只出现在特定的时间和地点。
通过分析鱼群的分布,玩家可以选择最佳的捕鱼点。
2.利用技能道具游戏中通常会提供各种技能道具,如加速器、锁定器等。
玩家可以根据当前情况选择使用合适的道具。
例如,当有大量的鱼从不同方向游过时,可以使用加速器来追赶和捕捉尽可能多的鱼。
而当有一种稀有鱼在附近出现时,可以使用锁定器保证捕获的准确性。
3.注意合理的瞄准和开火在捕鱼游戏中,精确的瞄准和准确的开火是关键。
不同种类的鱼有着不同的血量和价值。
一些大型和稀有的鱼可能需要多次射击才能捕捉到。
因此,在选择目标之前,玩家应该考虑鱼的血量和价值,并选择最合适的武器和开火方式。
4.多人合作一些捕鱼游戏提供了多人模式,玩家可以与其他玩家合作来捕捉鱼群。
合作可以提高捕鱼效率,同时也可以减少竞争压力。
通过与队友之间的配合,玩家可以选择分工合作,将捕鱼策略最大化。
5.持续学习和改进技巧捕鱼游戏是一个技巧活,玩家应该在游戏中不断学习和改进自己的技巧。
通过观察其他玩家的策略和经验,玩家可以发现新的捕鱼技巧。
此外,一些游戏平台还提供了捕鱼技巧教程和讨论区,玩家可以通过参与讨论来分享和学习经验。
在最优捕鱼策略的基础上,也需要注意一些常见的陷阱和误区。
例如,有些玩家可能会盲目追求高价值的鱼类,而忽略了捕获其他鱼类的机会。
另外,一些玩家也可能会过度依赖技能道具,忽视了自身的技巧提升。
因此,在制定捕鱼策略时,玩家应该避免这些陷阱,综合考虑各种因素。
在游戏中,最优捕鱼策略的实践需要积累经验和路径探索。
通过不断尝试和调整策略,玩家可以逐渐提升自己的捕鱼效率和技巧。
同时,也要保持耐心和冷静,在游戏中享受捕鱼的乐趣。
【关键字】实验最优捕鱼策略一.实验目的:1、了解与熟练掌握常系数线性差分方程的解法;2、通过最优捕鱼策略建模案例,使用MA TLAB软件认识与掌握差分方程模型在实际生活方面的重要作用。
二.实验内容:(最优捕鱼策略)生态学表明,对可再生资源的开发策略应在事先可持续收获的前提下追求最大经济效益。
考虑具有4个年龄鱼:1龄鱼,… ,4龄鱼的某种鱼。
该鱼类在每年后4个月季节性集中产卵繁殖。
而据规定,捕捞作业只允许在前8个月进行,每年投入的捕捞能力固定不变,单位时间捕捞量与个年龄鱼群条数的比率称为捕捞强度系数。
使用只能捕捞3、4龄鱼的网眼的拉网,其两个捕捞强度系数比为0.42:1.渔业上称这种方式为固定力量捕捞。
该鱼群本身有如下数据:1.各年龄组鱼的自然死亡率为0.8(1/年),其平均质量分别为5.07,11.55,17.86,22.99(单位:g);2.1龄鱼和2龄鱼不产卵,产卵期间,平均每条4龄鱼产卵量为1.109ⅹ105(个),3龄鱼为其一半;3.卵孵化的成活率为1.22ⅹ1011/(1.22ⅹ1011 + n)(n为产卵总量);有如下问题需要解决:1)分析如何实现可持续捕获(即每年开始捕捞时各年龄组鱼群不变),并在此前提下得到最高收获量;2)合同要求某渔业公司在5年合同期满后鱼群的生产能力不能受到太大的破坏,承包时各年龄组鱼群数量为122,29.7,10.1,3.29(ⅹ109条),在固定努力量的捕捞方式下,问该公司应采取怎样的捕捞策略,才能使总收获量最高。
三. 模型建立假设a、鱼群总量的增加虽然是离散的,但对大规模鱼群而言,我们可以假设鱼群总量的变化随时间是连续的;b、龄鱼到来年分别长一岁成为i + 1龄鱼,i = 1,2,3;c、4龄鱼在年末留存的数量占全部数量的比率相对很小,可假设全部死亡。
d、连续捕获使各年龄组的鱼群数量呈周期性变化,周期为1年,可以只考虑鱼群数量在1年内的变化情况。
(且可设xi(t):在t时刻i龄鱼的条数,i = 1,2,3,4;n:每年的产卵量;k:4龄鱼捕捞强度系数;2ai0:每年初i龄鱼的数量,i = 1,2,3,4;)进而可建立模型如下:max(total(k))=17.86t∈[0,1],x1(0)= n ×t∈[0,1],x2(0)= x1(1)t∈[0,2/3],x3(0)= x2(1)s.t. t∈[2/3,1],x3(-)= x3(+)t∈[0,2/3],x4(0)= x3(1)t∈[2/3,1],x4(-)= x4(+)四. 模型求解(含经调试后正确的源程序)1.先建立一个buyu.m的M文件:function y=buyu(x);global a40 total k;syms k a10;x1=dsolve('Dx1=-0.8*x1','x1(0)=a10');t=1;a20=subs(x1);x2=dsolve('Dx2=-0.8*x2','x2(0)=a20');t=1;a30=subs(x2);x31=dsolve('Dx31=-(0.8+0.4*k)*x31','x31(0)=a30');t=2/3;a31=subs(x31);x32=dsolve('Dx32=-0.8*x32','x32(2/3)=a31');t=1;a40=subs(x32);x41=dsolve('Dx41=-(0.8+k)*x41','x41(0)=a40');t=2/3;a41=subs(x41);x42=dsolve('Dx42=-0.8*x42','x42(2/3)=a41');t=2/3;a31=subs(x31);nn=1.109*10^5*(0.5*a31+a41);Equ=a10-nn*1.22*10^11/(1.22*10^11+nn);S=solve(Equ,a10);a10=S(2,1);syms t;k=x;t3=subs(subs(int(0.42*k*x31,t,0,2/3)));t4=subs(subs(int(k*x41,t,0,2/3)));total=17.86*t3+22.99*t4;y=subs((-1)*total)2.再建立一个buyu1.m的M文件:global a10 a20 a30 a40 total;[k,mtotal]=fminbnd('buyu',0,20);ezplot(total,0,25);xlabel('');ylabel('');title('');format long;ktotal=-mtotal;a10=eval(a10)a20=eval(a20)a30=eval(a30)a40=eval(a40)format shortclear五.结果分析1.鱼总量与时间图:2.可以看出捕捞强度对收获量的影响:实验输出数据:y =-3.6757e+011y =-3.9616e+011y =-4.0483e+011y =-4.0782e+011y =-4.0802e+011y =-4.0805e+011y =-4.0805e+011y =-4.0805e+011y =-4.0805e+011y =-4.0805e+011y =-4.0805e+011y =y =-4.0667e+011k =18.25976795085083total =4.080548655562244e+011 a10 =1.195809275167686e+011a20 =5.373117428928620e+010a30 =2.414297288420686e+010a40 =8.330238542343275e+007则k=18.25976795085083时,最高年收获量为total=4.080548655562244×1011(克),此时每年年初1,2,3,4年龄组鱼的数量分别为:1.195809275167686×10115.373117428928620×10102.414297288420686×10108.330238542343275×107六.实验总结本次实验的目的是了解差分方程(递推关系)的建立及求解,以及掌握用差分方程(递推关系)来求解现实问题的方法。