【推荐】高中数学知识点集合与逻辑用语-习题
- 格式:pdf
- 大小:606.14 KB
- 文档页数:11
高一数学集合与常用逻辑用语试题答案及解析1.集合的元素个数是().A.59B.31C.30D.29【答案】C【解析】由2n-1<60,得n<,又∵n∈N*,∴满足不等式n<的正整数一共有30个.即集合M中一共有30个元素,可列为1,3,5,7,9,…,59,组成一个以a1=1,a30=59,n=30的等差数列.集合M中一共有30个元素。
【考点】集合问题2.已知集合A={1,3,5,6},集合B={2,3,4,5},那么A∩B=()A.{3,5}B.{1,2,3,4,5,6}C.{1,3,5}D.{3,5,6}【答案】A【解析】所求是两个集合的公共元素组成的集合,所以.【考点】集合的运算3.(本题满分12分)计算:(1)集合集合求和(2)【答案】(1);(2)【解析】(1)由集合的运算性质可得;(2)利用对数与指数的运算性质,以及公式化简可得试题解析:(1)(2)【考点】1.集合的运算性质;2.对数与指数的运算性质4.(本题满分12分)已知全集,,,(1)求;(2)若,求实数的取值范围.【答案】(1),(2)【解析】(1)首先求解集合A中函数的定义域得到集合A,A,B两集合的交集是由两集合的相同元素构成的集合,A,B并集是由两集合的所有元素构成的集合;(2)由已知得两集合的子集关系,从而得到两集合边界值的大小关系,解不等式求解的取值范围.试题解析:(1)(2)∵∴∴得∴实数的取值范围为【考点】1.集合的交并集运算;2.集合的子集关系5.含有三个实数的集合既可表示成,又可表示成,.【答案】-1【解析】由两集合相等可得【考点】集合相等与集合元素特征6.满足的集合A的个数是_______个.【答案】7【解析】符合条件的集合A可以为,,,,,,,共7个.【考点】集合间的关系.7.设全集集合则.【答案】【解析】集合M表示的是直线除去点(2,3)的所有点;集合P表示的是不在直线上的所有点,显然表示的是平面内除去点(2,3)的所有点,故.【考点】集合运算.8.(本小题满分14分)已知集合,.(1)求:,;(2)已知,若,求实数的取值集合【答案】(1);(2).【解析】(1)画数轴先求,再求.(2)画数轴分析可得关于关于的不等式,从而可求得的范围.试题解析:解:(1)(2)【考点】集合的运算.9.在①;②;③;④上述四个关系中,错误的个数是()A.1个B.2个C.3个D.4个【答案】B【解析】,所以①错;,所以②错;③④正确.【考点】1.元素与集合的关系;2.集合与集合的关系.10.已知集合,,则A.或B.C.D.【答案】B【解析】由交集的定义可知,,故选B.【考点】集合的运算及表示.【易错点睛】本题主要考查集合的运算与集合的表示方法,属容易题.集合A中的代表元素用的字母为,集合B中的代表元素用的字母为,学生会误认为是两个不同类型的集合,选D,即对两个集合均为数集的含义不清楚导致错误.11.设全集是实数集.,.(1)当时,求和;(2)若,求实数的取值范围.【答案】(1);(2)【解析】(1)由题意,求出集合,然后将代入就交集和并集即可;(2)若分和求出的取值范围,周求并集即可试题解析:(1)根据题意,由于,当时,,而,所以,,(2),若,则,若,则,,综上,【考点】集合的运算,子集12.(10分)已知,。
高中数学集合与常用逻辑用语100题(含答案解析)一、单选题1.已知集合{}2,0xA y y x ==≥,(){}ln 2B x y x ==-,则A B =( )A .[]1,2B .()1,2C .[)1,2D .(),-∞+∞2.已知,R a b ∈,则“ln ln a b >”是“sin sin a b b a +>+”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件3.命题():0,p x ∀∈+∞,1ln x x +≤的否定为( ) A .()0,x ∃∈+∞,1ln x x +≤ B .()0,x ∀∈+∞,1ln x x +≥ C .()0,x ∃∈+∞,1ln x x +>D .()0,x ∀∈+∞,1ln x x +>4.若集合{}23A x Z x x =∈≤,{}2,B x y x y A ==∈,则A B =( )A .{}0,1,2B .{}0,2C .{}0,1D .{}1,25.已知向量(),2m k =-,()1,3n =,则“k 6<”是“m 与n 的夹角为钝角”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件6.已知集合2{|230}A x x x =--≥,{B x y ==,则A B ⋃=( ) A .[)3,+∞B .[)2,+∞C .(][),10,-∞-⋃+∞D .(][),12,-∞-⋃+∞7.已知集合{}2()1A xx a =-<∣,{1,0,1,2,3}B =-,若{0,1}A B =,则实数a 的取值范围是( ) A .[0,1]B .(0,1)C .[1,)+∞D .(,0)-∞8.方程22x x =的所有实数根组成的集合为( ) A .()0,2B .(){}0,2C .{}0,2D .{}22x x =9.设全集{}24U x N x =∈-<<,{}0,2A =,则UA 为( )A .{}1,3B .{}0,1,3C .{}1,1,3-D .{}1,0,1,3-10.已知0a >,则“3a a a >”是“3a >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件11.设p :3x <,q :()()130x x +-<,则p 是q 成立的( ) A .充分必要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件12.设π:3p α=;:tan q α=p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件13.设{M x x =≥,b = ) A .b M ⊆B .b M ∉C .{}b M ∉D .{}b M ⊆14.已知集合{A x y ==,{}1,2,3,4,5B =,则A B =( ). A .{}2,3B .{}1,2,3C .{}1,2,3,4D .{}2,3,415.已知非零向量a ,b ,c ,则“||1a b -≤,||2b c -≤”是“||3a c -≤”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件16.设集合{}|33A x x =-<<,集合{}|25B x x =-≤≤,则A B =( ) A .{}|35x x -<≤B .{}|32x x -<≤-C .{}|23x x -≤<D .{}|35x x <≤17.已知集合(){}{}22log 213,40A x x B x x =-≤=-≤,则()A B =R ( )A .122x x ⎧⎫-≤≤⎨⎬⎩⎭ B .122x x ⎧⎫<≤⎨⎬⎩⎭C .{}22x x -≤≤D .∅18.命题“0x ∀>,2x x >”的否定是( )A .00x ∃>,200x x ≤B .00x ∃≤,200x x ≤C .0x ∀>,2x x ≤D .0x ∀≤,2x x >19.若01a <<,则“log log a a x y >”是“x y a a >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件20.若数列{}n a 满足11a =-,则“m ∀,*n N ∈,m n m n a a a +=”是“{}n a 为等比数列”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件21.设集合{}1,0,1,2A =-,{B y y ==,则A B =( ) A .{}0B .{}0,1,2C .{}0,1D .{}0,2 22.已知集合(){}ln 3A x N y x =∈=-,{}12B x x =-≤<,则A B =( ) A .{}1,0,1-B .{}1C .{}0,1D .{}0,1,223.已知集合{1,0,1,2,3,4}A =-,{}2ln 2B x x =<,图中阴影部分为集合M ,则M 中的元素个数为( )A .1B .2C .3D .424.设x ∈R ,则“(1)(2)0x x -+≥”是“|2|1x -<”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件25.设全集{}2,1,0,1,2,3U =--,集合{}1,0,1,3A =-,{}2,0,2B =-,则U ()A B ⋂=( ) A .{}0,1,2B .2,0,2C .{}0,2D .{}1,1,3-26.给出下列三个命题:①“全等三角形的面积相等”的否命题 ①若“2lg 0x =,则1x =-”的逆命题 ①“若x y ≠或x y ≠-,则x y ≠”的逆否命题.其中真命题的个数是( ) A .0B .1C .2D .327.已知全集2,1,0,1,2U ,{}21A x Z x =∈-<<,{}1,0,1B =-,则()U B A ⋂=( )A .∅B .{}0C .{}1D .{}0,128.已知集合{}2230A x x x =∈--<Z ,{}1,1,2,3B =-,则A B =( )A .{}1,2-B .{}1,1,2,3-C .{}1,2D .{}1,329.“4a <”是“过点()1,1有两条直线与圆2220x y y a ++-=相切”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件30.已知集合{1,0,1,2,3,4,5}A =-,集合{|34}=-<<B x x ,则 A B =( ) A .{1,0,1,2,3}-B .{0,1,2,3}C .{1,0,1,2}-D .{1,0,1,2,3,4}-31.设集合{}12022A x x =-<<,{}22530B x x x =+-≤,则A B =( )A .{}32022x x -<≤B .132x x ⎧⎫-<≤⎨⎬⎩⎭C .112x x ⎧⎫-<≤⎨⎬⎩⎭D .{}1x x ≥-32.已知集合(){}2log 12A x x =-≤,{}2230B x x x =--≤,则()RA B =( )A .[]1,3B .()(),13,-∞-⋃+∞C .(]1,3D .(](),13,-∞⋃+∞33.已知集合{}2,3,4,5A =,{B x y ==,则A B =( )A .{}2B .{}3C .{}2,3D .{}2,3,434.“b <是“圆22:9C x y +=上有四个不同的点到直线:l y x b =-的距离等于1”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件35.设命题3:,3n p n N n ∀∈>,则命题p 的否定为( ) A .3,3n n N n ∃∉> B .3,3n n N n ∃∉≤ C .3,3n n N n ∃∈≤D .3,3n n N n ∀∈>36.已知α,R β∈,则“cos cos αβ=”是“存在k Z ∈使得()1kk απβ=+-”的( ) A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件37.将有理数集Q 划分为两个非空的子集M 与N ,且满足M N Q M N ⋃=⋂=∅,,M 中的每一个元素都小于N 中的每一个元素,这种有理数的分割()M N ,就是数学史上有名的戴德金分割.试判断,对于任一戴德金分割()M N ,,下列选项中不可能成立的是( )A .M 有最大元素,N 有一个最小元素B .M 没有最大元素,N 也没有最小元素C .M 没有一个最大元素,N 有一个最小元素D .M 有一个最大元素,N 没有最小元素 38.设x R ∈,则“322x -≤”是“2102x x +≤-”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件39.设集合{}{}|14|3A x x B x x =-<<=≤,,则()B A =R ( )A .{}|34x x ≤<B .{}|34x x <<C .{}|13x x -<≤D .{}1x x >-40.若01a <<,则“log log a a b c <”是“b c >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件41.已知集合{}03A x x =<<,{}24B x x =≤,则A B =( )A .()0,2B .[)2,0-C .[)0,3D .(]0,242.已知集合{}02A x x =<<,{}2230B x x x =+-≥,则如图所示的阴影部分表示的集合为( )A .(][),32,-∞-⋃+∞B .()[),32,-∞-⋃+∞C .()(),02,-∞+∞D .(][),02,-∞⋃+∞43.若向量(),3a m =-,()3,1b =,则“1m <”是“向量a ,b 夹角为钝角”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件44.设集合{}A y y x ==,{B x y ==,全集为R ,则RA B =( )A .[)0,∞+B .(),0∞-C .{}0,1D .()(){}0,0,1,145.已知集合1|0,N 4x A x x x +⎧⎫=≤∈⎨⎬-⎩⎭,{0,1,2,3,4}B =,则( ) A .A B = B .B A C .A B B = D .A B46.若集合12xA x x ⎧⎫-=∈>⎨⎬⎩⎭R ,(){}2log 11B x x =+<,则A B =( ) A .1,3⎛⎫-∞ ⎪⎝⎭B .11,3⎛⎫- ⎪⎝⎭C .10,3⎛⎫⎪⎝⎭D .1,13⎛⎫ ⎪⎝⎭47.若集合{}20A x x x =-=,B x y ⎧=⎨⎩,则A B =( )A .∅B .{}0C .{}1D .{}0,148.已知集合{}24A x Z x =∈<,{}1,B a =,B A ⊆,则实数a 的取值集合为( ) A .{}2,1,0--B .{}2,1--C .{1,0}-D .{}1-49.若集合61A x ZN x ⎧⎫=∈∈⎨⎬-⎩⎭,(){}lg 3B x y x ==-,则A B =( ) A .{}2,3,4,7 B .{}3,4,7 C .{}1,4,7 D .{}4,750.已知集合{}2230A x x x =--<,{}15B x x =≤≤,则A B =( )A .(]1,5-B .(]1,1-C .()1,3D .[)1,351.已知,l m 是两条不同的直线,αβ,是两个不同的平面,命题p :若m α⊂,m β∥,则αβ∥;命题q :若m α⊥,l β⊥,αβ∥,则m l ∥;则下列命题正确的是( ) A .p q ∧B .p q ⌝∧C .p q ∨⌝D .p q ⌝∧⌝52.“2x =”是“2320x x -+=”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件53.已知命题p :0x ∃∈R ,0sin 1x <;命题q :0x ∃∈R ,00sin cos x x +,则下列命题中的真命题是( ) A .p q ∧B .()p q ⌝∧C .()p q ∧⌝D .()p q ⌝∨54.已知集合{}2,x A y y x R ==∈,{}24B x x =≤,则A B =( )A .[]22-,B .[)2,0-C .[]0,2D .(]0,255.已知集合{}1,2,3,4,5,6A =,6,1B xx A x ⎧⎫=∈∈⎨⎬-⎩⎭N ,则集合B 的子集的个数是( ) A .3B .4C .8D .1656.已知全集{}N 27U x x =∈-≤<,(){}1,5,6UA B ⋃=,{}2,4B =,则图中阴影部分表示的集合是( )A .{}2,1,0,3--B .{}0,3C .{}0,2,3,4D .{}357.已知集合{}34A x x =-<<,{}250B x x x =+>.则A B ( )A .()5,4-B .()0,4C .()3,0-D .()5,0-58.已知集合(){},22,0M x y y x xy ==-≤,(){}2,5N x y y x ==-,则M N ⋂中的元素个数为( ) A .0B .1C .2D .l 或259.设集合402x A xx -⎧⎫=>⎨⎬+⎩⎭,{}27100B x x x =-+≥,则()R A B ⋂=( ) A .{}22x x -<< B .{}22x x -≤≤ C .{4x x ≤或}5x ≥D .{2x x ≤或}5x ≥60.设非零复数1z ,2z 在复平面内分别对应向量OA ,OB ,O 为原点,则OA OB ⊥的充要条件是( )A .211z z =-B .21i zz =C .21z z 为实数D .21z z 为纯虚数61.命题“若24x <,则22x -<<”的逆否命题是( ) A .若22x -<<,则24x < B .若24x ≥,则2x ≥或2x -≤ C .若22x -<<,则24x ≥ D .若2x ≥或2x -≤,则24x ≥62.已知集合(){}22,4A x y xy =+=,(){},2B x y y ==,则集合A B 中元素的个数为( ) A .3B .2C .1D .063.已知集合{}213M x x =+<,{}N x x a =<,若N M ⊆,则实数a 的取值范围为( ) A .[)1,+∞ B .[)2,+∞ C .(],1-∞D .(),1-∞64.已知集合{}23180A x x x =--≤,{}2log 1B x x =>,则A B =( )A .[)(]3,22,6-B .[)(]3,22,6--⋃C .[)3,2--D .(]2,665.已知命题p :“23m <<是方程22123x y m m+=--表示椭圆”的充要条件;命题q :“2b ac =是a ,b ,c 成等比数列”的必要不充分条件,则下列命题为真命题的是( ) A .p q ∧B .p q ∨⌝C .p q ⌝∨⌝D .p q ⌝∧⌝66.已知命题p :()010,x ∃∈+∞,0lg 1x >,则命题p 的否定为( ) A .()10,x ∀∈+∞,1lg x ≤ B .()10,x ∀∈+∞,lg 1x C .()10,x ∀∉+∞,lg 1xD .()10,x ∀∉+∞,1lg x ≤67.集合{}0,1,2,3A =的真子集的个数是( ) A .16B .15C .8D .768.已知集合{}1A x x =>,{}13B x x =-≤<,则()R A B ⋂=( ) A .{}13x x <<B .{}11x x -≤<C .{}13x x ≤<D .{}11x x -≤≤69.若p :24x ≤≤,q :13x ≤≤,则p 为q 的( ) A .充分必要条件 B .充分不必要条件 C .必要不充分条件D .既不充分又不必要条件70.若命题p 为“0x ∃≥,()10x x -<”,则p ⌝为( ) A .0x ∀<,()10x x -≥ B .0x ∀≥,()10x x -≥ C .0x ∃≥,()10x x -≥D .0x ∃<,()10x x -<71.已知p :a m <(其中R a ∈,m ∈Z ),q :关于x 的一元二次方程2210ax x ++=有一正一负两个根.若p 是q 的充分不必要条件,则m 的最大值为( ) A .1B .0C .1-D .272.命题“0x ∀>,210x ->”的否定为( ) A .0x ∀>,210x -≤ B .0x ∀≤,210x -≤ C .00x ∃>,0210x -≤D .00x ∃>,0210x ->73.已知{}2430M x x x =-+<,{|N x y ==,则M N ⋃=( )A .(]1,2B .(](),21,3-∞-⋃C .(](),23,-∞-+∞ D .(](),21,-∞-⋃+∞74.命题“0x ∃∈R ,使得320000x ax bx c +++=”的否定是( ) A .x ∃∉R ,320x ax bx c +++≠ B .x ∀∈R ,320x ax bx c +++≠ C .x ∀∉R ,320x ax bx c +++≠D .x ∀∈R ,320x ax bx c +++=75.已知集合{}220A xx x =+-≤∣, 集合(){}2log 1B x y x ==+∣, 则A B ⋂=( ) A .[-21],B .(-11],C .(]12-,D .[)1,∞+ 76.若集合{12}A x x =-<<∣,{|1B x x =<或}3x >,则()R A B ⋂=( ) A .{13}xx -<<∣ B .{11}xx -<<∣ C .{23}x x <≤∣ D .{12}xx ≤<∣ 77.已知命题20:,0p x x ∃∈R ,则p ⌝是( )A .2,0x x ∀∉RB .2,0x x ∀∈<RC .200,0x x ∃∈RD .200,0x x ∃∈<R78.若方程22121x y m m +=+--表示的曲线为C ,则( )A .21m -<<-是C 为椭圆的充要条件B .21m -<<-是C 为椭圆的充分条件C .312m -<<-是C 为焦点在x 轴上椭圆的充要条件D .302m -<<是C 为焦点在x 轴上椭圆的充分条件79.已知集合{}{|ln 1|A x x B x =<=,,则()R A B =( ) A .[2,e )B .(0,2)C .(2,e ]D .(0,e )80.“0mn >”是“方程221x y m n-=为双曲线方程”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件二、多选题81.已知函数()()2221e xf x ax x =-+,则( )A .()f x 有零点的充要条件是1a <B .当且仅当(]0,1a ∈,()f x 有最小值C .存在实数a ,使得()f x 在R 上单调递增D .2a ≠是()f x 有极值点的充要条件 82.下列选项中,能够成为“关于x 的方程2||10x x a -+-=有四个不等实数根”的必要不充分条件是( ) A .51,4a ⎛⎫∈ ⎪⎝⎭B .51,4a ⎡⎫∈⎪⎢⎣⎭C .()1,2a ∈D .91,8a ⎛⎫∈ ⎪⎝⎭三、解答题83.若实数数列()12:,,,2n n A a a a n ≥满足()111,2,,1k k a a k n +-==-,则称数列nA 为E 数列.(1)请写出一个5项的E 数列5A ,满足150a a ==,且各项和大于零; (2)如果一个E 数列n A 满足:存在正整数()1234512345,,,,i i i i i i i i i i n <<<<≤使得12345,,,,i i i i i a a a a a 组成首项为1,公比为2-的等比数列,求n 的最小值;(3)已知()122,,,2m a a a m ≥为E 数列,求证:3211,,,222m a a a -为E 数列且224,,,222m a a a 为E 数列”的充要条件是“122,,,m a a a 是单调数列”.84.已知命题p :实数x 满足()42220x x a a ⋅+-⋅-≤;命题q :实数x 满足2320x x -+<.若p 是q 的必要条件,求实数a 的取值范围.85.设p :()224300x ax a a -+<>,q :211180x x -+≤.(1)若命题“()1,2x ∀∈,p 是真命题”,求a 的取值范围;(2)若p 是q 的充分不必要条件,求a 的取值范围.86.著名的“康托尔三分集”是由德国数学家康托尔构造的,是人类理性思维的产物,其操作过程如下:将闭区间[]0,1均分为三段,去掉中间的区间段12,33⎛⎫ ⎪⎝⎭记为第一次操作;再将剩下的两个闭区间10,3⎡⎤⎢⎥⎣⎦,2,13⎡⎤⎢⎥⎣⎦分别均分为三段,并各自去掉中间的区间段,记为第二次操作;…,如此这样,每次在上一次操作的基础上,将剩下的各个区间分别均分为三段,同样各自去掉中间的区间段.操作过程不断地进行下去,以至无穷.每次操作后剩下的闭区间构成的集合即是“康托尔三分集”.例如第一次操作后的“康托尔三分集”为120,,,133⎧⎫⎡⎤⎡⎤⎨⎬⎢⎥⎢⎥⎣⎦⎣⎦⎩⎭. (1)求第二次操作后的“康托尔三分集”;(2)定义[],s t 的区间长度为t s -,记第n 次操作后剩余的各区间长度和为()*n a n N ∈,求4a ;(3)记n 次操作后“康托尔三分集”的区间长度总和为n T ,若使n T 不大于原来的110,求n 的最小值.(参考数据:lg 20.3010=,lg30.4771=)87.已知命题p :“0x R ∃∈,20048x a x +≤”为假命题,命题q :“实数a 满足415a>-”.若p q ∨是真命题,p q ∧是假命题,求a 的取值范围. 88.求证:角θ为第二象限角的充要条件是sin 0tan 0θθ>⎧⎨<⎩. 89.已知P ={x |x 2-x -20≤0},非空集合S ={x |1-m ≤x ≤1+m }.若x ①P 是x ①S 的必要条件,求m 的取值范围.90.已知p :()222100x x a a -+-≥>,q :()()150x x +-<.(1)当3x =-时,p 为真命题,求实数a 的取值范围;(2)若p ⌝是q 的充分不必要条件:求实数a 的取值范围.91.已知集合{}2,12x A y y x ==-≤≤,集合{}1ln 2B x x =<≤,集合{}22320,0C x x ax a a =-+≤>. (1)求A B ;(2)若C A ⊆,求实数a 的取值范围.92.判断命题的真假:如果12,n n 分别是直线12,l l 的一个方向向量,则1l 与2l 垂直的充要条件是1n 与2n 垂直.四、填空题93.设集合{}{}240,,20A xx x A x x a =-≤∈=+≤R ∣∣,且[]2,1A B =-,则=a ___________.94.以下有关命题的说法错误的命题的序号是_______.①若命题p :某班所有男生都爱踢足球,则¬p :某班至少有一个男生爱踢足球; ①已知a ,b 是实数,那么“a b >”是"ln ln "a b >的必要不充分条件;①若αβ>则sin sin αβ>;①幂函数253(1)m y m m x --=--在,()0x ∈+∞时为减函数,则2m =.95.已知函数2()43f x x x =-+,()52g x mx m =+-,若对任意的[]11,4x ∈,总存在[]21,4x ∈,使12()()f x g x =成立,则实数m 的取值范围是 ________.96.曲线0:p x ∃∈R ,320010x x -+≥,则p ⌝为___________.97.命题“0x ∃①R ,使20mx -(m +3)x 0+m ≤0”是假命题,则实数m 的取值范围为__________.98.命题“x R ∃∈,20x +≤”的否定是______.五、概念填空99.存在量词与存在量词命题100.判断正误.(1)命题“任意一个自然数都是正整数”是全称量词命题.( )(2)命题“三角形的内角和是180 ”是全称量词命题.( )(3)命题“梯形有两边平行”不是全称量词命题.( )参考答案:1.C【解析】【分析】利用指数函数的性质可化简集合A ,根据对数函数性质得集合B ,然后计算交集.【详解】 由已知{}2,0[1,)x A y y x ∞==≥=+,{}ln(2)B x y x ==-(){|20}{|2},2x x x x =->=<=-∞,①[1,2)A B ⋂=.故选:C .2.A【解析】【分析】由ln ln a b >及对数函数的单调性可得0a b >>;将sin sin a b b a +>+变形化同构,进而构造函数,利用导数讨论函数的单调性可得a b >,即可得解.【详解】由ln ln a b >,得0a b >>.由sin sin a b b a +>+,得sin sin a a b b ->-.记函数()sin ()x x f x x R =-∈,则()1cos 0f x x '=-≥,所以函数()f x 在R 上单调递增,又sin sin a a b b ->-,则()()f a f b >,所以a b >.因此“ln ln a b >”是“sin sin a b b a +>+”的充分不必要条件.故选:A .3.C【解析】【分析】根据全称量词命题的否定直接得出结果.【详解】因为全称量词命题的否定是特称量词命题,故原命题的否定是()0,x ∃∈+∞,1ln x x +>.故选:C4.C【解析】【分析】先解不等式求出集合A ,再求出集合B ,然后求两集合的交集即可【详解】解不等式23x x ≤,得03x ≤≤,又x ∈Z ,所以{}0,1,2,3A =, 所以{}132,0,,1,22B x y x y A ⎧⎫==∈=⎨⎬⎩⎭,所以{}0,1A B =. 故选:C5.B【解析】【分析】先求出m 与n 的夹角为钝角时k 的范围,即可判断.【详解】当m 与n 的夹角为钝角时,0m n ⋅<,且m 与n 不共线,即6032k k -<⎧⎨≠-⎩所以k 6<且23k ≠-.故“k 6<”是“m 与n 的夹角为钝角”的必要不充分条件.故选B.6.D【解析】【分析】根据一元二次不等式的解法和函数定义域的定义,求得集合,A B ,集合集合并集的运算,即可求解.【详解】由不等式2230x x --≥,解得1x ≤-或3x ≥,所以集合{|1A x x =≤-或3}x ≥, 又由20x -≥,解得2x ≥,所以集合{}2B x x =≥,所以(][),12,A B ⋃=-∞-⋃+∞.故选:D .7.B【解析】【分析】按照交集的定义,在数轴上画图即可.【详解】由题可得集合{}{}2()111A xx a x a x a =-<=-<<+∣,所以要使{0,1}A B =,则需110112a a -≤-<⎧⎨<+≤⎩,解得01a <<, 故选:B.8.C【解析】【分析】首先求出方程的解,再根据集合的表示方法判断即可;【详解】解:由22x x =,解得2x =或0x =,所以方程22x x =的所有实数根组成的集合为{}{}2|20,2x R xx ∈==; 故选:C9.A 【解析】【分析】根据全集U 求出A 的补集即可.【详解】{}{}24=0,1,2,3U x N x =∈-<<,{}0,2A =,{}U =1,3A ∴.故选:A.10.B【解析】【分析】对a 的取值进行分类讨论,结合指数函数的单调性解不等式3a a a >,利用集合的包含关系判断可得出结论.【详解】若01a <<,由3a a a >可得3a <,此时01a <<;若1a =,则3a a a =,不合乎题意;若1a >,由3a a a >可得3a >,此时3a >.因此,满足3a a a >的a 的取值范围是{01a a <<或}3a >, 因为{01a a <<或}3a > {}3a a >,因此,“3a a a >”是“3a >”的必要不充分条件.故选:B.11.C【解析】【分析】解不等式化简命题q ,再利用充分条件、必要条件的定义直接判断作答.【详解】解不等式得:13x ,即:13q x -<<,显然{|13}x x -<< {|3}x x <,所以p 是q 成立的必要不充分条件.故选:C12.A【解析】【分析】根据特殊角的三角函数值以及充分条件与必要条件的定义可得结果.【详解】当π3α=时,tan α=p 则q 成立;当tan α=,3k k Z παπ=+∈,即若q 则p 不成立;综上得p 是q 充分不必要条件,故选:A.13.D【解析】【分析】根据元素与集合的关系,集合与集合的关系判断即可得解.【详解】解:因为{M x x =≥,b =所以b M ∈,{}b M ⊆.故选:D.14.C【解析】【分析】先化简集合A ,再利用集合的交集运算求解.【详解】因为集合{{}4A x y x x ==≤,{}1,2,3,4,5B =,所以A B = {}1,2,3,4,故选:C15.A【解析】【分析】根据充分、必要性的定义,结合向量减法的几何意义判断条件间的推出关系,即可得答案.【详解】由||1a b -≤,||2b c -≤,如下图示,||||||3a c a b b c -≤-+-≤,当且仅当a ,b ,c 共线时前一个等号成立,充分性成立;当||3a c -≤,不一定有||1a b -≤,||2b c -≤,必要性不成立. 综上,“||1a b -≤,||2b c -≤”是“||3a c -≤”的充分而不必要条件. 故选:A16.C【解析】【分析】利用集合的交运算求A B 即可.【详解】由题设,A B ={}|33x x -<<⋂{}|25{|23}x x x x -≤≤=-≤<. 故选:C17.A【解析】【分析】先求出集合A 和集合A 的补集,集合B ,再求出()A B ⋂R【详解】由22log (21)3log 8x -≤=,得0218x <-≤,解得1922x <≤, 所以1922A x x ⎧⎫=<≤⎨⎬⎩⎭,所以12R A x x ⎧=≤⎨⎩或x >92}, 由240x -≤得22x -≤≤,所以{}22B x x =-≤≤,所以()A B =R 122x x ⎧⎫-≤≤⎨⎬⎩⎭故选:A18.A【解析】【分析】根据命题的否定的定义判断.【详解】全称命题的否定是特称命题,命题“0x ∀>,2x x >”的否定是:00x ∃>,200x x ≤.故选:A.19.A【解析】【分析】根据一直关系判断,x y 的大小关系进行等价转化即可得解.【详解】由01a <<,log log 0a a x y y x >⇔>>,x y a a y x ≥⇔>,故为充分不必要条件. 故选:A20.A【解析】【分析】利用等比数列的定义通项公式即可判断出结论.【详解】解:“m ∀,*n N ∈,m n m n a a a +=”,取1m =,则11n n a a +=-, {}n a ∴为等比数列.反之不成立,{}n a 为等比数列,设公比为q ()0q ≠,则1m n m n a q +-+=-,()()112n n m m m n a a q q q --+-=-⨯-=,只有1q =-时才能成立满足m n m n a a a +=. ∴数列{}n a 满足11a =-,则“m ∀,*n N ∈,m n m n a a a +=”是“{}n a 为等比数列”的充分不必要故选:A .21.B【解析】【分析】求得集合B 中对应函数的值域,再求A B 即可.【详解】因为{B y y ==∣{|0}y y =≥,又{}1,0,1,2A =-, 故A B ={}0,1,2.故选:B22.C【解析】【分析】由对数函数定义域可求得集合A ,由交集定义可得结果.【详解】由30x ->得:3x <,(){}{}ln 30,1,2A x N y x ∴=∈=-=,{}0,1A B ∴⋂=.故选:C.23.C【解析】【分析】由Venn 图得到()A M A B =⋂求解. 【详解】如图所示()A M A B =⋂,2ln 2x <,22ln ln e x ∴<,解得e e x -<<且0x ≠,(e,0)(0,e)B ∴=-又{1,0,1,2,3,4}A =-,{1,1,2}A B ∴=-,(){0,3,4}A A B ∴⋂=,{0,3,4}M ∴=,所以M 中元素的个数为3 故选:C24.B【分析】根据充分必要条件的定义判断.【详解】(1)(2)0x x -+≥,则2x -≤或1≥x ,不满足21x -<,如2x =-,不充分,21x -<时,13x <<,满足(1)(2)0x x -+≥,必要性满足.应为必要不充分条件.故选:B .25.D【解析】【分析】根据集合的运算法则计算.【详解】由已知{1,1,3}U B =-,所以U (){1,1,3}A B =-.故选:D .26.B【解析】【分析】写出相应命题,根据相关知识直接判断可得.【详解】“全等三角形的面积相等”的否命题为:不全等的三角形的面积不相等.易知为假命题;若“2lg 0x =,则1x =-”的逆命题为:若1x =-,则2lg 0x =.显然为真命题;“若x y ≠或x y ≠-,则x y ≠”的逆否命题为:若x y =,则x y =且x y =-.易知为假命题. 故选:B27.C【解析】【分析】根据集合的运算法则计算.{2,1,2}U A =-,(){1}U B A =.故选:C .28.C【解析】【分析】求出集合A ,利用交集的定义可求得结果.【详解】{}{}{}2230130,1,2A x x x x x =∈--<=∈-<<=Z Z ,因此,{}1,2A B =. 故选:C.29.B【解析】【分析】先由已知得点()1,1在圆2220x y y a ++-=外,求出a 的范围,再根据充分条件和必要条件的定义分析判断【详解】由已知得点()1,1在圆2220x y y a ++-=外,所以22211210240a a ⎧++⨯->⎨+>⎩,解得14a -<<, 所以“4a <”是“过点()1,1有两条直线与圆2220x y y a ++-=相切”的必要不充分条件, 故选:B30.A【解析】【分析】根据交集的定义计算.【详解】由已知{1,0,1,2,3}A B =-.故选:A .【解析】【分析】化简集合B ,结合交集运算即可.【详解】 因为集合{}21253032B x x x x x ⎧⎫=+-≤=-≤≤⎨⎬⎩⎭,所以112A B x x ⎧⎫⋂=-<≤⎨⎬⎩⎭, 故选:C .32.D【解析】【分析】先解出集合A 、B ,再求A B ,从而求解补集.【详解】由()2log 12x -≤,即014x <-≤,解得15x <≤,所以(]1,5A =.由2230x x --≤得()3x -⋅()10x +≤,即13x -≤≤,所以[]1,3B =-,由此(]1,3A B =,于是()(]()R ,13,A B ⋂=-∞⋃+∞,故选:D.33.C【解析】【分析】由一元二次不等式的解法求出函数y B ,然后根据交集的定义即可求解.【详解】解:因为集合{}2,3,4,5A =,集合{{}{}23003B x y x x x x x ===-≥=≤≤,所以{}2,3A B ⋂=.故选:C.34.A【分析】根据直线和圆的位置关系求出b ,然后利用充分条件和必要条件的定义进行判断.【详解】①圆22:9C x y +=的半径3r =,若圆C 上恰有4个不同的点到直线l 的距离等于1,则必须满足圆心(0,0)到直线:l y x b =-的距离2d =<,解得b -<<又((⊆-,①“b <是“圆22:9C x y +=上有四个不同的点到直线:l y x b =-的距离等于1”的充分不必要条件.故选:A.35.C【解析】【分析】由全称命题的否定是特称命题即可得解.【详解】根据全称命题的否定是特称命题可知,命题3:,3n p n N n ∀∈>的否定命题为3,3n n N n ∃∈≤,故选:C36.D【解析】【分析】根据充分条件,必要条件的定义,以及诱导公式即可判断.【详解】(1)当存在k Z ∈使得()1kk απβ=+-时, 则()cos ,2,cos cos (1)cos ,21,k k n n Z k k n n Z βαπββ=∈⎧=+-=⎨-=+∈⎩;即不能推出cos cos αβ=.(2)当cos cos αβ=时,2k αβπ=+或2k απβ=-,k Z ∈,所以对第二种情况,不存在k Z ∈时,使得()1kk απβ=+-成立,故“cos cos αβ=”是“存在k Z ∈使得()1k k απβ=+-”的既不充分不必要条件.故选:D37.A【解析】【分析】由题意依次举例对四个命题判断,从而确定答案.【详解】M 有一个最大元素,N 有一个最小元素,设M 的最大元素为m ,N 的最小元素为n ,若有m <n ,不能满足M①N=Q ,A 错误;若{|M x Q x =∈<,{|2}N x Q x =∈;则M 没有最大元素, N 也没有最小元素,满足其它条件,故B 可能成立;若{|0}M x Q x =∈<,{|0}N x Q x =∈,则M 没有最大元素,N 有一个最小元素0,故C 可能成立;若{|0}M x Q x =∈,{}0N x Q x =∈;M 有一个最大元素,N 没有最小元素,故D 可能成立;故选:A .38.D【解析】 【分析】 首先解出绝对值不等式与分式不等式,再根据充分条件、必要条件的定义判断即可;【详解】解:因为322x -≤,所以33222x -≤-≤,解得1722x ≤≤;由2102x x +≤-,即()()212020x x x ⎧+-≤⎨-≠⎩,解得122x -≤<;所以1722x ≤≤与122x -≤<互相不能推出,故“322x -≤”是“2102x x +≤-”的既不充分也不必要条件; 故选:D39.B【解析】【分析】根据补集运算得{}R |3x B x =>,再根据交集运算求解即可.【详解】解:因为{}{}|14|3A x x B x x =-<<=≤,,所以{}R |3x B x =>,所以{}()|34R B A x x ⋂=<<故选:B40.A【解析】【分析】利用函数log a y x =在(0,)+∞单调递减,可得log log 0a a b c b c <⇔>>,分析即得解【详解】由01a <<,故函数log a y x =在(0,)+∞单调递减故log log 0a a b c b c <⇔>>即log log a a b c b c <⇒>,充分性成立; b c >推不出log log a a b c <,必要性不成立;故“log log a a b c <”是“b c >”的充分不必要条件.故选:A41.D【解析】解一元二次不等式求集合B ,再利用集合交运算求A B .【详解】 由题设,{}24{|22}B x x x x =≤=-≤≤,又{}03A x x =<<, 所以{}(]{|22}030,2A x x B x x -≤≤⋂<<==.故选:D42.A【解析】【分析】根据阴影部分表示的集合为R A B ⋂求解.【详解】 因为集合{}02A x x =<<,所以R {|0A x x =≤或2}x ≥, 又因为{}2230{|3B x x x x x =+-≥=≤-或1}x ≥, 所以阴影部分表示的集合为R {|3A B x x ⋂=≤-或2}x ≥,故选:A43.B【解析】【分析】 由向量a ,b 夹角为钝角可得0a b ⋅<且a ,b 不共线,然后解出m 的范围,然后可得答案.【详解】若向量a ,b 夹角为钝角,则0a b ⋅<且a ,b 不共线所以330133m m -<⎧⎨⋅≠-⋅⎩,解得1m <且9m所以“1m <”是“向量a ,b 夹角为钝角”的必要不充分条件故选:B44.B【分析】化简集合A ,B ,根据补集及交集运算即可.【详解】{}A y y x R ===,{[0,)B x y ∞===+(,0)R R A B B ∴==-∞,故选:B45.D【解析】【分析】解分式不等式求集合A ,再判断集合之间的包含关系,即可判断各选项的正误.【详解】由题设,{|14,N}{0,1,2,3}A x x x =-≤<∈=,又{0,1,2,3,4}B =,所以A B ,即A 、B 、C 错误,D 正确.故选:D46.C【解析】【分析】根据分式不等式解法解出集合A ,根据对数的运算法则计算出集合B ,再根据集合交集运算得结果. 【详解】(){}113003A x x x x x ⎧⎫=-⋅>=<<⎨⎬⎩⎭, (){}{}{}2log 1101211B x x x x x x =+<=<+<=-<<,①10,3A B ⎛⎫ ⎪⎝=⎭. 故选:C.47.B【解析】先化简集合A ,B ,再利用交集运算求解.【详解】 因为{}{}200,1A x x x =-==,B x y ⎧=⎨⎩={}|1x x <, 所以A B ={}0,故选:B48.C【解析】【分析】先解出集合A ,再根据B A ⊆确定集合B 的元素,可得答案.【详解】由题意得,{}{|22}1,0,1A x Z x =∈-<<=-,①{}1,B a =,B A ⊆, ①实数a 的取值集合为{}1,0-,故选:C.49.D【解析】【分析】首先用列举法表示集合A ,再根据对数函数的性质求出集合B ,最后根据交集的定义计算可得;【详解】 解:集合{}62,3,4,71A x Z N x ⎧⎫=∈∈=⎨⎬-⎩⎭,集合(){}{}lg 33B x y x x x ==-=>,则{}4,7A B ⋂=,故选:D .50.D【解析】【分析】先根据一元二次不等式解得集合A ,然后利用交集运算法则求出答案.【详解】解:由题意得:{}{}2230|13A x x x x x =--<=-<<,{}15B x x =≤≤ {}[)|131,3A B x x ∴=≤<=故选:D51.B【解析】【分析】先根据空间线面位置关系判断命题,p q 的真假,再根据且、或、非命题判断真假即可.【详解】解:命题p :若m α⊂,m β∥,则αβ∥,还可能相交,故是假命题,;命题q :若m α⊥,l β⊥,αβ∥,则m l ∥,是真命题.所以p ⌝为真命题,q ⌝为假命题,所以p q ∧,p q ∨⌝,p q ⌝∧⌝均为假命题,p q ⌝∧为真命题,故选:B52.A【解析】【分析】解方程2320x x -+=,利用集合的包含关系判断可得出结论.【详解】解方程2320x x -+=可得1x =或2x =,{}2 {}1,2,因此,“2x =”是“2320x x -+=”的充分不必要条件.故选:A.53.A【解析】【分析】判断命题p ,q 的真假,再借助真值表逐一判断作答.【详解】因当00x =时,0sin 01x =<,即命题p 是真命题,因当04x π=时,00sin cos x x +,即命题q 是真命题, 因此,p q ∧,p q ∨都是真命题,()p q ⌝∨是假命题,而p ⌝是假命题,则()p q ⌝∧是假命题,同理()p q ∧⌝是假命题,所以,B ,C ,D 都不正确,A 正确.故选:A54.D【解析】【分析】首先解一元二次不等式求出集合B ,再根据指数函数的性质求出集合A ,最后根据交集的定义计算可得;【详解】解:由24x ≤,即()()220x x -+≤,解得22x -≤≤,所以{}{}24|22B x x x x =≤=-≤≤,又{}()2,0,x A y y x R ∞==∈=+,所以(]0,2A B ⋂=. 故选:D55.C【解析】【分析】先求出集合B ,再根据子集的定义即可求解.【详解】依题意{}2,3,4B =,所以集合B 的子集的个数为328=,故选:C.56.B【解析】【分析】确定全集中的元素,根据(){}1,5,6U A B ⋃=可确定A B ⋃={}0,2,3,4,再结合图中阴影部分的含义即可得答案.全集{}{}N 270,1,2,3,4,5,6U x x =∈-≤<=,又因为(){}1,5,6U A B ⋃=,所以A B ⋃={}0,2,3,4,而{}2,4B =所以阴影部分表示的集合是()U A B ∩即为{}0,3,故选:B.57.B【解析】【分析】解不等式求得集合B ,由此求得A B .【详解】()()()2550,50,x x x x B +=+>⇒=-∞-⋃+∞, 又{34}A x x =-<<,所以()0,4A B =.故选:B58.A【解析】【分析】首先联立方程,然后判断交点个数,即可判断选项.【详解】首先联立方程22250y x y x xy =-⎧⎪=-⎨⎪≤⎩,得2230x x --=,解得:1x =-或3x =,当1x =-时,4y =-,此时0xy >,舍去;当3x =时,4y =,此时0xy >,舍去,所以M N ⋂为空集.故选:A59.B【分析】根据不等式的解法,分别求得集合,A B ,结合集合补集和交集的运算,即可求解.【详解】 由不等式402x x ->+,解得2x <-或4x >,所以{|2A x x =<-或4}x >, 又由不等式27100x x -+≥,解得2x ≤或5x ≥,所以{|2B x x =≤或5}x , 可得R {|24}A x x =-≤≤,所以()R A B ⋂={}22x x -≤≤.故选:B.60.D【解析】【分析】设()11111i ,z x y x y R =+∈,()22222i ,z x y x y R =+∈,则11(,)OA x y =,22(,)OB x y =,计算出21z z ,然后结合OA OB ⊥可得答案. 【详解】设()11111i ,z x y x y R =+∈,()22222i ,z x y x y R =+∈,则11(,)OA x y =,22(,)OB x y =, 且21212122122111()i z x x y y x y x y z x y ++-=+, 由OA OB ⊥知12120x x y y +=且12x y -210x y ≠,故OA OB ⊥的充要条件是21z z 为纯虚数, 故选:D .61.D【解析】【分析】根据命题和逆否命题的关系可得答案.【详解】 原命题的条件是“若24x <”,结论为“22x -<<”,则其逆否命题是:若2x ≥或2x -≤,则24x ≥,故选:D .【解析】【分析】利用直线与圆的位置关系判断.【详解】因为圆心(0,0)到直线y =2的距离d =2=r ,所以直线2y =与圆224x y +=相切,所以A B 的元素的个数是1,故选:C .63.C【解析】【分析】根据集合的包含关系,列出参数a 的不等关系式,即可求得参数的取值范围.【详解】①集合{}{}2131M x x x x =+<=<,且N M ⊆,①1a ≤.故选:C .64.B【解析】【详解】先求解集合A 和集合B 中的不等式,利用交集的定义即得解【分析】由2318(6)(3)0x x x x --=-+≤,解得36x -≤≤,则[]3,6A =-, 不等式2log 1x >,即2x ,可得2x <-或2x >,则(,2)(2,)B =-∞-⋃+∞所以[)(]3,22,6A B ⋂=--⋃故选:B .65.C【解析】【分析】先判断命题p,q 的真假,从而判断,p q ⌝⌝的真假,再根据“或”“且”命题的真假判断方法,可得答案.【详解】 当52m =时,22123x y m m+=--表示圆, 故命题p :“23m <<是方程22123x y m m+=-- 表示椭圆”的充要条件是假命题, 命题q :“2b ac =是a ,b ,c 成等比数列”的必要不充分条件为真命题,则p ⌝是真命题,q ⌝是假命题,故p q ∧是假命题,p q ∨⌝是假命题,p q ⌝∨⌝是真命题,p q ⌝∧⌝是假命题, 故选:C66.A【解析】【分析】根据特称命题的否定是全称命题,结合已知条件,即可求得结果.【详解】因为命题p :()010,x ∃∈+∞,0lg 1x >,故命题p 的否定为:()10,x ∀∈+∞,1lg x ≤. 故选:A.67.B【解析】【分析】确定集合的元素个数,利用集合真子集个数公式可求得结果.【详解】集合A 的元素个数为4,故集合A 的真子集个数为42115-=.故选:B.68.D【解析】【分析】先求出集合A 的补集,进而求交集即可.【详解】①{}1A x x =>,①(]R ,1A ∞=-,又{}13B x x =-≤<,①()[]R 1,1A B ⋂=-.故选:D69.D【解析】【分析】根据充分条件和必要条件的定义即可得出答案.【详解】解:因为p :24x ≤≤,q :13x ≤≤, 所以,p q q p ⇒⇒,所以p 为q 的既不充分又不必要条件.故选:D.70.B【解析】【分析】特称命题的否定是全称命题,把存在改为任意,把结论否定.【详解】“0x ∃≥,()10x x -<”的否命题为“0x ∀≥,()10x x -≥”,故选:B71.C【解析】【分析】 由一元二次方程根的分布可得010a∆>⎧⎪⎨<⎪⎩求命题q 的参数a 范围,再由命题间的关系求m 的最值即可.【详解】因为2210ax x ++=有一正一负两个根,所以224010a a ⎧∆=->⎪⎨<⎪⎩,解得0a <. 因为p 是q 的充分不必要条件,所以0m <,且m ∈Z ,则m 的最大值为1-.故选:C72.C【解析】【分析】根据含有一个量词的命题的否定的方法进行求解.【详解】全称命题的否定是特称命题,则命题“0x ∀>,210x ->”的否定为“00x ∃>,0210x -≤”. 故选:C.73.D【解析】【分析】利用集合M 、N 的含义,将其化简,然后求其并集即可.【详解】解:由2430x x -+<可得13x <<,所以(1,3)M =,由240x -≥可得2x -≤或2x ≥,所以(][),22,N =-∞-+∞, 所以(](),21,M N =-∞-+∞.故选:D.74.B【解析】【分析】根据特称命题的否定的知识确定正确选项.【详解】原命题是特称命题,其否定是全称命题,注意否定结论,所以,命题“0x ∃∈R ,使得320000x ax bx c +++=”的否定是x ∀∈R ,320x ax bx c +++≠.故选:B75.B【解析】【分析】先求出集合A ,B ,进而根据交集的定义求得答案.【详解】由题意,()(){}[]()|1202,1,1,A x x x B =-+≤=-=-+∞,所以(1,1]A B ⋂=-故选:B.76.D【解析】【分析】先求得R B ,然后求得正确答案.【详解】{}R |13B x x =≤≤,()R A B ⋂={12}x x ≤<∣故选:D77.B【解析】【分析】根据存在量词命题的否定的知识确定正确选项.【详解】原命题是存在量词命题,其否定是全称量词命题,注意到要否定结论,所以B 选项符合. 故选:B78.C【解析】【分析】根据椭圆的性质及焦点的性质可写出其充要条件,然后逐项分析即可.【详解】解:对于A 、B 选项: 曲线22:121x y C m m -=++表示椭圆的充要条件是2010,2121m m m m m +>⎧⎪-->⇔-<<-⎨⎪+≠--⎩且32m ≠-,所以A ,B 不正确;对于C 、D 选项: 方程22121x y m m +=+--表示焦点在x 轴上椭圆321012m m m ⇔+>-->⇔-<<-,所以C 对,D 错.故选:C79.A【解析】【分析】先化简集合A ,B ,再利用集合的补集和交集运算求解.【详解】因为集合{}(){|ln 10,|[1,2)A x x e B x =<==-=,, 所以{|1R B x x =<-或2}x ≥,()[. 2,)R A B e ⋂=故选:A80.C【解析】【分析】 先求出方程221x y m n -=表示双曲线时,m n 满足的条件, 然后根据“小推大”的原则进行判断即可.【详解】 因为方程221x y m n-=为双曲线方程,所以0mn >, 所以“0mn >”是“方程221x y m n-=为双曲线方程”的充要条件. 故选:C.81.BCD【解析】【分析】对于A ,将函数有零点的问题转化为方程有根的问题,根据一元二次方程有根的条件可判断其正误;对于B ,分类讨论a 的取值范围,利用导数判断函数的最值情况;对于C ,可举一具体实数,说明()f x 在R 上单调递增,即可判断其正误;对于D ,根据导数与函数极值的关系判断即可. 【详解】对于A ,函数()()2221e xf x ax x =-+有零点⇔方程2210ax x -+=有解,当0a =时,方程有一解12x =; 当0a ≠时,方程2210ax x -+=有解01,0440a a a a ≠⎧⇔⇒≤≠⎨∆=-≥⎩, 综上知()f x 有零点的充要条件是1a ≤,故A 错误;对于B ,由()()2221e xf x ax x =-+得()()222e x f x x ax a '=+-,当0a =时,()24e xf x x '=-,()f x 在(),0∞-上单调递增,在()0,∞+上单调递减,此时()f x 有最大值()0f ,无最小值;当01a <<时,方程2210ax x -+=有两个不同实根1x ,()212x x x <,当[]12,x x x ∈时,()f x 有最小值()00f x <,当()()12,,x x x ∈-∞⋃+∞时,()0f x >;当1a =时,()()221e x f x x =-有最小值0;当1a >时,()0f x >且当x →-∞时,()0f x →,()f x 无最小值; 当0a <时,x →+∞时,()f x →-∞,()f x 无最小值, 综上,当且仅当(]0,1a ∈时,()f x 有最小值,故B 正确;对于C ,因为当2a =时,()()22221e xf x x x =-+,()224e 0x f x x '=≥在R 上恒成立,此时()f x 在R 上单调递增,故C 正确;对于D ,由()()222e xf x x ax a '=+-知,当0a =时,0x =是()f x 的极值点,当0a ≠,2a ≠时,0x =和2ax a-=都是()f x 的极值点,。
高中数学第一章集合与常用逻辑用语考点专题训练单选题1、设全集U={−2,−1,0,1,2,3},集合A={−1,2},B={x∣x2−4x+3=0},则∁U(A∪B)=()A.{1,3}B.{0,3}C.{−2,1}D.{−2,0}答案:D分析:解方程求出集合B,再由集合的运算即可得解.由题意,B={x|x2−4x+3=0}={1,3},所以A∪B={−1,1,2,3},所以∁U(A∪B)={−2,0}.故选:D.2、已知集合M={x|x=m−56,m∈Z},N={x|x=n2−13,n∈Z},P={x|x=p2+16,p∈Z},则集合M,N,P的关系为()A.M=N=P B.M⊆N=PC.M⊆N P D.M⊆N,N∩P=∅答案:B分析:对集合M,N,P中的元素通项进行通分,注意3n−2与3p+1都是表示同一类数,6m−5表示的数的集合是前者表示的数的集合的子集,即可得到结果.对于集合M={x|x=m−56,m∈Z},x=m−56=6m−56=6(m−1)+16,对于集合N={x|x=n2−13,n∈Z},x=n2−13=3n−26=3(n−1)+16,对于集合P={x|x=p2+16,p∈Z},x=p2+16=3p+16,由于集合M,N,P中元素的分母一样,只需要比较其分子即可,且m,n,p∈Z,注意到3(n−1)+1与3p+1表示的数都是3的倍数加1,6(m−1)+1表示的数是6的倍数加1,所以6(m−1)+1表示的数的集合是前者表示的数的集合的子集,所以M⊆N=P.故选:B.3、下列各式中关系符号运用正确的是()A.1⊆{0,1,2}B.∅⊄{0,1,2}C.∅⊆{2,0,1}D.{1}∈{0,1,2}答案:C分析:根据元素和集合的关系,集合与集合的关系,空集的性质判断即可.根据元素和集合的关系是属于和不属于,所以选项A错误;根据集合与集合的关系是包含或不包含,所以选项D错误;根据空集是任何集合的子集,所以选项B错误,故选项C正确.故选:C.4、设a,b是实数,集合A={x||x−a|<1,x∈R},B={x||x−b|>3,x∈R},且A⊆B,则|a−b|的取值范围为()A.[0,2]B.[0,4]C.[2,+∞)D.[4,+∞)答案:D分析:解绝对值不等式得到集合A,B,再利用集合的包含关系得到不等式,解不等式即可得解.集合A={x||x−a|<1,x∈R}={x|a−1<x<a+1},B={x||x−b|〉3,x∈R}={x|x<b−3或x>b+3}又A⊆B,所以a+1≤b−3或a−1≥b+3即a−b≤−4或a−b≥4,即|a−b|≥4所以|a−b|的取值范围为[4,+∞)故选:D5、设全集U={1,2,3,4,5},集合M满足∁U M={1,3},则()A.2∈M B.3∈M C.4∉M D.5∉M答案:A分析:先写出集合M,然后逐项验证即可由题知M={2,4,5},对比选项知,A正确,BCD错误故选:A6、已知集合A={(x,y)|x,y∈N∗,y≥x},B={(x,y)|x+y=8},则A∩B中元素的个数为()A.2B.3C.4D.6答案:C分析:采用列举法列举出A∩B中元素的即可.由题意,A∩B中的元素满足{y≥xx+y=8,且x,y∈N∗,由x+y=8≥2x,得x≤4,所以满足x+y=8的有(1,7),(2,6),(3,5),(4,4),故A∩B中元素的个数为4.故选:C.【点晴】本题主要考查集合的交集运算,考查学生对交集定义的理解,是一道容易题.7、已知集合A={(x,y)||x|+|y|≤2,x∈Z,y∈Z},则A中元素的个数为()A.9B.10C.12D.13答案:D分析:利用列举法列举出集合A中所有的元素,即可得解.由题意可知,集合A中的元素有:(−2,0)、(−1,−1)、(−1,0)、(−1,1)、(0,−2)、(0,−1)、(0,0)、(0,1)、(0,2)、(1,−1)、(1,0)、(1,1)、(2,0),共13个.故选:D.8、已知U=R,M={x|x≤2},N={x|−1≤x≤1},则M∩∁U N=()A.{x|x<−1或1<x≤2}B.{x|1<x≤2}C.{x|x≤−1或1≤x≤2}D.{x|1≤x≤2}答案:A分析:先求∁U N,再求M∩∁U N的值.因为∁U N={x|x<−1或x>1},所以M∩C U N={x|x<−1或1<x≤2}.故选:A.多选题9、已知集合A={0,1,2},B={a,2},若B⊆A,则a=()A.0B.1C.2D.0或1或2答案:AB分析:由B⊆A,则B={0,2}或B={1,2},再根据集合相等求出参数的值;解:由B⊆A,可知B={0,2}或B={1,2},所以a=0或1.故选:AB.小提示:本题考查根据集合的包含关系求参数的值,属于基础题.10、已知集合A={x|x=2m−1,m∈Z},B={x|x=2n,n∈Z},且x1、x2∈A,x3∈B,则下列判断正确的是()A.x1x2∈A B.x2x3∈BC.x1+x2∈B D.x1+x2+x3∈A答案:ABC分析:本题首先可根据题意得出A表示奇数集,B表示偶数集,x1、x2是奇数,x3是偶数,然后依次对x1x2、x2x3、x1+x2、x1+x2+x3进行判断,即可得出结果.因为集合A={x|x=2m−1,m∈Z},B={x|x=2n,n∈Z},所以集合A表示奇数集,集合B表示偶数集,x1、x2是奇数,x3是偶数,A项:因为两个奇数的积为奇数,所以x1x2∈A,A正确;B项:因为一个奇数与一个偶数的积为偶数,所以x2x3∈B,B正确;C项:因为两个奇数的和为偶数,所以x1+x2∈B,C正确;D项:因为两个奇数与一个偶数的和为偶数,所以x1+x2+x3∈B,D错误,故选:ABC.11、已知命题p:∃x∈R,ax2−4x−4=0,若p为真命题,则a的值可以为()A.-2B.-1C.0D.3答案:BCD分析:根据给定条件求出p为真命题的a的取值范围即可判断作答,当a=0时,x=−1,p为真命题,则a=0,当a≠0时,若p为真命题,则Δ=16+16a≥0,解得a≥−1且a≠0,综上,p为真命题时,a的取值范围为a≥−1.故选:BCD12、已知集合A={x∈R|x2−3x−18<0},B={x∈R|x2+ax+a2−27<0},则下列命题中正确的是()A.若A=B,则a=−3B.若A⊆B,则a=−3C.若B=∅,则a≤−6或a≥6D.若B A时,则−6<a≤−3或a≥6答案:ABC分析:求出集合A,根据集合包含关系,集合相等的定义和集合的概念求解判断.A={x∈R|−3<x<6},若A=B,则a=−3,且a2−27=−18,故A正确.a=−3时,A=B,故D不正确.若A⊆B,则(−3)2+a⋅(−3)+a2−27≤0且62+6a+a2−27≤0,解得a=−3,故B正确.当B=∅时,a2−4(a2−27)≤0,解得a≤−6或a≥6,故C正确.故选:ABC.13、已知集合P={1,2},Q={x|ax+2=0},若P∪Q=P,则实数a的值可以是()A.−2B.−1C.1D.0答案:ABD分析:由题得Q⊆P,再对a分两种情况讨论,结合集合的关系得解.因为P∪Q=P,所以Q⊆P.由ax+2=0得ax=−2,当a=0时,方程无实数解,所以Q=∅,满足已知;当a≠0时,x=−2a ,令−2a=1或2,所以a=−2或−1.综合得a=0或a=−2或a=−1.故选:ABD小提示:易错点睛:本题容易漏掉a=0. 根据集合的关系和运算求参数的值时,一定要注意考虑空集的情况,以免漏解.填空题14、已知集合A={x|3≤x<7},C={x|x>a},若A⊆C,求实数a的取值范围_______.答案:(−∞,3)分析:根据集合的包含关系画出数轴即可计算.∵A⊆C,∴A和C如图:∴a<3.所以答案是:(−∞,3).15、若A={x|x2+(m+2)x+1=0,x∈R},且A∩R+=∅,则m的取值范围是__.答案:m>﹣4.解析:根据题意可得A是空集或A中的元素都是小于等于零的,然后再利用判别式以及韦达定理求解即可.解:A∩R+=∅知,A有两种情况,一种是A是空集,一种是A中的元素都是小于等于零的,若A=∅,则Δ=(m +2)2﹣4<0,解得﹣4<m<0 ,①若A≠∅,则Δ=(m +2)2﹣4≥0,解得m≤﹣4或m≥0,又A中的元素都小于等于零∵两根之积为1,∴A中的元素都小于0,∴两根之和﹣(m+2)<0,解得m>﹣2∴m≥0,②由①②知,m>﹣4,所以答案是:m>﹣4.小提示:易错点点睛:本题考查利用交集的结果求参数,本题在求解中容易忽略A=∅的讨论,导致错解,同时本题也可以采取反面考虑结合补集思想求解.16、设集合A={−4,2m−1,m2},B={9,m−5,1−m},又A∩B={9},求实数m=_____.答案:−3分析:根据A∩B={9}得出2m−1=9或m2=9,再分类讨论得出实数m的值.因为A∩B={9},所以9∈A且9∈B,若2m−1=9,即m=5代入得A={−4,9,25},B={9,0,−4},∴A∩B={−4,9}不合题意;若m2=9,即m=±3.当m=3时,A={−4,5,9},B={9,−2,−2}与集合元素的互异性矛盾;当m=−3时,A={−4,−7,9},B={9,−8,4},有A∩B={9}符合题意;综上所述,m=−3.所以答案是:−3解答题17、已知集合A={x|x2−ax+a2−19=0},集合B={x|x2−5x+6=0},集合C={x|x2+2x−8=0}.(1)若A∩B={2},求实数a的值;(2)若A∩B≠∅,A∩C=∅,求实数a的值.答案:(1)−3(2)−2分析:(1)求出集合B={2,3},由A∩B={2},得到2∈A,由此能求出a的值,再注意3∉A检验即可;(2)求出集合C={−4,2},由A∩B≠∅,A∩C=∅,得3∈A,由此能求出a,最后同样要注意检验.(1)因为集合A={x|x2−ax+a2−19=0},集合B={x|x2−5x+6=0}={2,3},且A∩B={2},所以2∈A ,所以4−2a +a 2−19=0,即a 2−2a −15=0,解得a =−3或a =5.当a =−3时,A ={x |x 2+3x −10=0}={−5,2},A ∩B ={2},符合题意;当a =5时,A ={x |x 2−5x +6=0}={2,3},A ∩B ={2,3},不符合题意.综上,实数a 的值为−3.(2)因为A ={x |x 2−ax +a 2−19=0},B ={2,3},C ={x |x 2+2x −8=0}={−4,2},且A ∩B ≠∅,A ∩C =∅,所以3∈A ,所以9−3a +a 2−19=0,即a 2−3a −10=0,解得a =−2或a =5.当a =−2时,A ={x |x 2+2x −15=0}={−5,3},满足题意;当a =5时,A ={x |x 2−5x +6=0}={2,3},不满足题意.综上,实数a 的值为−2.18、设α:m −1≤x ≤2m ,β:2≤x ≤4,m ∈R ,α是β的必要条件,但α不是β的充分条件,求实数m 的取值范围.答案:[2,3]分析:由题意可知α是β的必要不充分条件,可得出集合的包含关系,进而可得出关于实数m 的不等式组,由此可解得实数m 的取值范围.由题意可知,α是β的必要不充分条件,所以,{x |m −1≤x ≤2m }{x |2≤x ≤4},所以{m −1≤22m ≥4,解之得2≤m ≤3. 因此,实数m 的取值范围是[2,3].。
课时分层作业(四) 交集和并集(建议用时:40分钟)一、选择题1.设集合A ={1,2,3},B ={2,3,4},则A ∪B =( ) A .{1,2,3,4} B .{1,2,3} C .{2,3,4}D .{1,3,4}A [∵A ={1,2,3},B ={2,3,4},∴A ∪B ={1,2,3,4}. 故选A.]2.设集合A ={-1,1,2,3,5},B ={2,3,4},C ={x ∈R |1≤x <3},则(A ∩C )∪B =( )A .{2}B .{2,3}C .{-1,2,3}D .{1,2,3,4}D [由条件可得A ∩C ={1,2},故(A ∩C )∪B ={1,2,3,4}.故选D.] 3.已知集合A ={x |x +1<0},B ={x |x -3<0},那么集合A ∪B 等于( ) A .{x |-1≤x <3} B .{x |x <3} C .{x |x <-1}D .{x |x >3}B [A ={x |x +1<0}={x |x <-1},B ={x |x -3<0}={x |x <3}, ∴A ∪B ={x |x <3},故选B.]4.已知集合A ={1,3},B ={1,2,m },若A ∩B ={1,3},则A ∪B =( ) A .{1,2} B .{1,3} C .{1,2,3}D .{2,3}C [∵A ∩B ={1,3},∴3∈B ,∴m =3, ∴B ={1,2,3},∴A ∪B ={1,2,3}.故选C.]5.设集合A ={(x ,y )|y =ax +1},B ={(x ,y )|y =x +b },且A ∩B ={(2,5)},则( ) A .a =3,b =2 B .a =2,b =3 C .a =-3,b =-2D .a =-2,b =-3 B [∵A ∩B ={(2,5)},∴⎩⎪⎨⎪⎧5=2a +1,5=2+b ,解得a =2,b =3,故选B.]二、填空题6.已知集合A ={1,2,3},B ={y |y =2x -1,x ∈A },则A ∩B =________.{1,3} [A ∩B ={1,2,3}∩{y |y =2x -1,x ∈A } ={1,2,3}∩{1,3,5}={1,3}.]7.(一题两空)若集合A ={x |-1<x <5},B ={x |x ≤1,或x ≥4},则A ∪B =________,A ∩B =________.R {x |-1<x ≤1,或4≤x <5} [借助数轴可知:A ∪B =R ,A ∩B ={x |-1<x ≤1,或4≤x <5}.]8.设集合M ={x |-2<x <5},N ={x |2-t <x <2t +1,t ∈R },若M ∪N =M ,则实数t 的取值X 围是________.(-∞,2] [由M ∪N =M 得N ⊆M ,当N =时,2t +1≤2-t ,即t ≤13,此时M ∪N =M 成立;当N ≠时,借助数轴可得⎩⎪⎨⎪⎧2-t <2t +1,2t +1≤5,2-t ≥-2,解得13<t ≤2.综上可知,实数t 的取值X 围是(-∞,2].] 三、解答题9.已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪⎩⎪⎨⎪⎧3-x >03x +6>0,集合B ={x |2x -1<3},求A ∩B ,A ∪B . [解] 解不等式组⎩⎪⎨⎪⎧3-x >0,3x +6>0,得-2<x <3,即A ={x |-2<x <3}. 解不等式2x -1<3,得x <2, 即B ={x |x <2},在数轴上分别表示集合A ,B ,如图所示.则A ∩B ={x |-2<x <2},A ∪B ={x |x <3}. 10.已知集合A ={x |-2<x <4},B ={x |x -m <0}. (1)若A ∩B =,某某数m 的取值X 围;(2)若A ∪B =B ,某某数m 的取值X 围. [解](1)∵A ={x |-2<x <4},B ={x |x <m }, 又A ∩B =,∴m ≤-2.(2)∵A ={x |-2<x <4},B ={x |x <m },由A ∪B =B ,得A ⊆B ,∴m ≥4.11.若集合A ={0,1,2,x },B ={1,x 2},A ∪B =A ,则满足条件的实数x 有( ) A .1个 B .2个 C .3个D .4个B [∵A ∪B =A ,∴B ⊆A .∵A ={0,1,2,x },B ={1,x 2},∴x 2=0或x 2=2或x 2=x ,解得x =0或2或-2或1.经检验,当x =2或-2时满足题意,故选B.]12.设集合A ={-1,0,1},集合B ={0,1,2,3},定义A *B ={(x ,y )|x ∈A ∩B ,y ∈A ∪B },则A *B 中元素的个数是( )A .7B .10C .32D .25B [因为A ={-1,0,1},B ={0,1,2,3}, 所以A ∩B ={0,1},A ∪B ={-1,0,1,2,3}. 经x ∈A ∩B ,可知x 可取0,1;由y ∈A ∪B ,可知y 可取-1,0,1,2,3. 所以元素(x ,y )的所有结果如下表所示:yx-10 1 2 3 0 (0,-1) (0,0) (0,1) (0,2) (0,3) 1(1,-1)(1,0)(1,1)(1,2)(1,3)所以A *B 中的元素共有10个.故选B.]13.设S ={x |x <-1或x >5},T ={x |a <x <a +8},若S ∪T =R ,则实数a 应满足________.-3<a <-1 [在数轴上表示集合S ,T 如图所示.因为S ∪T =R ,由数轴可得⎩⎪⎨⎪⎧a <-1,a +8>5,解得-3<a <-1.]14.(一题两空)某网店统计了连续三天售出商品的种类情况:第一天售出19种商品,第二天售出13种商品,第三天售出18种商品;前两天都售出的商品有3种,后两天都售出的商品有4种.则该网店(1)第一天售出但第二天未售出的商品有________种;(2)这三天售出的商品最少有________种.(1)16 (2)29[(1)设第一天售出的商品为集合A,则A中有19个元素,第二天售出的商品为集合B,则B中有13个元素.由于前两天都售出的商品有3种,则A∩B中有3个元素.如图所示,所以该网店第一天售出但第二天未售出的商品有19-3=16(种).(2)由(1)知,前两天售出的商品为19+13-3=29(种),当第三天售出的18种都是前两天售出的商品时,这三天售出的商品种类最少,售出的商品最少为29种.]15.已知集合A={x|x2-(a+3)x+a2=0},B={x|x2-x=0},是否存在实数a,使A,B 同时满足下列三个条件:①A≠B;②A∪B=B;③(A∩B)?若存在,求出a的值;若不存在,请说明理由.[解]假设存在实数a使A,B满足题设条件,易知B={0,1}.因为A∪B=B,所以A⊆B,即A=B或A B.由条件①A≠B,知A B.又(A∩B),所以A≠,即A={0}或{1}.当A={0}时,将x=0代入方程x2-(a+3)x+a2=0,得a2=0,解得a=0.经检验,当a=0时,A={0,3},与A={0}矛盾,舍去.当A={1}时,将x=1代入方程x2-(a+3)x+a2=0,得a2-a-2=0,解得a=-1或a=2.经检验,当a=-1时,A={1},符合题意;当a=2时,A={1,4},与A={1}矛盾,舍去.综上所述,存在实数a=-1,使得A,B满足条件.。
集合与常用逻辑用语--高考真题汇编第一章第一节集合1.(2023全国甲卷理科1)设集合{}31,A x x k k ==+∈Z ,{}32,B x x k k ==+∈Z ,U 为整数集,则()U A B = ð()A.{}3,x x k k =∈ZB.{}31,x x k k =-∈ZC.{}32,x x k k =-∈Z D.∅【分析】根据整数集的分类,以及补集的运算即可解出.【解析】因为整数集{}{}{}3,3+1,3+2,x x k k x x k k x x k k ==∈=∈=∈Z Z Z Z ,=U Z ,所以(){}3,U A B x x k k ==∈Z ð.故选A .2.(2023全国甲卷文科1)设全集{}1,2,3,4,5U =,集合{}1,4M =,{}2,5N =,则U N M = ð()A.{}2,3,5 B.{}1,3,4 C.{}1,2,4,5 D.{}2,3,4,5【分析】利用集合的交并补运算即可得解.【解析】因为全集{1,2,3,4,5}U =,集合{1,4}M =,所以{}2,3,5U M =ð,又{2,5}N =,所以{2,3,5}U N M = ð.故选A.3.(2023全国乙卷理科2)设集合U =R ,集合{}1M x x =<,{}12N x x =-<<,则{}2x x =()A.()U M N ð B.U N Mð C.()U M N ð D.U M Nð【分析】由题意逐一考查所给的选项运算结果是否为{}2x x 即可.【解析】由题意可得{}2M N x x =< ,则(){}2U M N x x = ð,选项A 正确;{}1U M x x =ð,则{}1U N M x x =>- ð,选项B 错误;{}11M N x x =-<< ,则(){}11U M N x x x =- 或ð,选项C 错误;{}12U N x x x =-或ð,则{}12U M N x x x =< 或ð,选项D 错误;故选A.4.(2023全国乙卷文科2)设全集{}0,1,2,4,6,8U =,集合{}0,4,6M =,{}0,1,6N =,则U M N = ð()A.{}0,2,4,6,8 B.{}0,1,4,6,8 C.{}1,2,4,6,8 D.U【分析】由题意可得U N ð的值,然后计算U M N ð即可.【解析】由题意可得{}2,4,8U N =ð,则{}0,2,4,6,8U M N = ð.故选A.5.(2023新高考I 卷1)已知集合{}2,1,0,1,2M =--,{}260N x x x =--≥,则M N =()A.{}2,1,0,1--B.{}0,1,2 C.{}2- D.{}2【解析】{}(][)260,23,N x x x =--≥=-∞-+∞ ,所以{}2M N =- ,故选C.6.(2023新高考II 卷2)2.设集合{}{}0,,1,2,22A a B a a =-=--,若A B ⊆,则a =()A.2 B.1 C.23D.1-【解析】因为A B ⊆,所以必有20a -=或220a -=,解得2a =或1a =.当2a =时,{}{}0,2,1,0,2A B =-=,不满足A B ⊆;当1a =时,{}{}0,1,1,1,0A B =-=-,符合题意.所以1a =.故选B.7.(2023北京卷1)已知集合{}20M x x =+,{}10N x x =-<,则M N = ()A.{}21x x -<B.{}21x x -<C.{}2x x - D.{}1x x <【分析】先化简集合,M N ,然后根据交集的定义计算.【解析】由题意,{20}{|2}M xx x x =+≥=≥-∣,{10}{|1}N x x x x =-<=<∣,根据交集的运算可知,{|21}M N x x =-≤< .故选A.8.(2023天津卷1)已知集合{}{}{}1,2,3,4,5,1,3,1,2,4U A B ===,则U B A = ð()A .{}1,3,5B .{}1,3C .{}1,2,4D .{}1,2,4,5【分析】对集合B 求补集,应用集合的并运算求结果;【解析】由{3,5}U B =ð,而{1,3}A =,所以{1,3,5}U B A = ð.故选A.第二节充分条件与必要条件、全称量词与存在量词1.(2023全国甲卷理科7)“22sin sin 1αβ+=”是“sin cos 0αβ+=”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】根据充分条件、必要条件概念及同角三角函数的基本关系得解.【解析】当2απ=,0β=时,有22sin sin 1αβ+=,但sin cos 0αβ+≠,即22sin sin 1αβ+=推不出sin cos 0αβ+=;当sin cos 0αβ+=时,()2222sin sin cos sin 1αβββ+=-+=,即sin cos 0αβ+=能推出22sin sin 1αβ+=.综上可知,22sin sin 1αβ+=是sin cos 0αβ+=成立的必要不充分条件.故选B.2.(2023新高考I 卷7)已记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列;乙:n S n ⎧⎫⎨⎬⎩⎭为等差数列,则()A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件【解析】{}n a 为等差数列,设首项为1a 公差为d ,则()112n n n S na d -=+,111222n S n d d a d n a n -=+=+-,所以n S n ⎧⎫⎨⎬⎩⎭为等差数列,所以甲是乙的充分条件.n S n ⎧⎫⎨⎬⎩⎭为等差数列,即()()()1111111n n n n n n nS n S S S na S n n n n n n +++-+--==+++为常数,设为t ,即()11n nna S t n n +-=+,故()11n n S na tn n +=-+,()()()1112n n S n a t n n n -=---≥,两式相减得()1112n n n n n a S S na n a tn -+=-=---,12n n a a t +-=为常数,对1n =也成立,所以{}n a 为等差数列,所以甲是乙的必要条件.所以,甲是乙的充要条件,故选C.3.(2023北京卷8)若0xy ≠,则“0x y +=”是“2x yy x+=-”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】解法一:证明充分性可由0x y +=得到x y =-,代入x yy x+化简即可,证明必要性可由2x y y x +=-去分母,再用完全平方公式即可;解法二:由x y y x+通分后用配凑法得到完全平方公式,证明充分性可把0x y +=代入即可;证明必要性把2x yy x+=-代入,解方程即可.【解析】解法一:充分性:因为0xy ≠,且0x y +=,所以x y =-,所以112x y y y y x y y-+=+=--=--,所以充分性成立;必要性:因为0xy ≠,且2x yy x+=-,所以222x y xy +=-,即2220x y xy ++=,即()20x y +=,所以0x y +=.所以必要性成立.所以“0x y +=”是“2x yy x+=-”的充要条件.故选C.解法二:充分性:因为0xy ≠,且0x y +=,所以()2222222222x y xy x y x y x y xy xy xy y x xy xy xy xy+-+++--+===-,所以充分性成立;必要性:因为0xy ≠,且2x yy x+=-,所以()()22222222222x y xy x y x y x y x y xy xy y x xy xy xy xy+-++++-+====-=-,所以()20x y xy+=,所以()20x y +=,所以0x y +=,所以必要性成立.所以“0x y +=”是“2x yy x+=-”的充要条件.故选C.4.(2023天津卷2)“22a b =”是“222a b ab +=”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件【分析】根据充分、必要性定义判断条件的推出关系,即可得答案.【解析】由22a b =,则a b =±,当0a b =-≠时222a b ab +=不成立,充分性不成立;由222a b ab +=,则2()0a b -=,即a b =,显然22a b =成立,必要性成立;所以22a b =是222a b ab +=的必要不充分条件.故选B.。
人教版高一数学必修一第一单元《集合与常用逻辑用语》单元练习题(含答案)人教版高一数学必修一第一单元《集合与常用逻辑用语》单元练题(含答案)一、单选题1.设命题p: ∀x∈R。
x^2-4x+2m≥0 (其中m为常数),则“m≥1”是“命题p为真命题”的()A。
充分不必要条件B。
必要不充分条件C。
充分且必要条件D。
既不充分也不必要条件2.“a≥6”是“函数f(x)=x-ax在(2,3)上单调递减”的()A。
充分不必要条件B。
必要不充分条件C。
充要条件D。
既不充分也不必要条件3.已知集合A={x|-ax≤0.a}。
B={0,1,2,3},若B有3个真子集,则a的取值范围是()A。
(1,2]B。
[1,2)C。
(0,2]D。
(0,1)4.“直线与抛物线相切”是“直线与抛物线只有一个公共点”的()条件。
A。
充分非必要条件B。
必要非充分条件C。
充分必要条件D。
既非充分又非必要条件5.设集合A={x|-1≤x<2}。
B={x|x<a},若A∩B≠∅,则a的取值范围是()A。
-1<a≤2B。
a>2C。
a≥-1D。
a>-16.命题“∃x∈R。
x^2+4x+5≤0”的否定是()A。
∀x∈R。
x^2+4x+5>0B。
∃x∈R。
x^2+4x+5>0C。
∀x∈R。
x^2+4x+5≥0D。
∃x∈R。
x^2+4x+5≥07.已知集合P={x|2<x<1.x∈R},Q={x|x^2-x-2<0.x∈R},则P∩Q=()A。
∅B。
(1,2)C。
(-1,0)D。
(2,+∞)8.已知集合A={x|2x-1≤a},B={x|log2(x-2)≤1},若B⊆A,则实数a的取值范围是A。
(-∞,6)B。
(-∞,6]C。
(-∞,12)D。
(12,+∞)9.已知集合A={x|3x-a≥0},B={x|log2(x-2)≤1},若B⊆A,则实数a的取值范围是A。
(0,+∞)B。
(-∞,0)C。
专题一集合与常用逻辑用语(必刷1~60题)考点1:集合与元素(1)集合元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于关系,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、V enn 图法.(4)常见数集的记法集合自然数集正整数集整数集有理数集实数集符号NN +(或N *)ZQR(5)集合的分类若按元素的个数分类,可分为有限集、无限集、空集;若按元素的属性分类,可分为点集、数集等.特别注意空集是一个特殊而又重要的集合,如果一个集合不包含任何元素,这个集合就叫做空集,空集用符号“∅”表示,规定:空集是任何集合的子集,是任何非空集合的真子集.解题时切勿忽视空集的情形.考点2:集合间的基本关系关系自然语言符号语言V enn 图子集集合A 中所有元素都在集合B 中(即若x ∈A ,则x ∈B )A ⊆B (或B ⊇A )真子集集合A 是集合B 的子集,且集合B 中至少有一个元素不在集合A 中A (B (或B (A )集合相等集合A ,B 中元素完全相同或集合A ,B 互为子集A =B(1)、子集与真子集的区别与联系:一个集合的真子集一定是其子集,而其子集不一定是其真子集.(2)、若有限集A 中有n 个元素,则集合A 的子集个数为2n ,真子集的个数为2n -1.【必刷1】设全集{1,2,3,4,5}U =,集合M 满足{1,3}U M =ð,则()A .2M∈B .3M∈C .4M∉D .5M∉【必刷2】已知集合(){}223A x y xy x Z y Z =+≤∈∈,,,,则A 中元素的个数为()A .9B .8C .5D .4【必刷3】已知集合{}22(,)1A x y x y =+=,{}(,)B x y y x ==,则A B 中元素的个数为()A .3B .2C .1D .0【必刷4】已知集合{}0,1,2A =,{}32B x x =-<<,则A B 子集的个数为()A .3B .4C .7D .8【必刷5】已知集合(){}2,A x y y x ==,(){,B x y y ==,则A B 的真子集个数为()A .1个B .2个C .3个D .4个【必刷6】已知集合{}15A x x =-<<,{}Z 18B x x =∈<<,则A B 的子集个数为()A .4B .6C .8D .9【必刷7】已知集合}{{}2|23,9,,A x Z x B x x M A B =∈-<≤=<=⋂则M 的子集的个数为()A .16B .7C .4D .3【必刷8】已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x +1},则集合A ∩B 中元素的个数为()A .0B .1C .2D .3【必刷9】设集合{}1,0,1,2A =-,{}2230B x x x =+-<,则A B 的子集个数为()A .2B .4C .8D .16【必刷10】设集合{}22A x x =≤,Z 为整数集,则集合A ⋂Z 子集的个数是()A .3B .6C .7D .8【必刷11】已知集合{}2,0,1M =-,{}220N x x ax =+-=,若N M ⊆,则实数a =()A .2B .1C .0D .-1【必刷12】集合{}22log 2x Z x ∈≤的子集个数为()A .4B .8C .16D .32【必刷13】已知集合{2,0,2}A =-,π1sin ,4B y y x x A ⎧⎫==+∈⎨⎬⎩⎭,则集合A B 的真子集的个数是()A .7B .31C .16D .15【必刷14】已知集合{}1,2,3,4,5,6A =,6,1B xx A x ⎧⎫=∈∈⎨⎬-⎩⎭N ,则集合B 的子集的个数是()A .3B .4C .8D .16【必刷15】已知集合{}21,S s s n n Z ==+∈,{}3T x x =<,则S T 的真子集的个数是()A .1B .2C .3D .4【必刷16】已知集合22{(,)|1}A x y x y =+=,集合{(,)|||1}B x y y x ==-,则集合A B 的真子集的个数为()A .3B .4C .7D .8【必刷17】若集合{}1,2,3,4,5U =,{}13,5A =,,{}3,4,5B =,则图中阴影部分表示的集合的子集个数为()A .3B .4C .7D .8考点3:集合的运算如果一个集合包含了我们所要研究的各个集合的全部元素,这样的集合就称为全集,全集通常用字母U 表示;集合的并集集合的交集集合的补集图形符号A ∪B ={x |x ∈A ,或x ∈B }A ∩B ={x |x ∈A ,且x ∈B }∁U A ={x |x ∈U ,且x ∉A }【必刷18】若集合{4},{31}M x x N x x =<=≥∣∣,则M N = ()A .{}02x x ≤<B .123x x ⎧⎫≤<⎨⎬⎩⎭C .{}316x x ≤<D .1163x x ⎧⎫≤<⎨⎬⎩⎭【必刷19】集合{}{}2,4,6,8,10,16M N x x ==-<<,则M N = ()A .{2,4}B .{2,4,6}C .{2,4,6,8}D .{2,4,6,8,10}【必刷20】设集合{1,2,3,4,5,6},{1,3,6},{2,3,4}U A B ===,则()U A B = ð()A .{3}B .{1,6}C .{5,6}D .{1,3}【必刷21】已知集合{}23log 1,02x P x x Q xx -⎧⎫=>=≤⎨⎬+⎩⎭,则()P Q =R I ð()A .[2,2]-B .(2,2]-C .[0,2]D .(0,2]【必刷22】已知集合204x A xx ⎧⎫+=<⎨⎬-⎩⎭,{}0,1,2,3,4,5B =,则()R A B ⋂=ð()A .{}5B .{}4,5C .{}2,3,4D .{}0,1,2,3【必刷23】设集合{}2120A x x x =--≤,12416x B x ⎧⎫=<<⎨⎬⎩⎭,则A B 等于()A .(]3,4-B .[)3,2-C .(]4,4-D .[]3,4-【必刷24】若集合{}4A y y x ==-,{}3log 2B x x =≤,则A B = ()A .(]0,9B .[)4,9C .[]4,6D .[]0,9【必刷25】已知集合(){}0.2log 20A x x =->,{}24B x x =≤,则A B ⋃=()A .[]22-,B .(]2,1-C .[)2,3-D .∅【必刷26】已知全集{1,2,3,4,5,6,7,8,9}U =,{1,3,5,8,9}A =,{2,3,4,6}B =,则()U A B = ð()A .{2,4}B .{2,4,6}C .{1,3,5,7}D .{3}【必刷27】已知集合{}12M x x =-≤≤,{}ln N x y x ==,则M N = ()A .[]1,2-B .(]1,2-C .(]0,2D .()[),12,-∞-⋃+∞【必刷28】已知集合{}{}Z 33,2e xA x xB y y =∈-<<==-,则A B = ()A .{2,1,0,1,2}--B .(,2)-∞C .{2,1,0,1}--D .(3,2)-【必刷29】若全集{}0,1,2,3,4,5U =,集合{}0,1,2A =,{}1,2,3B =,则()U A B = ð()A .{}0,1,2B .{}1,2,3C .{}0D .{}0,1,2,4,5【必刷30】设集合{}{}11,124x M x x N x =-≤≤=<<∣∣,则M N = ()A .{10}xx -≤<∣B .{01}xx <≤∣C .{12}xx ≤<∣D .{12}xx -≤<∣【必刷31】如图,全集U =R ,集合{}1,0,2,3,6A =-,集合{}2,3,5,7B =,则阴影部分表示集合()A .{}1,0,5,7-B .{}1,0,2,3,5,6,7-C .{}2,3D .{}1,0,5,6,7-【必刷32】设集合{}2|log ,4A y y x x ==>,{}2|320B x x x =-+<,则()A B =R U ð()A .(1,2)B .(1,2]C .(,2]-∞D .(,2)-∞【必刷33】已知全集{}0,1,2,3,4,5,6U =,集合{}0,2,4,5A =,集合{}2,3,4,6B =,用如图所示的阴影部分表示的集合为()A .{2,4}B .{0,3,5,6}C .{0,2,3,4,5,6}D .{1,2,4}【必刷34】已知集合{}2A x x =<,(){}2ln 3B x y x x==-,则A B ⋃=()A .()0,2B .()0,3C .()2,3D .()2,3-【必刷35】若集合{}{}21,0,1,2A x Z x B =∈-<<=,则A B ⋃=()A .(2,1)-B .{1,0}-C .(2,1]{2}-⋃D .{1,0,1,2}-【必刷36】已知集合{}234|0A x x x =--=,{}2|B x a x a =<<,若A B =∅ ,则实数a 的取值范围是()A .(],1-∞-B .[)4,+∞C .()(),12,4-∞-⋃D .[][)1,24,-⋃+∞【必刷37】已知集合(){}22240,(1)2101x A xB x x a x a a x ⎧⎫-==-+++<⎨⎬+⎩⎭,若A B =∅ ,则实数a 的取值范围是()A .()2,+∞B .{}()12,∞⋃+C .{}[)12,+∞U D .[)2,+∞【必刷38】设{}28120A x x x =-+=,{}10B x ax =-=,若A B B = ,则实数a 的值不可以是()A .0B .16C .12D .2【必刷39】已知集合{}23A x x =∈<Z ,32B x a x a ⎧⎫=<<+⎨⎬⎩⎭,若A B 有2个元素,则实数a 的取值范围是()A .3,12⎛⎫-- ⎪⎝⎭B .3,02⎛⎫- ⎪⎝⎭C .()3,01,2⎛⎫-⋃+∞ ⎪⎝⎭D .31,1,022⎛⎫⎛⎫--⋃- ⎪ ⎪⎝⎭⎝⎭【必刷40】已知集合{}21,Z A x x n n ==+∈,{}2B =<,则A B = ()A .{}1,3B .{}1,3,5,7C .{}3,5,7D .{}3,5,7,9考点4.四种命题及其相互关系(1)四种命题间的相互关系(2)四种命题的真假关系①两个命题互为逆否命题,它们具有相同的真假性;考点5.全称量词和存在量词(1)全称量词有:所有的,任意一个,任给,用符号“∀”表示;存在量词有:存在一个,至少有一个,有些,用符号“∃”表示.(2)含有全称量词的命题,叫做全称命题.“对M 中任意一个x ,有p (x )成立”用符号简记为:∀x ∈M ,p (x ).(3)含有存在量词的命题,叫做特称命题.“存在M 中元素x 0,使p (x 0)成立”用符号简记为:∃x 0∈M ,p (x 0).【必刷41】下列四个命题中真命题的个数是()①“x =1”是“2320x x -+=”的充分不必要条件;②命题“R x ∀∈,sin 1x ≤”的否定是“R x ∃∈,sin 1x >”;③命题p :[)1,x ∀∈+∞,lg 0x ≥,命题q :R x ∃∈,210x x ++<,则p q ∧为真命题;④“若2ϕπ=,则()sin 2y x ϕ=+为偶函数”的否命题为真命题.A .0B .1C .2D .3【必刷42】下列命题正确的是()A .命题“若2320x x -+=,则2x =”的否命题为“若2320x x -+=,则2x ≠”B .若给定命题:R p x ∃∈,210x x +-<,则:R p x ⌝∀∈,210x x +->C .已知:12p x -<<,()12:2log 210x q x +++<,则p 是q 的充分必要条件D .若p q ∨为假命题,则p ,q 都为假命题【必刷43】下列说法错误的是()A .命题“x R ∀∈,cos 1≤x ”的否定是“0x R ∃∈,0cos 1x >”B .在△ABC 中,sin sin A B ≥是A B ≥的充要条件C .若a ,b ,R c ∈,则“20ax bx c ++≥”的充要条件是“0a >,且240b ac -≤”D .“若1sin 2α≠,则6πα≠”是真命题【必刷44】命题“若220x y +=,则0x y ==”的否命题为()A .若220x y +=,则0x ≠且0y ≠B .若220x y +=,则0x ≠或0y ≠C .若220x y +≠,则0x ≠且0y ≠D .若220x y +≠,则0x ≠或0y ≠【必刷45】下列说法正确的是()A .若2000:,2310p x R x x ∃∈++>,则2:,2310p x R x x ⌝∀∈++<B .“(0)0f =”是“函数()f x 是奇函数”的充要条件C .(0,)∀∈+∞x ,都有22x x >D .在ABC 中,若A B >,则sin sin A B >【必刷46】已知下列命题:①x ∀∈R ,210x x ++>;②“2a >”是“5a >”的充分不必要条件;③已知p 、q 为两个命题,若“p q ∨”为假命题,则“p q ⌝∧⌝”为真命题;④若x 、y ∈R 且2x y +>,则x 、y 至少有一个大于1.其中真命题的个数为()A .4B .3C .2D .1【必刷47】设命题0:p x R ∃∈,2010x +=,则命题p 的否定为()A .x R ∀∉,210x +=B .x R ∀∈,210x +≠C .0x R ∃∉,2010x +=D .0x R ∃∈,2010x +≠【必刷48】命题“x R ∀∈,sin x x >”的否定是()A .0x R ∃∈,00sin x x <B .0x R ∃∉,00sin x x ≤C .x R ∀∈,sin x x≤D .0x R ∃∈,00sin x x ≤【必刷49】命题“π,02x ⎛⎫∀∈- ⎪⎝⎭,tan x x >”的否定是()A .,02x π⎛⎫∀∈- ⎪⎝⎭,tan x x≤B .,02x π⎛⎫∀∈- ⎪⎝⎭,tan x x<C .,02x π⎛⎫∃∈- ⎪⎝⎭,tan x x≤D .,02x π⎛⎫∃∈- ⎪⎝⎭,tan x x<【必刷50】下列命题正确的是()A .命题“若2320x x -+=,则2x =”的否命题为“2320x x -+=,则2x ≠”B .若给定命题p :x ∃∈R ,210x x +-<,则p ⌝:x ∀∈R ,210x x +->C .若p q ∧为假命题,则p ,q 都为假命题D .“1x <”是“2320x x -+>”的充分不必要条件考点6:充分条件、必要条件与充要条件的概念若p ⇒q ,则p 是q 的充分条件,q 是p 的必要条件p 是q 的充分不必要条件p ⇒q 且q ⇏p p 是q 的必要不充分条件p ⇏q 且q ⇒p p 是q 的充要条件p ⇔q p 是q 的既不充分也不必要条件p ⇏q 且q ⇏p【必刷51】若x ,y 为实数,则“11x y<”是“22log log x y >”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【必刷52】在ABC 中,“sin 2sin 2A B =”是“A B =”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件【必刷53】下列四个命题中正确的是()A .若函数()y f x =的定义域为[]1,1-,则()1y f x =+的定义域为[]0,2B .若正三角形ABC 的边长为2,则2AB BC ⋅=C .已知函数()()2log 11f x x =+-,则函数()y f x =的零点为()1,0D .“αβ=”是“tan tan αβ=”的既不充分也不必要条件【必刷54】不等式1133x⎛⎫> ⎪⎝⎭成立是不等式21x <成立的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【必刷55】设x ∈R ,则“|1|4x -<”是“502x x -<-”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【必刷56】已知条件:p 直线210x y +-=与直线()2110a x a y ++-=平行,条件:q 1a =,则p 是q 的()A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件【必刷57】已知命题2:log 1p x >,命题2:20q x x ->,则p 是q 的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【必刷58】设a 、b都是非零向量,下列四个条件中,使a a b b = 成立的充分条件是()A .a b =r r 且a b∥B .a b=-r r C .a b∥D .2a b= 【必刷59】已知向量a 和b ,则“||||a b a b ⋅=⋅ ”是“a b =”的()A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件【必刷60】设实数0x >,则“2log 1x <”成立的一个必要不充分条件是()A .122x <<B .12x <<C .1x <D .2x <专题一集合与常用逻辑用语(必刷1~60题)考点1:集合与元素(1)集合元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于关系,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、V enn 图法.(4)常见数集的记法集合自然数集正整数集整数集有理数集实数集符号NN +(或N *)ZQR(5)集合的分类若按元素的个数分类,可分为有限集、无限集、空集;若按元素的属性分类,可分为点集、数集等.特别注意空集是一个特殊而又重要的集合,如果一个集合不包含任何元素,这个集合就叫做空集,空集用符号“∅”表示,规定:空集是任何集合的子集,是任何非空集合的真子集.解题时切勿忽视空集的情形.考点2:集合间的基本关系关系自然语言符号语言V enn 图子集集合A 中所有元素都在集合B 中(即若x ∈A ,则x ∈B )A ⊆B (或B ⊇A )真子集集合A 是集合B 的子集,且集合B 中至少有一个元素不在集合A 中A (B (或B (A )集合相等集合A ,B 中元素完全相同或集合A ,B 互为子集A =B(1)、子集与真子集的区别与联系:一个集合的真子集一定是其子集,而其子集不一定是其真子集.(2)、若有限集A 中有n 个元素,则集合A 的子集个数为2n ,真子集的个数为2n -1.【必刷1】设全集{1,2,3,4,5}U =,集合M 满足{1,3}U M =ð,则()A .2M ∈B .3M∈C .4M∉D .5M∉【答案】A【解析】先写出集合M ,然后逐项验证即可;【详解】由题知{2,4,5}M =,对比选项知,A 正确,BCD 错误,故选:A【必刷2】已知集合(){}223A x y xy x Z y Z =+≤∈∈,,,,则A 中元素的个数为()A .9B .8C .5D .4【答案】A【解析】根据枚举法,确定圆及其内部整点个数.【详解】223x y +≤ ,23,x ∴≤x Z ∈ ,1,0,1x ∴=-当1x =-时,1,0,1y =-;当0x =时,1,0,1y =-;当1x =时,1,0,1y =-;所以共有9个,故选:A.【必刷3】已知集合{}22(,)1A x y x y =+=,{}(,)B x y y x ==,则A B 中元素的个数为()A .3B .2C .1D .0【答案】B【解析】集合中的元素为点集,由题意可知,集合A 表示以()0,0为圆心,1为半径的单位圆上所有点组成的集合,集合B 表示直线y x =上所有的点组成的集合,又圆221x y +=与直线y x =相交于两点⎝⎭,⎛ ⎝⎭,则A B 中有2个元素.故选B.【必刷4】已知集合{}0,1,2A =,{}32B x x =-<<,则A B 子集的个数为()A .3B .4C .7D .8【答案】B【解析】先求得A B ,然后求得A B 子集的个数.【详解】{}0,1A B = ,所以A B 子集的个数为224=个.故选:B【必刷5】已知集合(){}2,A x y y x ==,(){,B x y y ==,则A B 的真子集个数为()A .1个B .2个C .3个D .4个【答案】C【解析】解方程组可求得A B ,根据A B 元素个数可求得真子集个数.【详解】由2y xy ⎧=⎪⎨=⎪⎩00x y =⎧⎨=⎩或11x y =⎧⎨=⎩,()(){}0,0,1,1A B ∴= ,即A B 有2个元素,A B ∴ 的真子集个数为2213-=个.故选:C.【必刷6】已知集合{}15A x x =-<<,{}Z 18B x x =∈<<,则A B 的子集个数为()A .4B .6C .8D .9【答案】C【解析】根据集合交集的定义,结合子集的个数公式进行求解即可.【详解】因为{}15A x x =-<<,{}Z 18B x x =∈<<,所以{}2,3,4A B = ,因此A B 中有三个元素,所以A B 的子集个数为328=,故选:C【必刷7】已知集合}{{}2|23,9,,A x Z x B x x M A B =∈-<≤=<=⋂则M 的子集的个数为()A .16B .7C .4D .3【答案】A【解析】化简,A B ,进而根据交集的定义,计算A B ,然后利用子集的概念即可求解.【详解】因为{}{}{}293310123B x |x x |x ,A ,,,,,=<=-<<=-所以{}1012M A B ,,,,==- 所以M 的子集共有42=16(个).故选:A【必刷8】已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x +1},则集合A ∩B 中元素的个数为()A .0B .1C .2D .3【解析】联立=+12+2=1可得=0=1或=−1=0,故集合A ∩B 中元素的个数为2,故选:C .【必刷9】设集合{}1,0,1,2A =-,{}2230B x x x =+-<,则A B 的子集个数为()A .2B .4C .8D .16【答案】B【解析】求出集合B ,可求得集合A B ,确定集合A B 的元素个数,利用集合子集个数公式可求得结果.【详解】因为{}{}223031B x x x x x =+-<=-<<,所以,{}1,0A B ⋂=-,则集合A B 的元素个数为2,因此,A B 的子集个数为224=.故选:B.【必刷10】设集合{}22A x x =≤,Z 为整数集,则集合A ⋂Z 子集的个数是()A .3B .6C .7D .8【答案】D【解析】解不等式求得A ,然后求得A ⋂Z ,进而求得正确答案.【详解】222x x ≤⇒≤,所以A ⎡=⎣,所以{}1,0,1A ⋂=-Z ,所以A ⋂Z 子集的个数是328=.故选:D【必刷11】已知集合{}2,0,1M =-,{}220N x x ax =+-=,若N M ⊆,则实数a =()A .2B .1C .0D .-1【答案】B【解析】对于集合N ,元素x 对应的是一元二次方程的解,根据判别式得出必有两个不相等的实数根,又根据韦达定理以及N M ⊆,可确定出其中的元素,进而求解.【详解】对于集合N ,因为280a ∆=+>,所以N 中有两个元素,且乘积为-2,又因为N M ⊆,所以{}2,1N =-,所以211a -=-+=-.即a =1.故选:B.【必刷12】集合{}22log 2x Z x ∈≤的子集个数为()A .4B .8C .16D .32【答案】C【解析】求出集合A 后可得其子集的个数.【详解】{}{}2224|log 2|2,1,1,20x x Z x x Z x ⎧⎫⎧≤⎪⎪∈≤=∈=--⎨⎨⎬≠⎪⎪⎩⎩⎭,故该集合的子集的个数为:4216=.故选:C.【必刷13】已知集合{2,0,2}A =-,π1sin ,4B y y x x A ⎧⎫==+∈⎨⎬⎩⎭,则集合A B 的真子集的个数是()A .7B .31C .16D .15【答案】D【解析】先求得集合B ,然后求得A B ,从而求得A B 的真子集的个数.【详解】{0,1,2}B = ,{2,0,1,2}A B ∴⋃=-,A B 的真子集的个数为42115-=个.故选:D【必刷14】已知集合{}1,2,3,4,5,6A =,6,1B xx A x ⎧⎫=∈∈⎨⎬-⎩⎭N ,则集合B 的子集的个数是()A .3B .4C .8D .16【答案】C【解析】先求出集合B ,再根据子集的定义即可求解.【详解】依题意{}2,3,4B =,所以集合B 的子集的个数为328=,故选:C.【必刷15】已知集合{}21,S s s n n Z ==+∈,{}3T x x =<,则S T 的真子集的个数是()A .1B .2C .3D .4【答案】C【解析】先求出集合T ,然后根据交集的定义求出S T ,最后根据真子集的定义求出真子集的个数.【详解】∵{}21,S s s n n Z ==+∈,{}33T x x =-<<,∴{}1,1S T =- ,∴S T 的真子集个数为2213-=,故选:C .【必刷16】已知集合22{(,)|1}A x y x y =+=,集合{(,)|||1}B x y y x ==-,则集合A B 的真子集的个数为()A .3B .4C .7D .8【答案】C【解析】利用数形结合法得到圆与直线的交点个数,得到集合A B 的元素个数求解.【详解】如图所示:,集合A B 有3个元素,所以集合A B 的真子集的个数为7,故选:C【必刷17】若集合{}1,2,3,4,5U =,{}13,5A =,,{}3,4,5B =,则图中阴影部分表示的集合的子集个数为()A .3B .4C .7D .8【答案】D【解析】根据题意求得阴影部分表示的集合,结合集合子集的概念及运算,即可求解.【详解】由题意,集合{}13,5A =,,{}3,4,5B =,可得{}3,5A B = ,可得{}()1,2,4U A B = ð,即阴影部分表示的集合为{}1,2,4,所以阴影部分表示的集合的子集个数为328=.故选:D.考点3:集合的运算如果一个集合包含了我们所要研究的各个集合的全部元素,这样的集合就称为全集,全集通常用字母U 表示;集合的并集集合的交集集合的补集图形符号A ∪B ={x |x ∈A ,或x ∈B }A ∩B ={x |x ∈A ,且x ∈B }∁U A ={x |x ∈U ,且x ∉A }【必刷18】若集合{4},{31}M x x N x x =<=≥∣∣,则M N = ()A .{}02x x ≤<B .123x x ⎧⎫≤<⎨⎬⎩⎭C .{}316x x ≤<D .1163x x ⎧⎫≤<⎨⎬⎩⎭【答案】D【解析】求出集合,M N 后可求M N ⋂.【详解】1{16},{}3M xx N x x =≤<=≥∣0∣,故1163M N x x ⎧⎫=≤<⎨⎬⎩⎭,故选:D 【必刷19】集合{}{}2,4,6,8,10,16M N x x ==-<<,则M N = ()A .{2,4}B .{2,4,6}C .{2,4,6,8}D .{2,4,6,8,10}【答案】A【解析】根据集合的交集运算即可解出.【详解】因为{}2,4,6,8,10M =,{}|16N x x =-<<,所以{}2,4M N = .故选:A.【必刷20】设集合{1,2,3,4,5,6},{1,3,6},{2,3,4}U A B ===,则()U A B = ð()A .{3}B .{1,6}C .{5,6}D .{1,3}【答案】B【解析】根据交集、补集的定义可求()U A B ⋂ð.【详解】由题设可得{}U 1,5,6B =ð,故(){}U 1,6A B ⋂=ð,故选:B.【必刷21】已知集合{}23log 1,02x P x x Q xx -⎧⎫=>=≤⎨⎬+⎩⎭,则()P Q =R I ð()A .[2,2]-B .(2,2]-C .[0,2]D .(0,2]【答案】B【解析】利用对数不等式及分式不等式的解法求出集合,P Q ,结合集合的补集及交集的定义即可求解.【详解】由2log 1x >,得2x >,所以{}2,P x x =>{}R 2P x x =≤ð.由302x x -≤+,得23x -<≤,所以{}23x x Q =-<≤,所以(){}{}{}R 23222P Q x x x x x x -<=≤=≤-<≤ ð,故选:B.【必刷22】已知集合204x A xx ⎧⎫+=<⎨⎬-⎩⎭,{}0,1,2,3,4,5B =,则()R A B ⋂=ð()A .{}5B .{}4,5C .{}2,3,4D .{}0,1,2,3【答案】B【解析】首先化简集合A ,再根据补集的运算得到R A ð,再根据交集的运算即可得出答案.【详解】因为20(2,4)4x A xx ⎧⎫+=<=-⎨⎬-⎩⎭,所以{R |2A x x =≤-ð或}4x ≥,所以(){}R 4,5A B = ð,故选:B.【必刷23】设集合{}2120A x x x =--≤,12416x B x ⎧⎫=<<⎨⎬⎩⎭,则A B 等于()A .(]3,4-B .[)3,2-C .(]4,4-D .[]3,4-【答案】C【解析】先解出集合A 、B ,再求A B .【详解】由题意{}{}212034A x x x x x =--≤=-≤≤,{}1244216x B x x x ⎧⎫=<<=-<<⎨⎬⎩⎭,所以(]4,4A B =- .故选:C.【必刷24】若集合{A y y ==,{}3log 2B x x =≤,则A B = ()A .(]0,9B .[)4,9C .[]4,6D .[]0,9【答案】A【解析】先解出集合A 、B ,再求A B .【详解】因为{{}0A y y y y ==≥,{}{}3log 209B x x x x =≤=<≤,所以{}09A B x x ⋂=<≤.故选:A .【必刷25】已知集合(){}0.2log 20A x x =->,{}24B x x =≤,则A B ⋃=()A .[]22-,B .(]2,1-C .[)2,3-D .∅【答案】C【解析】解对数不等式确定集合A ,解二次不等式确定集合B ,然后由并集定义计算.【详解】由题意{|021}{|23}A x x x x =<-<=<<,{|22}B x x =-≤≤,所以{|23}[2,3)A B x x =-≤<=- .故选:C .【必刷26】已知全集{1,2,3,4,5,6,7,8,9}U =,{1,3,5,8,9}A =,{2,3,4,6}B =,则()U A B = ð()A .{2,4}B .{2,4,6}C .{1,3,5,7}D .{3}【答案】B【解析】应用集合的交补运算求()U A B I ð.【详解】由题设{2,4,6,7}U A =ð,又{2,3,4,6}B =,所以()={2,4,6}U A B = ð,故选:B【必刷27】已知集合{}12M x x =-≤≤,{}ln N x y x ==,则M N = ()A .[]1,2-B .(]1,2-C .(]0,2D .()[),12,-∞-⋃+∞【答案】C【解析】先化简集合N ,再去求M N ⋂即可解决【详解】{}{}ln 0N x y x x x ===>,则{}{}{}12002M N x x x x x x ⋂=-≤≤⋂>=<≤,故选:C【必刷28】已知集合{}{}Z 33,2e xA x xB y y =∈-<<==-,则A B = ()A .{2,1,0,1,2}--B .(,2)-∞C .{2,1,0,1}--D .(3,2)-【答案】C【解析】求出函数2e x y =-的值域,再利用交集的定义求解作答.【详解】因e 0x >,则22e x -<,即(,2)B =-∞,而{}Z 33A x x =∈-<<,所以{2,1,0,1}A B =-- .故选:C【必刷29】若全集{}0,1,2,3,4,5U =,集合{}0,1,2A =,{}1,2,3B =,则()U A B = ð()A .{}0,1,2B .{}1,2,3C .{}0D .{}0,1,2,4,5【答案】D【解析】先求解集合B 的补集,再利用并集运算即可求解.【详解】由题得{}0,4,5U B =ð,又{}0,1,2A =,所以(){}0,1,2,4,5U B A ⋃=ð,故选:D.【必刷30】设集合{}{}11,124x M x x N x =-≤≤=<<∣∣,则M N = ()A .{10}xx -≤<∣B .{01}x x <≤∣C .{12}x x ≤<∣D .{12}xx -≤<∣【答案】B【解析】解指数不等式得到{}02N x x =<<,进而求出交集.【详解】因为124x <<,所以02x <<,所以{}02N x x =<<,所以M N = {}01x x <≤,故选:B【必刷31】如图,全集U =R ,集合{}1,0,2,3,6A =-,集合{}2,3,5,7B =,则阴影部分表示集合()A .{}1,0,5,7-B .{}1,0,2,3,5,6,7-C .{}2,3D .{}1,0,5,6,7-【答案】D【解析】求出,A B A B ,阴影表示集合为()A B A B ð,由此能求出结果.【详解】矩形表示全集U =R ,集合{}1,0,2,3,6A =-,集合{}2,3,5,7B =,{}{}2,3,1,0,2,3,5,6,7A B A B ∴⋂=⋃=-,则阴影表示集合为(){}1,0,5,6,7A B A B ⋃⋂=-ð.故选:D.【必刷32】设集合{}2|log ,4A y y x x ==>,{}2|320B x x x =-+<,则()A B =R U ð()A .(1,2)B .(1,2]C .(,2]-∞D .(,2)-∞【答案】C【解析】利用对数函数的单调性求得集合A ,解一元二次不等式求得B ,即可根据集合的补集以及并集运算求得答案.【详解】由题意得{}2|log ,4{|2}A y y x x y x ==>=>,则{|2}A y y =≤R ð,而{}2|320{|12}B x x x x x =-+<=<<,故()(,2]A B =-∞R ðU ,故选:C.【必刷33】已知全集{}0,1,2,3,4,5,6U =,集合{}0,2,4,5A =,集合{}2,3,4,6B =,用如图所示的阴影部分表示的集合为()A .{2,4}B .{0,3,5,6}C .{0,2,3,4,5,6}D .{1,2,4}【答案】B【解析】根据文氏图求解即可.【详解】{2,4}A B ⋂=,{}0,2,3,4,5,6A B ⋃=,阴影部分为{}0,3,5,6.故选:B .【必刷34】已知集合{}2A x x =<,(){}2ln 3B x y x x==-,则A B ⋃=()A .()0,2B .()0,3C .()2,3D .()2,3-【答案】D【解析】解出集合A 、B ,利用并集的定义可求得结果.【详解】{}{}222A x x x x =<=-<<,(){}{}{{}22ln 33003B x y x xx x xx x ==-=->=<<.所以,()2,3A B =- .故选:D.【必刷35】若集合{}{}21,0,1,2A x Z x B =∈-<<=,则A B ⋃=()A .(2,1)-B .{1,0}-C .(2,1]{2}-⋃D .{1,0,1,2}-【答案】D【解析】根据已知条件求出集合A ,再利用并集的定义即可求解.【详解】由题意可知{}}{211,0A x Z x =∈-<<=-,又{}0,1,2B =,所以}{{}1,00,1,2{1,0,1,2}A B =-=- ,故选:D .【必刷36】已知集合{}234|0A x x x =--=,{}2|B x a x a =<<,若A B =∅ ,则实数a 的取值范围是()A .(],1-∞-B .[)4,+∞C .()(),12,4-∞-⋃D .[][)1,24,-⋃+∞【答案】D【解析】由题知{}1,4A =-,进而分B =∅和B ≠∅空集两种情况讨论求解即可.【详解】由题知{}{}2|3401,4A x x x =--==-,因为A B =∅ ,所以,当{}2|B x a x a =<<=∅时,2a a ≥,解得01a ≤≤,当{}2|B x a x a =<<≠∅时,2241a a a a ⎧≤⎪≥-⎨⎪>⎩或24a a a ≥⎧⎨>⎩,解得[)(][)1,01,24,a ∈-+∞ ,综上,实数a 的取值范围是[][)1,24,-⋃+∞.故选:D【必刷37】已知集合(){}22240,(1)2101x A xB x x a x a a x ⎧⎫-==-+++<⎨⎬+⎩⎭,若A B =∅ ,则实数a 的取值范围是()A .()2,+∞B .{}()12,∞⋃+C .{}[)12,+∞U D .[)2,+∞【答案】C【解析】先解出集合A ,考虑集合B 是否为空集,集合B 为空集时合题意,集合B 不为空集时利用24a或211a +- 解出a 的取值范围.【详解】由题意(]40141x A x x ⎧⎫-==-⎨⎬+⎩⎭, ,(){}()(){}2222(1)210210B x x a x a a x x a x a ⎡⎤=-+++<=--+<⎣⎦,当B =∅时,221a a =+,即1a =,符合题意;当B ≠∅,即1a ≠时,()22,1B a a =+,则有24a或211a +- ,即 2.a 综上,实数a 的取值范围为{}[)12,+∞U .故选:C.【必刷38】设{}28120A x x x =-+=,{}10B x ax =-=,若A B B = ,则实数a 的值不可以是()A .0B .16C .12D .2【答案】D【解析】根据题意可以得到B A ⊆,进而讨论0a =和0a ≠两种情况,最后得到答案.【详解】由题意,{}2,6A =,因为A B B = ,所以B A ⊆,若0a =,则B =∅,满足题意;若0a ≠,则1B a ⎧⎫=⎨⎬⎩⎭,因为B A ⊆,所以12a =或16a =,则12a =或16a =.综上:0a =或12a =或16a =.故选:D.【必刷39】已知集合{}23A x x =∈<Z ,32B x a x a ⎧⎫=<<+⎨⎬⎩⎭,若A B 有2个元素,则实数a 的取值范围是()A .3,12⎛⎫-- ⎪⎝⎭B .3,02⎛⎫- ⎪⎝⎭C .()3,01,2⎛⎫-⋃+∞ ⎪⎝⎭D .31,1,022⎛⎫⎛⎫--⋃- ⎪ ⎪⎝⎭⎝⎭【答案】D【解析】由题知{}1,0,1A =-,进而根据题意求解即可.【详解】因为{}{}231,0,1A x Z x =∈<=-,32B x a x a ⎧⎫=<<+⎨⎬⎩⎭,若A B 有2个元素,则13012a a <-⎧⎪⎨<+≤⎪⎩或10312a a -≤<⎧⎪⎨+>⎪⎩,解得312a -<<-或102a -<<,所以,实数a 的取值范围是31,122⎛⎫⎛⎫--⋃- ⎪ ⎪⎝⎭⎝⎭.故选:D .【必刷40】已知集合{}21,Z A x x n n ==+∈,{}2B =<,则A B = ()A .{}1,3B .{}1,3,5,7C .{}3,5,7D .{}3,5,7,9【答案】A【解析】先求出集合[)1,5B =,再根据集合的交集运算求得答案.【详解】由题意得[){2}1,5B x =<=,其中奇数有1,3,又{}21,Z A x x n n ==+∈,则{}1,3A B = ,故选:A .考点4.四种命题及其相互关系(1)四种命题间的相互关系(2)四种命题的真假关系①两个命题互为逆否命题,它们具有相同的真假性;考点5.全称量词和存在量词(1)全称量词有:所有的,任意一个,任给,用符号“∀”表示;存在量词有:存在一个,至少有一个,有些,用符号“∃”表示.(2)含有全称量词的命题,叫做全称命题.“对M 中任意一个x ,有p (x )成立”用符号简记为:∀x ∈M ,p (x ).(3)含有存在量词的命题,叫做特称命题.“存在M 中元素x 0,使p (x 0)成立”用符号简记为:∃x 0∈M ,p (x 0).【必刷41】下列四个命题中真命题的个数是()①“x =1”是“2320x x -+=”的充分不必要条件;②命题“R x ∀∈,sin 1x ≤”的否定是“R x ∃∈,sin 1x >”;③命题p :[)1,x ∀∈+∞,lg 0x ≥,命题q :R x ∃∈,210x x ++<,则p q ∧为真命题;④“若2ϕπ=,则()sin 2y x ϕ=+为偶函数”的否命题为真命题.A .0B .1C .2D .3【答案】C【解析】①由2320x x -+=解得1x =或2x =,根据充分、必要条件定义理解判断;②根据全称命题的否定判断;③根据题意可得命题p 为真命题,命题q 为假命题,则p q ∧为假命题;④先写出原命题的否命题,取特值2πϕ=-,代入判断.【详解】①2320x x -+=,则1x =或2x =“1x =”是“1x =或2x =”的充分不必要条件,①为真命题;②根据全称命题的否定判断可知②为真命题;③命题p :[)1,x ∀∈+∞,lg lg10x ≥=,命题p 为真命题,22131024x x x ⎛⎫++=++> ⎪⎝⎭,命题q 为假命题,则p q ∧为假命题,③为假命题;④“若2ϕπ=,则()sin 2y x ϕ=+为偶函数”的否命题为“若2πϕ≠,则()sin 2y x ϕ=+不是偶函数”若2πϕ=-,则sin 2cos 22y x x π⎛⎫=-=- ⎪⎝⎭为偶函数,④为假命题故选:C .【必刷42】下列命题正确的是()A .命题“若2320x x -+=,则2x =”的否命题为“若2320x x -+=,则2x ≠”B .若给定命题:R p x ∃∈,210x x +-<,则:R p x ⌝∀∈,210x x +->C .已知:12p x -<<,()12:2log 210x q x +++<,则p 是q 的充分必要条件D .若p q ∨为假命题,则p ,q 都为假命题【答案】D【解析】根据否命题,命题的否定,充分必要条件的定义,复合命题真假判断各选项.【详解】命题“若2320x x -+=,则2x =”的否命题为“若2320x x -+≠,则2x ≠”,A 错;命题:R p x ∃∈,210x x +-<的否定是R x ∀∈,210x x +-≥,B 错;易知函数12()2log (2)x f x x +=++在定义域内是增函数,()11f -=,(2)10f =,所以12x -<<时,()1212log 210x x +<++<满足()122log 210x x +++<,但()122log 210x x +++<时,22x -<<不满足12x -<<,因此题中应不充分不必要条件,C 错;p q ∨为假命题,则p ,q 都为假命题,若,p q 中有一个为真,则p q ∨为真命题,D 正确.故选:D .【必刷43】下列说法错误的是()A .命题“x R ∀∈,cos 1≤x ”的否定是“0x R ∃∈,0cos 1x >”B .在△ABC 中,sin sin A B ≥是A B ≥的充要条件C .若a ,b ,R c ∈,则“20ax bx c ++≥”的充要条件是“0a >,且240b ac -≤”D .“若1sin 2α≠,则6πα≠”是真命题【答案】C【解析】利用全称命题的否定可判断A ,由正弦定理和充要条件可判断B ,通过举特例可判断C ,通过特殊角的三角函数值可判断D .【详解】A.命题“x R ∀∈,cos 1≤x ”的否定是“0x R ∃∈,0cos 1x >”,正确;B.在△ABC 中,sin sin A B ≥,由正弦定理可得22a bR R≥(R 为外接圆半径),a b ≥,由大边对大角可得A B ≥;反之,A B ≥可得a b ≥,由正弦定理可得sin sin A B ≥,即为充要条件,故正确;C.当0,0a b c ==≥时满足20ax bx c ++≥,但是得不到“0a >,且240b ac -≤”,则不是充要条件,故错误;D.若1sin 2α≠,则6πα≠与6πα=则1sin 2α=的真假相同,故正确;故选:C【必刷44】命题“若220x y +=,则0x y ==”的否命题为()A .若220x y +=,则0x ≠且0y ≠B .若220x y +=,则0x ≠或0y ≠C .若220x y +≠,则0x ≠且0y ≠D .若220x y +≠,则0x ≠或0y ≠【答案】D【解析】同时否定条件和结论即可,注意x =0且y =0,的否定为0x ≠或0y ≠.【详解】命题“若220x y +=,则0x y ==”即为“若220x y +=,则0x =且0y =”所以否命题为:若220x y +≠,则0x ≠或0y ≠.故选:D【必刷45】下列说法正确的是()A .若2000:,2310p x R x x ∃∈++>,则2:,2310p x R x x ⌝∀∈++<B .“(0)0f =”是“函数()f x 是奇函数”的充要条件C .(0,)∀∈+∞x ,都有22x x >D .在ABC 中,若A B >,则sin sin A B >【答案】D【解析】根据存在量词命题的否定为全称量词命题判断A ,根据奇函数的定义判断B ,利用特殊值判断C ,根据三角形的性质及正弦定理判断D ;【详解】对于A :2000:,2310p x R x x ∃∈++>则2:,2310p x R x x ⌝∀∈++≤,故A 错误;对于B :由(0)0f =,得不到函数()f x 是奇函数,如2()f x x =满足(0)0f =,但是2()f x x =为偶函数,由函数()f x 是奇函数也不一定得到(0)0f =,如()1f x x=为奇函数,当时函数在0处无意义,故B 错误;对于C :当2x =时22x x =,故C 错误;对于D :因为A B >根据三角形中大角对大边,可得a b >,再由正弦定理可得sin sin A B >,故D 正确;故选:D【必刷46】已知下列命题:①x ∀∈R ,210x x ++>;②“2a >”是“5a >”的充分不必要条件;③已知p 、q 为两个命题,若“p q ∨”为假命题,则“p q ⌝∧⌝”为真命题;④若x 、y ∈R 且2x y +>,则x 、y 至少有一个大于1.其中真命题的个数为()A .4B .3C .2D .1【答案】B【解析】利用配方法可判断①的正误;利用集合的包含关系可判断②的正误;利用复合命题的真假可判断③的正误;利用反证法可判断④的正误.【详解】对于①,因为22131024x x x ⎛⎫++=++> ⎪⎝⎭,①对;对于②,因为{}2a a >({}5a a >,故“2a >”是“5a >”的必要不充分条件,②错;对于③,“p q ∨”为假命题,则p 、q 均为假命题,所以,p q ⌝∧⌝为真命题,③对;对于④,假设1x ≤且1y ≤,则2x y +≤,与2x y +>矛盾,假设不成立,④对.故选:B.【必刷47】设命题0:p x R ∃∈,2010x +=,则命题p 的否定为()A .x R ∀∉,210x +=B .x R ∀∈,210x +≠C .0x R ∃∉,2010x +=D .0x R ∃∈,2010x +≠【答案】B【解析】根据特称命题的否定是全称命题,即可得到答案.【详解】利用含有一个量词的命题的否定方法可知,特称命题0:p x R ∃∈,2010x +=的否定为:x R ∀∈,210x +≠.故选:B.【必刷48】命题“x R ∀∈,sin x x >”的否定是()A .0x R ∃∈,00sin x x <B .0x R ∃∉,00sin x x ≤C .x R ∀∈,sin x x ≤D .0x R ∃∈,00sin x x ≤【答案】D【解析】根据命题否定的定义即可求解.【详解】对于全称量词的否定是特称量词,并对结果求反,即000,sin x R x x ∃∈≤;故选:D.【必刷49】命题“π,02x ⎛⎫∀∈- ⎪⎝⎭,tan x x >”的否定是()A .,02x π⎛⎫∀∈- ⎪⎝⎭,tan x x≤B .,02x π⎛⎫∀∈- ⎪⎝⎭,tan x x<C .,02x π⎛⎫∃∈- ⎪⎝⎭,tan x x≤D .,02x π⎛⎫∃∈- ⎪⎝⎭,tan x x<【答案】C【解析】利用含有一个量词的命题的否定的定义求解.【详解】由全称命题的否定是存在量词命题,所以命题“,02x π⎛⎫∀∈- ⎪⎝⎭,tan x x >”的否定是“,02x π⎛⎫∃∈- ⎪⎝⎭,tan x x ≤”,故选:C .【必刷50】下列命题正确的是()A .命题“若2320x x -+=,则2x =”的否命题为“2320x x -+=,则2x ≠”B .若给定命题p :x ∃∈R ,210x x +-<,则p ⌝:x ∀∈R ,210x x +->C .若p q ∧为假命题,则p ,q 都为假命题D .“1x <”是“2320x x -+>”的充分不必要条件【答案】D【解析】A 选项直接否定条件和结论即可;B 选项存在一个量词的命题的否定,先否定量词,后否定结论;C 选项“且”命题是一假必假;D 选项,利用“小集合”是“大集合”的充分不必要条件作出判断.【详解】对于A ,命题“若2320x x -+=,则2x =”的否命题为“2320x x -+≠,则2x ≠”,A 错误;对于B ,命题p :x ∃∈R ,210x x +-<,则p ⌝:x ∀∈R ,210x x +-≥,B 错误;对于C ,若p q ∧为假命题,则p ,q 有一个假命题即可;C 错误;对于D , 2320x x -+>1x ∴<或2x >11x x ∴<⇒<或2x >,即“1x <”是“2320x x -+>”的充分不必要条件,D 正确.故选:D考点6:充分条件、必要条件与充要条件的概念若p ⇒q ,则p 是q 的充分条件,q 是p 的必要条件p 是q 的充分不必要条件p ⇒q 且q ⇏p p 是q 的必要不充分条件p ⇏q 且q ⇒p p 是q 的充要条件p ⇔q p 是q 的既不充分也不必要条件p ⇏q 且q ⇏p【必刷51】若x ,y 为实数,则“11x y<”是“22log log x y >”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】B【解析】根据充分必要条件的定义及对数不等式即可求解;【详解】由题意可知当2,1x y =-=时,满足11x y<,但不满足22log log x y >;由22log log x y >,得0x y >>,满足11x y <,所以“11x y<”是“22log log x y >”的必要不充分条件,故选:B .【必刷52】在ABC 中,“sin 2sin 2A B =”是“A B =”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件【答案】B【解析】根据给定条件,利用充分条件、必要条件的定义求解作答.【详解】在ABC 中,A B =,则22A B =,必有sin 2sin 2A B =,而,63A B ππ==,满足sin 2sin 2A B =,此时ABC 是直角三角形,不是等腰三角形,所以“sin 2sin 2A B =”是“A B =”的必要不充分条件.故选:B【必刷53】下列四个命题中正确的是()A .若函数()y f x =的定义域为[]1,1-,则()1y f x =+的定义域为[]0,2B .若正三角形ABC 的边长为2,则2AB BC ⋅=C .已知函数()()2log 11f x x =+-,则函数()y f x =的零点为()1,0D .“αβ=”是“tan tan αβ=”的既不充分也不必要条件【答案】D【解析】利用抽象函数的定义域可判断A 选项;利用平面向量数量积的定义可判断B 选项;利用函数零点的定义可判断C 选项;利用特殊值法结合充分条件、必要条件的定义可判断D 选项.【详解】对于A 选项,若函数()y f x =的定义域为[]1,1-,对于函数()1y f x =+,则有111x -≤+≤,解得20x -≤≤,即函数()1y f x =+的定义域为[]2,0-,A 错;对于B 选项,若正三角形ABC 的边长为2,则cos1202AB BC AB BC ⋅=⋅=-,B 错;对于C 选项,已知函数()()2log 11f x x =+-,令()0f x =,解得1x =,所以,函数()y f x =的零点为1,C 错;对于D 选项,若2παβ==,则tan α、tan β无意义,即“αβ=”⇒“tan tan αβ=”;若tan tan αβ=,可取4πα=,54πβ=,则αβ≠,即“αβ=”⇐/“tan tan αβ=”.因此,“αβ=”是“tan tan αβ=”的既不充分也不必要条件,D 对.故选:D.【必刷54】不等式1133x⎛⎫> ⎪⎝⎭成立是不等式21x <成立的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B【解析】根据指数不等式和一元二次不等式的解法解出对应的不等式,结合必要不充分条件的概念即可得出结果.【详解】解不等式1133x⎛⎫> ⎪⎝⎭,得1x <,解不等式21x <,得11x -<<,。
高中数学集合与常用逻辑用语专题训练100题(尾部含答案)学校:___________姓名:___________班级:___________考号:___________ 一、单选题1.已知集合{}5,8A =,{}23100B x x x =--≤,则()R A B ⋂=( )A .{}5B .{}8C .{}2,5,8-D .{}2-2.设全集{}3,2,1,0,1,2,3U =---,集合{}1,0,1,2A =-,{}3,2,3B =-,则()UA B =( ) A .{}1,0-B .{}0,1C .{}1,1-D .{}1,0,1-3.已知,a b 都是实数,则“2211log log a b<”是“a b >”的( ) A .充要条件 B .必要不充分条件 C .充分不必要条件D .即不充分也不必要条件4.已知公差为d 的等差数列{an }的前n 项和为Sn ,则“Sn ﹣nan <0,对n >1,n ∈N *恒成立”是“d >0”的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件D .非充分也非必要条件5.已知集合{}1,2,3,4A =,{}2,4,5B =,则A B =( ) A .{}1B .{}2,4C .{}2,3,4D .{}1,2,3,4,56.已知集合{}1,0,1M =-,{}21N y y x ==-,则MN =( )A .0B .{}1,0-C .{}0,1D .{}1,0,1-7.已知集合{}3,2,1,0,1,2,3A =---,{}230B x x =-≤,则A B =( )A .{}1,0,1-B .{}0,1C .{}0,1,2D .1,0,1,28.斐波那契螺线又叫黄金螺线,广泛应用于绘画、建筑等,这种螺线可以按下列方法画出:如图,在黄金矩形ABCD (其中AB BC =ABFE ,以F 为圆心,AB 长为半径作圆弧BE ;然后在矩形CDEF 中作正方形DEHG ,以H 为圆心,DE 长为半径作圆弧EG ;……;如此继续下去,这些圆弧就连成了斐波那契螺线.记圆弧BE ,EG ,GI 的长度分别为l ,m ,n ,给出以下两个命题::p l m n =+,2:q m l n =⋅.则下列选项为真命题的是( )A .p q ∧B .()p q ∧⌝C .()p q ⌝∧D .()()p q ⌝∧⌝9.设a ∈R ,则“1a =”是“直线12x ay ++=与30x ay --=垂直”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件10.已知集合{}28xA x =<,集合{}B x x a =>,若A B =∅,则实数a 的取值范围为( ) A .(,2)-∞B .(2,)+∞C .(,3]-∞D .[3,)+∞11.已知集合()(){}20A x a x x a =--<,若2A ∉,则实数a 的取值范围为( ) A .()(),12,-∞+∞ B .[)1,2 C .()1,2 D .[]1,212.设集合402x A xx ⎧⎫-=>⎨⎬+⎩⎭,{2B x x =≤或5}x ,则()R A B =( ) A .{}22x x -<< B .{}22x x -≤≤C .{|4x x ≤或5}x ≥D .{|2x x ≤或5}x ≥13.已知全集U =R ,集合{}216,{3}A x x B x x =<=>∣∣,则()UA B =( )A .()4,3-B .[)3,4C .(]4,3-D .()3,414.已知集合{}2280A x x x =-->,则A =R( )A .[]4,2-B .()4,2-C .()2,4-D .[]2,4-15.已知p :3x y +>,q :1x >且2y >,则q 是p 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件16.已知l ,m 是两条不同的直线,α,β为两个不同的平面,若l β∕∕,l m ∕∕,则“m α⊥”是“αβ⊥”的( )条件. A .充分不必要 B .必要不充分 C .充分必要D .既不充分也不必要17.已知集合{}{}220,1,0,1,2,3A x x x B =--<=-,则A B 中的元素个数为( ) A .1B .2C .3D .418.已知直线1:30l ax y +-=,直线()2:2130l a x y a --+=,则“1a =-”是“12l l ⊥”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件19.已知集合{}{}2|230,|ln(21)0M x x x N x x =--<=->,则M ∩N =( )A .(1,32)B .(12,32)C .(-1,32)D .(-1,12)20.已知n S 为等比数列{}n a 的前n 项和,且公比1q >,则“51a a >”是“40S >”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件21.已知全集{}0,1,2,3,4,5U =,集合{}3A x N x =∈<,集合{}0,3,4,5B =,则()UA B ⋂=( )A .{}4,5B .{}3,4,5C .{}0,4,5D .{}0,3,4,522.若全集{1,2,3,4,5,6}U =,{1,4}M =,{2,3}P =,则集合()()U UM P =( ) A .{1,2,3,4,5,6}B .{2,3,5,6}C .{1,4,5,6}D .{5,6}23.已知集合[]5,4U =-,{}220A x x x =-≤,20x B x x +⎧⎫=≤⎨⎬⎩⎭,则()U A B ⋂=( ) A .∅ B .[]0,2 C .[)2,0-D .[]0,2-24.已知集合A ={}250x x x -≤,B ={}21,x x k k Z =-∈,则A B 中元素的个数为( ) A .2B .3C .4D .525.已知集合M ={1,2,3},{}240,N x x x a a M =-+=∈,若MN ≠∅,则a 的值为( ) A .1B .2C .3D .1或226.“22x ≠是”21x ≠的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件27.已知集合()(){}110A x x x x =-+=,则A =( ) A . {}0,1B . {}1,0-C .{}0,1,2D .{}1,0,1-28.设集合{}N 4M x x =∈<,{}Z 326xN x =∈≤,则MN =( )A .{}1,2,3B .{}0,1C .{}1,2D .{}0,1,229.已知x ∈R ,则“2cos 1x >”是“03x π≤<”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件30.已知不等式组20100x y x y x -≥⎧⎪+-≤⎨⎪≥⎩,构成的平面区域为D .命题p :对()x y D ∀∈,,都有30x y -≥;命题q :(),x y D ∃∈,使得20x y ->.下列命题中,为真命题的是( ) A .()()p q ⌝∧⌝B .p q ∧C .()p q ⌝∧D .()p q ∧⌝31.已知命题:p x ∃,y R ∈,sin()sin sin x y x y +=+;命题:q x ∀,y R ∈,sin sin 1x y ⋅,则下列命题中为真命题的是( ) A .p q ∧B .p q ⌝∧C .()p q ∧⌝D .()p q ⌝∨32.设集合{}1,0,A n =-,{},,B x x a b a A b A ==⋅∈∈.若A B A =,则实数n 的值为( ) A .1-B .0C .1D .233.已知集合{}1,0,1,2A =-,()(){}120B x x x =+-<,则A B ⋃=( ) A .{}0,1B .{}1,2-C .[]1,2-D .()1,2-34.设集合{{},1,0,1A yy B ===-∣,则A B =( ) A .{}1B .{}0,1C .{}1,0-D .{}1,0,1-35.已知集合{}24M x x ==,N 为自然数集,则下列结论正确的是( )A .{}2M =B .2M ⊆C .2M -∈D .M N ⊆36.集合{}12,N A x x x =-≤≤∈,{}1B =,则A B =( ) A .{11x x -≤<或}12x <≤ B .{}1,0,2- C .{}0,2D .{}237.已知命题p :若直线与抛物线只有一个交点,则直线与抛物线相切.命题q :等轴则下列命题为真命题的是( ) A .p 且qB .p 或qC .()p ⌝或qD .p 且()q ⌝38.设命题p :n N ∀∈,33n n >,则命题p 的否定为( )A .n N ∃∈,33n n >B .n N ∃∉,33n n ≤C .n N ∃∈,33n n ≤D .n N ∀∉,33n n >39.“所有可以被5整除的整数,末位数字都是5”的否定是( ) A .所有可以被5整除的整数,末位数字都不是5 B .所有不可以被5整除的整数,末位数字不都是5C .存在可以被5整除的整数,末位数字不是5D .存在不可以被5整除的整数,末位数字是540.已知集合{}22(,)|(0,{(,)|S x y x y T x y y x =+===,则S T ⋃=( )A .{B .{(C .SD .T41.“A B =∅”是“A =∅或B =∅”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件42.已知集合{}14U x x =∈-<<N ,集合{0,1}A =,则UA ( )A .{0,2,3}B .{1,0,2,3}-C .{2,3}D .{2,3,4} 43.已知集合{}2540M x x x =-+<,{1,0,1,2,3}N =-,则MN =( )A .{2,3}B .{0,1,2}C .{1,2,3,4}D .∅44.已知命题:(0,)p x ∀∈+∞,sin 0x x ->;命题:q a ∀∈R ,()22()log a f x x +=在定义域上是增函数.则下列命题中的真命题是( ) A .p q ∧B .p q ⌝∧C .p q ∧⌝D .()p q ⌝∨45.已知集合{}1,3,A m =,{B =,B A ⊆,则m =( ) A .9B .0或1C .0或9D .0或1或946.已知集合{}0,1,2,3A =,{}2B x x =∈>Z ,则A B ⋃=( ) A .NB .ZC .{}0,1,2,3D .()0,∞+47.已知命题:p 若sin sin x y >,则x y >;命题:R q a ∀∈,()()22log a f x x +=在定义域内是增函数.则下列命题中的真命题是( ) A .p q ∧ B .p q ⌝∧ C .p q ∧⌝D .()p q ⌝∨48.若:12p x -≤≤,:11q x -≤≤,则p 为q 的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分又不必要条件49.设全集U Z =,集合{}0,1A =,{}1,0,1,2B =-,则()U A B =( )A .ZB .{}1,2-C .{}0,1D .1,0,1,250.设P :3x <,q :13x ,则p 是q 成立的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件D .既非充分也非必要条件51.“sin cos αα=”是“π2π4k α=+,k ∈Z ”的( ) A .充分不必要 B .必要不充分 C .充要 D .既不充分也不必要52.下列说法中正确的是( )A .已知随机变量X 服从二项分布14,3B ⎛⎫⎪⎝⎭.则()89E X =B .“A 与B 是互斥事件”是“A 与B 互为对立事件”的充分不必要条件C .已知随机变量X 的方差为()D X ,则()()2323D X D X -=- D .已知随机变量X 服从正态分布()24,N σ且()60.85P X ≤=,则()240.35P X <≤=53.已知命题:1p Q ∈,命题:q 函数()f x=1的定义域是[)1,+∞,则以下为真命题的是( ) A .p q ∧ B .p q ∨ C .p q ⌝∧D .p q ⌝∨54.“224x y +≥”是“2x ≥且2y ≥”的( )条件. A .必要不充分 B .充分不必要 C .充要D .既不充分也不必要55.“a b =”是“a b =”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 56.若集合11,,0,1,44A ⎧⎫=--⎨⎬⎩⎭,{}4xB y y ==,则A B =( )A .{}1,4B .{}0,1,4C .1,0,1,44⎧⎫-⎨⎬⎩⎭D .11,,0,1,44⎧⎫--⎨⎬⎩⎭57.已知集合{}2,3,4,5B =,{}2,1,4,5C =--,非空集合A 满足:A B ⊆,A C ⊆,则符合条件的集合A 的个数为( )A .3B .4C .7D .858.已知△ABC 的三个内角为A ,B ,C ,则“3A π<”是“sin A ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件59.已知集合{}4,5,6,8A =,{}3,5,7,8B =,则A B =( ) A .{}5,8B .5,6C .{}3,6,8D .{}3,4,5,6,7,860.“两个三角形相似”是“两个三角形三边成比例”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件61.集合{}1,0,1,2A =-,{}2log 2B x x =<,则A B =( ) A .{}1,2B .{}1,0,2-C .{}2D .{}1,0-62.l ,m 是两条不重合的直线,α,β是两个不重合的平面,若l α⊂,m β⊂,则“l //m ”是“//αβ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件63.已知全集2{|760}U x N x x =∈-+≤,A ={1,3,4},B ={2,4,6},则(UA )B =( ) A .{2,5}B .{2,6}C .{2,5,6}D .{2,4,5,6}64.设集合{}2120A x x x =+-≤,(){}0.5log 12B x x =->-,则A B =( )A .∅B .(]1,4C .(]1,3D .[]4,3-65.已知命题:R p x ∀∈,ln 10x x -+<,则p ⌝是( ) A .R x ∀∉,ln 10x x -+≥ B .R x ∀∈,ln 10x x -+≥ C .R x ∃∉,ln 10x x -+≥D .R x ∃∈,ln 10x x -+≥66.已知集合{R|2}A y y =∈>,{}R |ln B x y x =∈=,则R ()A B =( ) A .,2]-∞( B .[2,)+∞ C .(0,2]D .(0,2)67.已知集合{}13P x R x =∈≤≤,{}24Q x R x =∈≥,则()RPQ =( )A .[]2,3B .(]2,3-C .[)1,2D .[]1,268.已知集合{}|2,M y y xx ==-∈R ∣,1,7xN y y x ⎧⎫⎪⎪⎛⎫==∈⎨⎬ ⎪⎝⎭⎪⎪⎩⎭R ,则( ) A .M N B .N M ⊆ C .M N =RD .N RM69.已知命题:p x R ∀∈,cos 1x <;命题:q x R +∃∈,|ln |0x ≤,则下列命题中为真命题的是( ) A .p q ∧B .p q ⌝∧C .p q ∧⌝D .()p q ⌝∨70.已知平面α,β,直线m ,αβ⊥,则“m α∥”是“m β⊥”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件71.已知集合{|(1)0,}A x x x x =-<∈R ,1{|2,}2B x x x =<<∈R ,集合A B =( ) A .∅B .1{|1,}2x x x <<∈R C .{|22,}x x x -<<∈RD .{|21,}x x x -<<∈R72.若集合201x A xx ⎧⎫+=≤⎨⎬-⎩⎭,{}220B x x x =--<,则()R A B =( ) A .[)1,2 B .(]1,1-C .()1,1-D .()1,273.集合{}12,A x x x N =-≤≤∈,{}1B =,则A B =( ) A .{}1112x x x -≤≤<≤或B .{}1,0,2-C .{}0,2D .{}2 74.已知集合{}21,Z M x x n n ==-∈,{}1,2,3,4,5N =,则M N =( )A .{}1,3,5B .{}1,2,3,4,5C .{}21,Z x x n n =-∈D .∅75.函数()3f x x x =+,则1a >-是()()120f a f a ++>的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件76.已知集合{}2A x x =<,{}2,1,0,1,2B =--,则A B =( )A .{}0,1B .{}1,0,1-C .2,0,1,2D .1,0,1,277.“直线430x y m ++=与圆2220x y x +-=相切”是“1m =”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件78.“2263x x +”是“||7x ”的( ) A .充要条件 B .必要不充分条件 C .充分不必要条件D .既不充分也不必要条件 79.已知集合{}{}21,,(1)(6)0A y y k k Z B x x x ==-∈=--≤,则A B =( )A .{}135,, B .{}35, C .[]16,D .∅80.已知集合()(){}22,10M x y x y =++=,()(){},ln 2N x y y x ==+,则M N ⋃=( ) A .{}1,0-B .(){}1,0-C .MD .N81.已知集合{}210A x x =->,{}2|3180B x x x =--<,则A B =( )A .1,62⎛⎫ ⎪⎝⎭B .1,32⎛⎫ ⎪⎝⎭C .()3,6-D .()6,3-82.已知全集{1,0,1,3,4,5,6}U =-,集合{1,1}R =-,{4,5}Q =,则()UR Q ⋃=( ) A .{}1-B .{1,3}-C .{0,3,6}D .{1,0,3,6}-83.已知集合{}{}2|4,,|4A x x x Z B y y =<∈=>,则A B =( )A .()()4,22,4--B .{}3,3-C .()2,4D .{}3二、多选题84.若“260x x --<”是“4a x <<”的充分不必要条件,则实数a 的值可以是( ) A .3-B .2-C .1D .285.下列命题中,真命题有( ) A .“1x ≠”是“1x ≠”的必要不充分条件B .“若6x y +≥,则x ,y 中至少有一个大于3”的否命题C .0x ∃∈R ,0202xx <D .命题“0x ∃<,220x x --<”的否定是“00x ∀≥,20020x x --≥”86.已知a ∈R ,命题“0x ∃>,x a a -<”的否定是( ) A .0x ∀>,x a a -≥ B .0x ∃≤,x a a -< C .0x ∀>,2x a ≥或0x ≤D .0x ∃>,x a a -≥87.下列条件中,为“关于x 的不等式210mx mx -+>对x R ∀∈恒成立”的充分不必要条件的有( ) A .04m ≤< B .02m << C .14m <<D .16m -<<88.下列命题是真命题的是( ) A .所有的素数都是奇数B .有一个实数x ,使2230x x ++=C .命题“x R ∀∈,0x x +≥”的否定是“x R ∃∈,0x x +<”D .命题“x R ∃∈,20x +≤”的否定是“x R ∀∈,20x +>”89.已知幂函数()()41mf x m x =-,则下列选项中,能使得f af b 成立的一个充分不必要条件是( ) A .110ab<< B .22a b > C .ln ln a b > D .22a b >三、解答题90.如图,在 ABC 中,F 是BC 中点,直线l 分别交AB ,AF ,AC 于点D ,G ,E .如果AD =λAB ,AE =μAC ,λ,μ∈R . 求证:G 为 ABC 重心的充要条件是1λ+1μ=3.91.已知函数()()()313x xf x m m R -=--∈是定义域为R 的奇函数.(1)若集合(){}|0A x f x =≥,|0x m B x x m -⎧⎫=<⎨⎬+⎩⎭,求A B ; (2)设()()22332x xg x af x -=+-,且()g x 在[)1,+∞上的最小值为-7,求实数a 的值.92.设全集{2}U xx =≥-∣,{210}A x x =<<∣,{28}B x x =≤≤∣.求UA ,()U AB ⋂,A B ,()UA B93.已知a ∈R ,集合(){}222log log 2A x R x x =∈≥,集合()(){}10B x R x x a =∈--<. (1)求集合A ; (2)若RB A ⊆,求a 的取值范围.94.设全集为R ,{3A x x =≤或}9x ≥,{}29B x x =-<≤. (1)求A B ,A B ; (2)求()R B A .95.已知函数()22f x x x a =-+,()5g x ax a =+-(1)若函数()y f x =在区间[]1,0-上存在零点,求实数a 的取值范围;(2)若对任意的[]11,3x ∈-,总存在[]21,3x ∈-,使得()()12f x g x =成立,求实数a 的取值范围. 四、填空题96.命题“0x R x ∈∃,”的否定是___________. 97.若命题p :x ∀∈R ,2240ax x -+为真命题,则实数a 的取值范围为___________.98.写出一个能说明“若函数()f x 为奇函数,则()00f =”是假命题的函数:()f x =_________.99.已知全集U =R ,集合{}()3,,0A x x B ∞=≤-=-,则A B =________.100.已知集合{}2Z,4A x x x =∈<,{}1,2B =-,则A B ⋃=_________.参考答案:1.B 【解析】 【分析】求出集合B ,利用交集和补集的定义可求得结果. 【详解】因为{}{}2310025B x x x x x =--≤=-≤≤,则{R 2B x x =<-或}5x >,因此,(){}R 8A B ⋂=. 故选:B. 2.D 【解析】 【分析】 求出{}2,1,0,1UB =--即得解.【详解】 由题设,{}2,1,0,1UB =--,则(){}1,0,1U A B ⋂=-,故选:D. 3.C 【解析】 【分析】利用对数函数的单调性,结合充分性和必要性的讨论,即可判断和选择. 【详解】因为2log y x =在()0,+∞是单调增函数,又2211log log a b<, 故可得110a b<<,则0a b >>,故a b >,满足充分性; 若a b >,不妨取2,1a b =-=-,显然110,0a b <<,故2211log ,log a b没有意义, 故必要性不成立; 综上所述,“2211log log a b<”是“a b >”的充分不必要条件. 故选:C .【解析】 【分析】 将()112n n n S na d -=+,an =a 1+(n ﹣1)d 代入Sn ﹣nan <0,并化简,再结合n 的取值范围,即可求解. 【详解】解:()112n n n S na d -=+,an =a 1+(n ﹣1)d , 则Sn ﹣nan ()112n n na d -=+-na 1﹣n (n ﹣1)d ()12n n d -=-,则“Sn ﹣nan <0,对n >1,n ∈N *恒成立”,故d >0, 若d >0,则Sn ﹣nan ()12n n d -=-<0,对n >1,n ∈N *恒成立,故“Sn ﹣nan <0,对n >1,n ∈N *恒成立”是“d >0”的充分必要条件. 故选:C . 5.B 【解析】 【分析】根据交集的知识确定正确答案. 【详解】依题意集合{}1,2,3,4A =,{}2,4,5B =,所以{}2,4A B =. 故选:B 6.D 【解析】 【分析】首先求集合N ,再求M N ⋂. 【详解】211y x =-≥-,即{}1N y y =≥-,{}1,0,1M =-,所以{}1,0,1M N ⋂=-. 故选:D【解析】 【分析】解出集合B ,利用交集的定义可求得结果. 【详解】因为{}{230B x x x x =-≤=≤,因此,{}1,0,1A B =-.故选:A. 8.A 【解析】 【分析】根据题意,求得,,l m n ,判断命题,p q 的真假,再结合逻辑连接词判断复合命题的真假即可. 【详解】根据题意可得圆弧BE ,EG ,GI 对应的半径分别为,,AB BC AB AB DG --, 也即,,2AB BC AB AB BC --, 则弧长,,l m n 分别为()(),,2222AB BC AB AB BC πππ--,则()()2222m n BC AB AB BC AB l πππ+=-+-==,故命题p 为真命题;()(22222222227448AB AB ln AB AB BC BC BC BC BC πππ⎛⎫=-⨯=⨯-=- ⎪⎝⎭,而(2222221748AB m BC BC BCππ⎛⎫=-=- ⎪⎝⎭,故2ln m =,命题q 为真命题. 则p q ∧为真命题,()p q ∧⌝,()p q ⌝∧,()()p q ⌝∧⌝均为假命题. 故选:A. 9.A 【解析】 【分析】利用直线垂直的判断条件可求1a =±,从而可得正确的选项. 【详解】直线12x ay ++=与30x ay --=垂直,则210,1a a -==±, ∈“1a =”是“直线12x ay ++=30x ay --=垂直”的充分不必要条件. 故选:A. 10.D 【解析】 【分析】先求出集合A ,B ,再由A B =∅求出实数a 的取值范围. 【详解】{}{}{}{}328223,x x A x x x x B x x a =<=<=<=>.又A B =∅,所以a 的取值范围为[3,)+∞. 故选:D 11.D 【解析】 【分析】利用元素与集合的关系求解. 【详解】 因为2A ∉,所以()()2220a a --≥, 解得12a ≤≤. 故选:D . 12.B 【解析】 【分析】求解分式不等式解得集合A ,再求补集和交集即可. 【详解】 因为402x x ->+,即()()420x x -+>,解得2x <-或4x >,故{|2A x x =<-或4}x >, 则A R{|24}x x =-≤≤,则()R A B ={|22}x x -≤≤.故选:B.13.C 【解析】 【分析】先化简集合A ,求得UB ,再去求()U A B ∩即可解决.【详解】因为{}216{44},{3}A xx x x B x x =<=-<<=>∣∣∣, 所以{}3UB x x =∣,则()(]4,3U A B ⋂=-.故选:C. 14.D 【解析】 【分析】根据不等式的解法,求得集合A ,结合补集的概念及运算,即可求解. 【详解】由不等式2280x x -->,可得(4)(2)0x x -+>,解得2x <-或4x >, 即集合{|2x x <-或4}x >,所以[]{|24}2,4A x x =-≤≤=-R.故选:D. 15.A 【解析】 【分析】直接按照充分条件必要条件的定义判断即可. 【详解】若1x >且2y >,则3x y +>,反之则不然,比如0,4x y ==,故q 是p 的充分不必要条件. 故选:A. 16.A 【解析】 【分析】根据空间中的平行关系与垂直关系,结合充分条件和必要条件的定义即可得出答案. 【详解】解:因为l β∕∕,l m ∕∕, 当m α⊥,则l α⊥,又因为l β∕∕,则在平面β内存在一条直线a 使得a α⊥,再根据面面垂直的判定定理可得αβ⊥,故“m α⊥”可以推出“αβ⊥”, 当αβ⊥时,m 与α平行相交都有可能,故“αβ⊥”不一定可以推出“m α⊥”, 所以“m α⊥”是“αβ⊥”的充分不必要条件. 故选:A. 17.B 【解析】 【分析】解不等式求得集合A ,由此求得A B ,由此确定正确答案. 【详解】因为{}{}{}22012,1,0,1,2,3A x x x x x B =--<=-<<=-,所以{0,1}A B =,则A B 的元素的个数为2. 故选:B 18.A 【解析】 【分析】由直线垂直得到a 的值,从而求出答案. 【详解】由12l l ⊥得:()2130a a --=,则1a =-或32a =,故1a =-是12l l ⊥的充分不必要条件,即A 选项正确. 故选:A 19.A 【解析】 【分析】解一元二次不等式求集合A ,解对数不等式求集合B ,再应用集合的交运算求M ∩N . 【详解】因为{}23|230|12M x x x x x ⎧⎫=--<=-<<⎨⎬⎩⎭,{}{}ln(21)01N x x x x =-=, 所以M N =(1,32).故选:A 20.C 【解析】 【分析】用定义法,分充分性和必要性两种情况分别求解. 【详解】 由40S >,得1514011a a a a q q q--=>--,因为1q >,所以510a a ->,即51a a >.故必要性满足; 1514411a a a a q S q q--==--.因为1q >,51a a >,所以40S >.故充分性满足. 所以“51a a >”是“40S >”的充要条件. 故选:C 21.B 【解析】 【分析】利用集合间的基本运算,即可得到答案; 【详解】{}3,4,5UA =,则(){}U 3,4,5AB ⋂=.故选:B. 22.D 【解析】 【分析】计算{}U 2,3,5,6M =,{}U1,4,5,6P =,再计算交集得到答案.【详解】{}U2,3,5,6M =,{}U 1,4,5,6P =,()(){}U U 5,6M P ⋂=.故选:D. 23.C【解析】 【分析】根据解一元二次不等式的方法、解分式不等式的方法,结合集合交集、补集的定义进行求解即可. 【详解】因为{}220[0,2]A x x x =-≤=,[]5,4U =-,所以()U [5,0)(2,4]A =-⋃,又因为[)202,0x B x x +⎧⎫=≤=-⎨⎬⎩⎭, 所以()U A B ⋂=[)2,0-, 故选:C 24.B 【解析】 【分析】解不等式求出{}05A x x =≤≤,从而得到不等式组,求出k 的值,进而得到A B 中的元素,求出答案. 【详解】由250x x -≤得:05x ≤≤,所以{}05A x x =≤≤,又{}21,B x x k k Z ==-∈,令0215k ≤-≤,解得:132k ≤≤,k Z ∈,当1k =时,1x =,当2k =时,3x =,当3k =时,5x =,故A B 中元素的个数为3. 故选:B 25.C 【解析】 【分析】逐一取a 的值为1,2,3进行验算可得. 【详解】当1a =时,由2410x x -+=,得2=x {22N =+,不满足题意;当2a =时,由2420x x -+=,得2x ={22N =+,不满足题意;当3a =时,由2430x x -+=,得1x =或3x =,即{1,3}N =,满足题意.26.B【解析】【分析】先化简两个不等式,再去判断二者间的逻辑关系即可解决.【详解】由22x ≠可得1x ≠;由21x ≠可得1x ≠±则由22x ≠不能得到21x ≠,但由21x ≠ 可得22x ≠故“22x ≠是”21x ≠的必要不充分条件.故选:B27.D【解析】【分析】通过解方程进行求解即可.【详解】因为(1)(1)00x x x x -+=⇒=,或1x =-,或1x =,所以{}1,0,1A =-,故选:D28.D【解析】【分析】先求出集合N ,再求两集合的交集【详解】由326x ≤,得33log 3log 26x ≤,即3log 26x ≤,所以{}3Z|log 26N x x =∈≤,因为{}N |4M x x =∈<所以MN ={}0,1,2,故选:D【解析】【分析】利用必要条件和充分条件的定义判断.【详解】因为x ∈R ,2cos 1x >, 所以1cos 2x >, 解得2233k x k ππππ-+<<+,所以x ∈R ,则“2cos 1x >”是“03x π≤<”的必要不充分条件,故选:B30.B【解析】【分析】 先画出不等式组所表示的平面区域,根据存在性和任意性的定义,结合复合命题的真假性质进行判断即可.【详解】不等式组表示的平面区域D 如图中阴影部分(包含边界)所示.根据不等式组表示的平面区域结合图形可知,命题p 为真命题,命题q 也为真命题,因此选项B 为真命题; 因此p ⌝为假命题,命题q ⌝也为假命题,所以选项ACD 为假命题,故选:B31.A【解析】【分析】先判断命题p ,命题q 的真假,再利用复合命题判断.【详解】 当0,2x y π==时,sin()sin sin x y x y +=+成立所以命题p 为真命题,则p ⌝是假命题;因为x ∀,y R ∈,所以sin 1,sin 1x y ≤,则sin sin 1x y ⋅,故命题q 为真命题,则q ⌝是假命题;所以p q ∧是真命题,p q ⌝∧是假命题, ()p q ∧⌝是假命题,()p q ⌝∨是假命题, 故选:A32.C【解析】【分析】依据集合元素互异性排除选项AB ;代入验证法去判断选项CD ,即可求得实数n 的值.【详解】依据集合元素互异性可知,0,1n n ≠≠-,排除选项AB ;当1n =时,{}1,0,1A =-,{}{},,110B x x a b a A b A ==⋅∈∈=-,,, 满足A B A =.选项C 判断正确;当2n =时,{}1,0,2A =-,{}{},,2,014B x x a b a A b A ==⋅∈∈=-,,, {}0A B A ⋂=≠.选项D 判断错误.故选:C33.C【解析】【分析】解一元二次不等式得集合B ,然后由并集定义计算.【详解】由题意{|12}B x x =-<<,所以{|12}A B x x ⋃=-≤≤.故选:C .34.B【解析】【分析】根据二次根式的定义求得集合A ,然后由交集定义计算.【详解】由已知{|0}A y y =≥,所以{0,1}A B =.故选:B .35.C【解析】【分析】由题设可得{2,2}M =-,结合集合与集合、元素与集合的关系判断各选项的正误即可.【详解】由题设,{2,2}M =-,而N 为自然数集,则2N -∉,2N ∈且2,2M -∈,所以,{}2M ≠⊂,故A 、B 、D 错误,C 正确. 故选:C36.C【解析】【分析】根据集合补集的定义即可求解.【详解】 解:因为{}{}12,N 0,1,2A x x x =-≤≤∈=,{}1B =,所以{}0,2A B =,故选:C.37.C【解析】【分析】根据直线与抛物线的位置关系判断命题p 的真假,利用等轴双曲线的渐近线判断命题q 的真假,再根据含逻辑联结词命题真假的判断方法即可求解.【详解】若直线与抛物线的对称轴平行,则直线与抛物线只有一个交点,但是不算相切,故p 是假命题.因为等轴双曲线的实轴与虚轴相等,所以渐近线的斜率为±1,故q 为假命题.故p 且q 为假命题,p 或q 为假命题,()p ⌝或q 为真命题,p 且()q ⌝为假命题. 故选:C.38.C【解析】【分析】全称量词命题的否定为存在量词命题.【详解】全称量词命题的否定的方法是,全称改存在,否定结论.故命题p 的否定为n N ∃∈,33n n ≤.故选:C39.C【解析】【分析】根据全称量词命题的否定是特称量词命题即可求解.【详解】“所有可以被5整除的整数,末位数字都是5”的否定是:存在可以被5整除的整数,末位数字不是5.故选:C.40.D【解析】【分析】由集合S 的描述确定其点元素,并判断该点元素与集合T 的关系,应用并运算求S T .【详解】依题意,(){}S =,而()T ∈,所以S T T ⋃=.故选:D.41.B【解析】【分析】根据必要不充分条件的定义,前面推不出后面,后面推出前面,即可得到答案;【详解】若A B =∅,则A ,B 没有公共元素,A ,B 不一定是空集;若A =∅或B =∅,则A B =∅.故“A B =∅”是“A =∅或B =∅”的必要不充分条件.故选:B42.C【解析】【分析】直接求出U A .【详解】 因为集合{14}{0,1,2,3}U x x =∈-<<=N∣,集合{0,1}A =,所以{2,3}U A =. 故选:C.43.A【解析】【分析】根据一元二次不等式的解法求集合M ,运用集合间的运算直接求解.【详解】{}{}2|5+40|14M x x x x x =-<=<<,所以{}2,3M N =,故选:A .44.A【解析】【分析】根据命题,p q 的真假,可判断,p q ⌝⌝ 的真假,再根据 “或且非”命题真假的判断方法,可得答案.【详解】设sin ,0,1cos 0y x x x y x '=->=-≥ ,故sin ,0y x x x =->为增函数,则sin 0sin00x x ->-=,故命题:(0,)p x ∀∈+∞,sin 0x x ->为真命题,则p ⌝为假命题,因为2221a +≥> ,故命题:R q a ∀∈,()22()log a f x x +=在定义域上是增函数为真命题,q ⌝为假命题,所以p q ∧为真命题,p q ⌝∧为假命题,p q ∧⌝为假命题,p q ∨为真命题,则()p q ⌝∨为假命题,故选:A45.C【解析】【分析】根据B A ⊆3=m =,根据集合元素的互异性求得答案.【详解】由B A ⊆3=m =,3=时,9m = ,符合题意;m =时,0m =或1m =,但1m = 时,{}1,1B =不合题意,故m 的值为0或9,故选:C46.A【解析】【分析】直接利用并集的定义求解.【详解】解:因为集合{}0,1,2,3A =,{}2B x x =∈>Z ,所以A B ⋃=N .故选:A47.B【解析】【分析】判断命题p 、q 的真假,利用复合命题的真假可得出合适的选项.【详解】对于命题p ,取0x =,53y π=,则sin 0sin x y =>=x y <,p 为假命题, 对于命题q ,R a ∀∈,222a +≥,则函数()()22log a f x x +=在定义域内为增函数,q 为真命题.所以,p q ∧、p q ∧⌝、()p q ⌝∨均为假命题,p q ⌝∧为真命题.故选:B.48.C【解析】【分析】根据充分,必要条件的定义判断即可.【详解】对于p ,如果x =1.5,则q 不能成立,如果11x -≤≤ ,则x 必然在[]1,2-- 区间内,因此p 为q 的必要不充分条件;故选:C.49.B【解析】【分析】根据集合交并补的运算规则运算即可.【详解】U A 就是整数中去掉0,1剩下的那些数,∈ (){}1,2U A B ⋂=-.故选:B.50.B【解析】【分析】由条件推结论可判断充分性,由结论推条件可判断必要性.由3x <不能推出13x ,例如2x =-,但13x 必有3x <,所以p :3x <是q :13x 的必要不充分条件.故选:B.51.B【解析】【分析】由sin cos αα=得ππ4k α=+,再根据必要条件,充分条件的定义判断即可. 【详解】解:当sin cos αα=时,ππ4k α=+,k ∈Z , 反之,当π2π4k α=+,k ∈Z 时,sin cos αα=, 所以“sin cos αα=”是“π2π4k α=+,k ∈Z ”的必要不充分条件. 故选:B52.D【解析】【分析】按照有关定义以及数学期望和方差的计算公式即可.【详解】对于A ,已知随机变量14,3X B ⎛⎫ ⎪⎝⎭,则()14433E X =⨯=,故A 错误; 对于B ,根据互斥事件和对立事件的定义,“A 与B 是互斥事件”并不能推出“A 与B 互为对立事件”,相反“A 与B 互为对立事件”必能推出“A 与B 是互斥事件”,故B 错误;对于C ,根据方差的计算公式,()()234D X D X -=,故C 错误;对于D ,根据正态分布的对称性,随机变量()24,X N σ,()60.85P X ≤=, 所以()20.15P X ≤=,所以()240.35P X <≤=,故选:D.53.B【解析】【分析】推导出命题p 是真命题,命题q 是假命题,从而p q ∧是假命题,p q ∨是真命题,p q ⌝∧是假命题,p q ⌝∨是假命题.【详解】因为命题:1p Q ∈是真命题, 因为函数()f x=的定义域为()1,+∞,所以命题:q 函数()f x =的定义域是[)1,+∞是假命题,所以在A 中,p q ∧是假命题,故A 错误;在B 中,p q ∨是真命题,故B 正确;在C 中,p q ⌝∧是假命题,故C 错误;在D 中,p q ⌝∨是假命题,故D 错误.故选:B .54.A【解析】【分析】根据给定条件,判断互逆关系的两个命题真假,再结合充分条件、必要条件的定义判断作答.【详解】因1,x y =224x y +≥成立,即“224x y +≥”不能推出“2x ≥且2y ≥”, 而当2x ≥且2y ≥时,22222284x y +≥+=≥,即“2x ≥且2y ≥”能推出“224x y +≥”, 所以“224x y +≥”是“2x ≥且2y ≥”的必要不充分条件.故选:A55.B【解析】【分析】利用充分条件、必要条件的定义结合向量相等与其模相等的意义直接判断作答.【详解】 当a b =时,因向量a ,b 的方向不一定相同,则a 与b 不一定相等,当a b =时,必有a b =, 所以“a b =”是“a b =”的必要不充分条件.故选:B56.A【解析】【分析】由交集的运算直接求解即可.【详解】因为()0,B =+∞,所以{}1,4A B ⋂=.故选:A57.A【解析】【分析】列举出满足条件的非空集合A ,可得结果.【详解】由题意可知,满足条件的非空集合A 有:{}4、{}5、{}4,5,共3个.故选:A.58.A【解析】【分析】结合三角函数的性质,利用充分性与必要性的定义,可得出答案.【详解】A 是△ABC 的三个内角,()0,πA ∴∈当sin A <时,由()0,πA ∈,可得π03A <<或2ππ3A <<,所以“3A π<”是“sin A <”的充分不必要条件. 故选:A59.A【解析】【分析】直接利用交集的定义求解.【详解】解:因为集合{}4,5,6,8A =,{}3,5,7,8B =,所以A B ={}5,8.故选:A60.C【解析】【分析】根据相似三角形的性质,结合充分条件、必要条件的判定方法,即可求解.【详解】根据相似三角形的性质得,由“两个三角形相似”可得到“两个三角形三边成比例”,即充分性成立;反之:由“两个三角形三边成比例”可得到“两个三角形相似”,即必要性成立,所以“两个三角形相似”是“两个三角形三边成比例”的充分必要条件.故选:C.61.A【解析】【分析】先根据对数的单调性求出集合B ,再求交集.【详解】由2log 2x <可得,04x <<,所以{}04B x x =<<又{}1012A =-,,,,{}12A B ⋂=,62.D【解析】【分析】根据给定条件,举例判断面面位置关系的命题,再结合充分条件、必要条件的定义判断作答.【详解】长方体1111ABCD A B C D -中,平面ABCD ,平面11ABB A 分别视为平面α,β,直线CD ,11A B 分别为直线l ,m ,显然有l //m ,而α与β相交,即l //m 不能推出//αβ;长方体1111ABCD A B C D -中,平面ABCD ,平面1111D C B A 分别视为平面α,β,直线CD ,11A D 分别为直线l ,m ,显然有//αβ,而l 与m 是异面直线,即//αβ不能推出l //m ,所以“l //m ”是“//αβ”的既不充分也不必要条件.故选:D63.D【解析】【分析】先化简全集,再根据集合的运算求解即可.【详解】2{|760}{1,2,3,4,5,6}U x N x x =∈-+≤=,则{2,5,6}U A =,所以(){2,4,5,6}U A B ⋃=.故选:D64.C【解析】分别化简集合A ,B ,再取交集即可.【详解】()(){}[]4304,3A x x x =+-≤=-, 由()20.50.5l 5og 12log 0-->-=x .,又函数0.5log y x =在定义域上单调递减, 得210.5410x x -⎧-<=⎨->⎩,解得:14x <<,即()(]1,51,3B A B =⇒⋂=, 故选:C.65.D【解析】【分析】由全称命题的否定可得出结论.【详解】命题p 为全称命题,该命题的否定为:p x ⌝∃∈R ,ln 10x x -+≥,故选:D.66.C【解析】【分析】求出函数ln y x =的定义域可得集合B ,再利用交集、补集的定义计算作答.【详解】因集合{R|2}A y y =∈>,则R (,2]A =-∞,函数ln y x =有意义,有0x >,则(0,)B =+∞,所以R ()(0,2]A B ⋂=.故选:C67.C【解析】【分析】先求解集合Q 中的不等式,结合集合的交集、补集运算,即得解【详解】由题意,2{|4}{|2Q x R x x x =∈≥=≥或2}x故{|22}R Q x x =-<<则(){|12}[1,2)R P Q x x =≤<=故选:C68.C【解析】【分析】根据绝对值的意义解出集合M ,根据指数函数的性质解出集合N ,结合集合之间的关系即可得出结果.【详解】 由20y x =-≤,得M={y |y ≤0}, 由1()07x y =>,得N ={y |y >0},所以{}0R N y y =≤, 所以R M N =故选:C .69.B【解析】【分析】先判定命题p 和q 的真假,再结合复合命题的真假判定方法,即可求解.【详解】当2,x k k Z π=∈,可得cos 1x =,所以命题“:p x R ∀∈,cos 1x <”为假命题,则p ⌝为真命题;当1x =时,可得|ln |0x =,所以命题“:q x R +∃∈,|ln |0x ≤”为真命题,q ⌝为假命题, 所以命题“p q ∧”,“p q ∧⌝”,“()p q ⌝∨”为假命题,“p q ⌝∧”为真命题.故选:B.70.D【解析】【分析】利用线面平行垂直的判定定理及性质定理判断即可.【详解】由题,若m α∥,则m 与平面β,可以平行,相交或者m 在平面内,故充分性不满足; 若m β⊥,则m 可以平行α,也可包含于α,故必要性不满足.故选:D71.B【解析】【分析】解不等式确定集合A ,然后由集合交集的定义计算.【详解】由已知{|01}A x x =<<,所以1{|1}2A B x x =<<. 故选:B .72.A【解析】【分析】分别求出集合A ,B ,根据集合的交集和补集运算得出答案.【详解】由201x x +≤-,则()()210x x +⋅-≤解得:21x .[)202,11x A x x ⎧⎫+∴=≤=-⎨⎬-⎩⎭,{}()2201,2B x x x =--<=-, R C A ={2x x <-或}1x ≥,()R C A B ⋂=[)1,2.故选:A.73.C【解析】【分析】根据集合补集的定义即可求解.【详解】解:因为{}{}12,0,1,2A x x x N =-≤≤∈=,{}1B =,所以{}0,2A B =,故选:C.74.A【解析】【分析】根据集合M 的描述,判断集合N 中元素与集合M 的关系,再由集合的交运算求M N ⋂【详解】由题设,1,3,5M ∈,2,4M ∉,所以{1,3,5}MN =.故选:A75.B【解析】【分析】根据函数的奇偶性与单调性判断命题的充分必要性.【详解】由函数()3f x x x =+,则()()3f x x x f x -=--=-, 则函数()f x 为奇函数,且在R 上单调递增,又()()120f a f a ++>,得()()()122f a f a f a -+>=-,故12a a +>-,解得13a >-, 故1a >-是()()120f a f a ++>的必要不充分条件,故选:B.76.B【解析】【分析】先求出集合A ,再求两集的交集【详解】 由2x <,得22x -<<,所以{}22A x x =-<<,因为{}2,1,0,1,2B =--,所以A B ={}1,0,1-,故选:B77.B【解析】【分析】先表示出圆心和半径,利用圆心到直线的距离等于半径,结合充分必要条件的判断即可求解.【详解】()2211x y -+=,圆心()1,0,半径为1,由直线430x y m ++=与圆2220x y x +-=相切得1=,解得1m =或9-,故“直线430x y m ++=与圆2220x y x +-=相切”是“1m =”的必要不充分条件.故选:B.78.B【解析】【分析】求出2263x x +的解集,看和2263x x +的推出关系,即得答案.【详解】由2263x x +,得97x -,不能推出||7x ,由||7x ,得77x -,能推出97x -,故“2263x x +”是“||7x ”的必要不充分条件,故选:B79.A【解析】【分析】先写出集合B ,再按照交集运算.{}16B x x =≤≤,则A B ={}135,,.故选:A.80.D【解析】【分析】求得(){}1,0M =-,证明函数()ln 2y x =+过点()1,0-,可得M N ⊆,即可求出答案.【详解】解:()(){}(){}22,101,0M x y x y =++==-, 因为当1x =-时,()ln 2ln10x +==,所以函数()ln 2y x =+过点()1,0-,所以M N ⊆,所以M N N ⋃=.故选:D.81.A【解析】【分析】根据不等式的解法求得集合,A B ,再结合集合交集的运算,即可求解.【详解】 由集合{}12102A x x x x ⎧⎫=->=>⎨⎬⎩⎭, 又由不等式23180x x --<,即(3)(6)0x x +-<,解得36x -<<,即{}|36B x x =-<<, 所以11|6,622A B x x ⎧⎫⎛⎫⋂=<<=⎨⎬ ⎪⎩⎭⎝⎭. 故选:A.82.C【解析】利用集合的并集和补集运算求解.【详解】因为集合{1,1}R =-,{4,5}Q =,所以{}1,1,4,5R Q ⋃=-,因为全集{1,0,1,3,4,5,6}U =-,所以()U R Q ⋃={0,3,6},故选:C83.B【解析】【分析】由绝对值不等式及一元二次不等式的解法求出集合A 和B ,然后根据交集的定义即可求解.【详解】解:由题意,集合{}{}|44,3,2,1,0,1,2,3A x x x Z =-<<∈=---,{}{24|2B y y y y =>=<-或}2y >, 所以{}3,3A B ⋂=-,故选:B.84.AB【解析】【分析】先解出不等式260x x --<,再按照充分不必要条件求解.【详解】由260x x --<得23x -<<,因此,若“260x x --<”是“4a x <<”的充分不必要条件,则2a ≤-.故选:AB.85.AC【解析】【分析】直接推导可判断A ;写出否命题取值验证可判断B ;特值法可判断C ;根据存在量词命题的否定可判断D.【详解】对于A 选项,11x x =-⇒=,所以不是充分条件;又111x x x ≠⇒≠±⇒≠,所以是必要不充分条件,A 选项正确;对于B 选项,“若6x y +≥,则x ,y 中至少有一个大于3”的否命题为“若6x y +<,则x ,y 都不大于3”.取4,1x y ==,显然为假命题,故B 选项错误;对于C 选项,取01x =-可知C 选项正确;命题“0x ∃<,220x x --<”的否定是“0x ∀<,220x x --≥”,故D 不正确,故选:AC.86.AC【解析】【分析】根据特称命题的否定是全称命题可求解.【详解】 由x a a -≥,可得x a a -≥或x a a -≤-可得2x a ≥或0x ≤.故命题“0x ∃>,x a a -<”的否定是“0x ∀>,x a a -≥”或“0x ∀>,2x a ≥或0x ≤”. 故选:AC87.BC【解析】【分析】先解出不等式恒成立对应的m 的范围,再按照充分不必要条件的定义进行判断.【详解】若关于x 的不等式210mx mx -+>对x R ∀∈恒成立,则 ()2040m m m >⎧⎪⎨--<⎪⎩或0m =,解得04m ≤<, 所以A 选项为充要条件,D 选项为必要不充分条件,B 、C 选项为充分不必要条件. 故选:BC.88.CD。
高一数学集合与常用逻辑用语试题1.设集合,,则A∪B=()A.[0,2]B.[1,2]C.[0,4]D.[-1,4]【答案】D【解析】由并集的含义,所以选D;【考点】1.并集的含义;2.已知集合,则.【答案】【解析】,而,因此【考点】集合的交运算;3.已知集合A={0,1,4},B={2,4},则A∪B=()A.{4}B.{0,1,2,4}C.{0,1,2}D.{0,2,4}【答案】B【解析】由并集的定义易得,.故选B.【考点】并集运算.4.(本小题满分12分)已知集合,,.若,试确定实数的取值范围.【答案】【解析】根据题意,可得集合A、B,由交集的意义可得A∩B,分析可得,若(A∩B)∩C=C,则C是A∩B的子集,进而分C是空集与C不是空集两种情况讨论,对得到的a的范围求并集可得答案.试题解析:由题意,得,∵∴当,即当,则,解得∴的取值范围是【考点】集合关系中的参数取值问题【方法点睛】解决含参数问题的集合运算问题:(1)已知两集合的关系求参数时,关键是将两集合的关系转化为元素间的关系,进而转化为参数满足的关系,解决这类问题常常要合理利用数轴、Venn图帮助分析,而且经常要对参数进行讨论.注意区间端点的取舍;(2)当题目中有条件B⊆A时,不要忽略B=的情况.5.(本小题满分8分)已知集合,,若能使成立的所有实数的集合是,求集合.【答案】(-∞,4].【解析】(I)先利用,转化为.由空集是任何集合的子集,需要对集合B是否为空集分类讨论。
当时,集合B中没有元素,m+1≥2m-1,当时,在借助数轴比较端点值,求解,一定要保证.试题解析:由得当时, m+1≥2m-1,得m≤2.当时,,解得2<m≤4.综上,m的取值范围是(-∞,4].【考点】1、并集与子集的关系;2、解不等式.【易错点晴】本题主要考查的是,在已知集合A前提下.需要对集合B讨论,即当时,因为空集是任何集合的子集,学生特别容易忽略对空集的讨论,若学生没有讨论,则至多得2分,另外当时,可以借助数轴,找出参数的范围,尤其注意是否带上端点值,最后对和的结果进行综述.6.给出下列说法:①空集没有子集;②任何一个集合必有两个或两个以上的子集;③空集是任何一个集合的真子集;④若空集是集合A的真子集,则A一定不是空集。
1**个人辅导中心(数学辅导)内部专用同步习题高三一轮复习专用1.1 集合的概念及其运算(1) 例1.选择题:(1)不能形成集合的是( ) (A)大于2的全体实数 (B)不等式3x -5<6的所有解(C)方程y=3x+1所对应的直线上的所有点 (D)x 轴附近的所有点(2)设集合 ,则下列关系中正确的是( ) (A)x A(B)x A(C){x}∈A (D){x} A(3)设集合 ,则( ) (A)M=N (B)M N (C)M N(D)M ∩N=例2.已知集合 ,试求集合A 的所有子集.例3.已知A={x |-2<x <5},B={x |m+1≤x ≤2m -1},B ≠ ,且B A ,求m 的取值范围.例4*.已知集合A={x |-1≤x ≤a},B={y |y=3x -2,x ∈A},C={z |z=x2,x ∈A},若C B ,求实数a 的取值范围.1.2 集合的概念及其运算(2) 例1.(1)设全集U={a ,b ,c ,d ,e}.集合M={a ,b ,c},集合N={b ,d ,e},那么( UM)∩( UN)是( ) (A) (B){d}(C){a ,c} (D){b ,e}(2)全集U={a ,b ,c ,d ,e},集合M={c ,d ,e},N={a ,b ,e},则集合{a ,b}可表示为( ) (A)M ∩N (B)( UM)∩N (C)M ∩( UN)(D)( UM)∩( UN)例2.如图,U 是全集,M 、P 、S 为U 的3个子集,则下图中阴影部分所表示的集合为( )(A)(M ∩P)∩S (B)(M ∩P)∪S (C)(M ∩P)∩( US)(D)(M ∩P)∪( US)例3.(1)设A={x |x2-2x -3=0},B={x |ax=1},若A ∪B=A ,则实数a 的取值集合为____; (2)已知集合M={x |x -a=0},N={x |ax -1=0},若M ∩N=M ,则实数a 的取值集合为____. 例4.定义集合A -B={x |x ∈A ,且x B}.(1)若M={1,2,3,4,5},N={2,3,6}则N -M 等于( ) (A)M (B)N (C){1,4,5 } (D){6}(2)设M 、P 为两个非空集合,则M -(M -P)等于( ) (A)P (B)M ∩P (C)M ∪P (D)M例5.全集S={1,3,x3+3x2+2x},A={1,|2x -1|}.如果 sA={0},则这样的实数x 是否存在?若存在,求出x ;若不存在,请说明理由.1.3 简单的逻辑联结词例1.用“p 或q ”、“p 且q ”或“非p ”填空, ①命题“矩形的对角线互相垂直平分”是________形式2②命题“Q 是____形式③命题“1≥2”是____形式. 其中真命题的序号为____. 例2.给出下列命题:①“若k >0,则关于x2+2x -k=0的方程有实根”的逆命题; ②“若a >b ,则2a >2b -1”的否命题; ③“若A ∪B=B ,则A B ”的逆否命题;④命题p :“x ,y ∈R ,若x2+y2=0,则x ,y 全为0”的非命题 其中真命题的序号是____.例3.若命题“p 或q ”是真命题,命题“p 且q ”是假命题,则( ) (A)命题p 是假命题(B)命题q 是假命题(C)命题p 与命题q 真值相同(D)命题p 与命题“非q ”真值相同例4.(1)命题p :“有些三角形是等腰三角形”,则 p 是( ) (A)有些三角形不是等腰三角形 (B)有些三角形可能是等腰三角形 (C)所有三角形不是等腰三角形 (D)所有三角形是等腰三角形 (2)已知命题p : x ∈R ,sinx ≤1,则( ) (A) p : x ∈R ,sinx ≥1 (B) p : x ∈R ,sinx ≥1 (C) p : x ∈R ,sinx >1(D) p : x ∈R ,sinx >11.4 充分条件、必要条件与命题的四种形式 例1.设集合 “a=1”是“A ∩B ≠ ”的( ) (A)充分不必要条件 (B)必要不充分条件 (C)充要条件(D)既不充分又不必要条件例2.(1)条件p :“直线l 在y 轴上的截距是在x 轴的截距的2倍”;条件q :“直线l 的斜率是-2”,则p 是q 的( )(A)充分不必要条件 (B)必要不充分条件 (C)充分必要条件 (D)既不充分也不必要条件 (2)“ ”是“直线(m+2)x+3my+1=0与直线(m -2)x+(m+2)y -3=0相互垂直”的( ) (A)充分必要条件(B)充分而不必要条件 (C)必要而不充分条件(D)既不充分也不必要条件例3.下列各小题中,p 是q 的充分必要条件的是①p :m <-2,或m >6;q :y=x2+mx+m+3有两个不同的零点 ② ;q :y=f(x)是偶函数③p :cos α=cos β; q :tan α=tan β ④p :A ∩B=A ; q : UB UA (A)①②(B)②③(C)③④(D)①④例4.已知 p 是q 的充分不必要条件,则p 是 q 的( ) (A)充分不必要条件 (B)必要不充分条件(C)充要条件(D)既不充分也不必要条件第一章 集合与常用逻辑用语 1.1 集合的概念及其运算(1)例1分析:(1)集合中的元素是确定的、互异的,又是无序的;(2)注意“∈”与“ ”以及x 与{x}的区别;(3)可利用特殊值法,或者对元素表示方法进行转换.解:(1)选D .“附近”不具有确定性.(2)选D .(3)选B .方法一: 故排除(A)、(C),又 ,故排除(D). 方法二:集合M 的元素 集合N 的元素.而2k +1为奇数,k +2为全体整数,因此M N . 小结:解答集合问题,集合有关概念要准确,如集3合中元素的三性;使用符号要正确;表示方法会灵活转化.例2分析:本题是用{x |x ∈P}形式给出的集合,注意本题中竖线前面的代表元素x ∈N .解:由题意可知(6-x)是8的正约数,所以(6-x)可以是1,2,4,8;可以的x 为2,4,5,即A={2,4,5}.∴A 的所有子集为 ,{2},{4},{5},{2,4},{2,5},{4,5},{2,4,5}.小结:一方面,用{x |x ∈P}形式给出的集合,要紧紧抓住竖线前面的代表元素x 以及它所具有的性质P ;另一方面,含n(n ∈N*)个元素的集合A 的所有子集的个数是: 个.例3分析:重视发挥图示法的作用,通过数轴直观地解决问题,注意端点处取值问题. 解:由题设知 , 解之得,2≤m <3.小结:(1)要善于利用数轴解集合问题.(2)此类题常见错误是:遗漏“等号”或多“等号”,可通过验证“等号”问题避免犯错.(3)若去掉条件“B ≠ ”,则不要漏掉 A 的情况.例4*分析:要首先明确集合B 、C 的意义,并将其化简,再利用C B 建立关于a 的不等式. 解:∵A =[-1,a], ∴B={y |y=3x -2,x ∈A}, B=[-5,3a -2](1)当-1≤a <0时,由C B ,得a2≤1≤3a -2无解; (2)当0≤a <1时,1≤3a -2,得a=1; (3)当a ≥1时,a2≤3a -2得1≤a ≤2 综上所述,实数a 的取值范围是[1,2].小结:准确理解集合B 和C 的含义(分别表示函数y=3x -2,y=x2的值域,其中定义域为A)是解本题的关键.分类讨论二次函数在运动区间的值域是又一难点.若结合图象分析,结果更易直观理解. 1.2 集合的概念及其运算(2)例1分析:注意本题含有求补、求交两种运算.求补集要认准全集,多种运算可以考虑运算律. 解:(1)方法一:∵ UM={b ,c}, UN={a ,c} ∴( UM)∩( UN)= ,答案选A 方法二:( UM)∩( UN)= U(M ∪N)= ∴答案选A方法三:作出文氏图,将抽象的关系直观化. ∴答案选A(2)同理可得答案选B小结:交、并、补有如下运算法则U(A ∩B)=( UA)∪( UB);A ∩(B ∪C)=(A ∩B)∪(A ∩C)U(A ∪B)=( UA)∩( UB);A ∪(B ∩C)=(A ∪B)∩(A ∪C)例2分析:此题为通过观察图形,利用图形语言进行符号语言的转化与集合运算的判断.解:∵阴影中任一元素x 有x ∈M ,且x ∈P ,但x S ,∴x ∈ US .由交集、并集、补集的意义. ∴x ∈(M ∩P)∩( US)答案选D .小结:灵活进行图形语言、文字语言、符号语言的转化是学好数学的重要能力.例3解:(1)由已知,集合A={-1,3},∵A ∪B=A 得B A ∴分B= 和 两种情况. 当B = 时,解得a=0; 当 时,解得a 的取值 综上可知a 的取值集合为 (2)由已知, ∵M ∩N=M M N 当N= 时,解得a=0;M={0} 即M ∩N ≠M ∴a=0舍去 当 时,解得综上可知a 的取值集合为{1,-1}.小结:(Ⅰ)要重视以下几个重要基本关系式在解题时发挥的作用:(A ∩B) A ,(A ∩B) B ;(A ∪B) A ,(A ∪B) B ;A ∩ U A= ,A ∪ UA=U ;A ∩B=A A B ,A ∪B=B A B 等.(Ⅱ)要注意 是任何集合的子集.但使用时也要看清题目条件,不要盲目套用.例4解:(1)方法一:由已知,得N -M={x |x ∈N ,且x M}={6},∴选D 方法二:依已知画出图示 ∴选D .(2)方法一:M -P 即为M 中除去M ∩P 的元素组成的集合,故M -(M -P)则为M 中除去不为M ∩P 的元素的集合,所以选B .方法二:由图示可知M=(M ∩P)∪(M -P) 选B .4方法三:计算(1)中N -(N -M)={2,3},比较选项知选B .小结:此题目的检测学生的阅读理解水平及适应、探索能力,考查学生在新情境中分析问题解决问题的能力.事实证明,虽然这类问题内容新颖,又灵活多样,但其涉及的数学知识显得相对简单和基础,要勇于尝试解题.例5*解:假设这样的x 存在,∵ SA={0},∴0∈S ,且|2x -1|∈S .易知x3+3x2+2x =0,且|2x -1|=3, 解之得,x=-1.当x=-1时,S={1,3,0},A={1,3},符合题设条件.∴存在实数x=-1满足 S A={0}. 1.3 简单的逻辑联结词例1分析:逻辑联结词“或”“且”“非”可类比集合的“并”“交”“补”的关系. 解:①p 且q ②非p ③p 或q 真命题的序号为②③.小结:(1)逻辑联结词“或”“且”“非”可类比集合的“并”“交”“补”的关系A ∪B={x |x ∈A 或x ∈B}; A ∩B={x |x ∈A 且x ∈B}SA={x |x ∈S 且x A}(2)逻辑联结词“或”的用法,一般有两种解释:一是“不可兼有”,另一是“可兼有”.数学书籍中一般采用后一种解释.即“或此或彼或兼”三种情形.注意“可兼有”并不意味“一定兼有”.例2分析:(1)四种命题的相互关系如下(2)命题的非命题即为命题的否定形式,不等于否命题.解:首先写出相应命题:①若关于x 的方程x2+2x -k=0有实根,则k >0 ②若a ≤b ,则2a ≤2b -1; ③若A B ,则A ∪B ≠B .④x ,y ∈R ,若x2+y2=0,则x ,y 不全为0 分别判断知①若关于x 的方程x2+2x -k=0有实根,则k >-1,故命题为假; ②取 ,命题不成立;③由互为逆否命题同真同假,故③可直接判断原命题,知命题为真;④由实数性质知,命题不成立.综上知真命题序号为③.小结:(1)互为逆否命题同真同假,故③可直接判断原命题,此种等价性常被认为是反证法理论基础,尽管此说法不完全对.(2)“若p 则q ”形式命题它的否定形式不等于否命题.否定形式是对命题结论的否定;否命题是将命题题设、结论分别否定.(3)一些基本逻辑关系式可类比集合运算律: ① (p ∨q)=( p)∧( q)…… U(A ∪B)=( UA)∩( UB) ② (p ∧q)=( p)∨( q) …… U (A ∩B)=( UA)∪( UB)(其中“p ∨q ”表示“p 或q ”,“p ∧q ”表示“p 且q ”). 例3分析:要分清命题的构成,准确了解逻辑联结词“或”、“且”、“非”的含义.解:∵p 或q 为真,∴p 或q 中至少有一个为真. 又∵“p 且q ”为假,∴p 、q 中一真一假. 综上可知,答案为(D).例4分析:存在性命题的否定命题与全称性命题的否定命题互为相反非命题.解:(1)命题p :“存在x ∈A 使P(x)成立”, p 为:“对任意x ∈A ,有P(x)不成立”. 故命题p :“有些三角形是等腰三角形”, 则 p 是“所有三角形不是等腰三角形”; 答案选C(2)命题p :“任意x ∈A 使P(x)成立”, p 为:“存在x ∈A ,有P(x)不成立”.故命题p : x ∈R ,sinx ≤1,则 p 为: x ∈R ,sinx >1; 答案选C1.4 充分条件、必要条件与命题的四种形式 例1分析:解此类题首先确定命题的前件与后件,可利用划出主谓宾的方法,即:“条件M ‖是条件N 的××条件.”得出M 是条件.即为命题前件、N 为后件,再分别判别. 解:“a=1”是条件,“A ∩B ≠ ”是结论. 由题意得A={x |-1<x <1},B={x |1-a <x <a +1}. (1)验证充分性由a =1得A={x |-1<x <1},B={x |0<x <2}. 则A ∩B={x |0<x <1}≠ 成立,即充分性成立. (2)验证必要性A ∩B ≠ ,取 满足,但是a ≠1,所以必要性不成立.5综合得“a=1”是:A ∩B ≠ 的充分非必要条件, 所以 答案选A .例2分析:以几何素材为载体,考查充要条件,要注意几何问题中的特殊位置关系及其相对应的数量关系.解:(Ⅰ)条件p 中的截距为零时,斜率可以为任意值,故答案选B ;(Ⅱ)当 时,两直线斜率乘积为-1,从而可得两直线垂直;当m=-2时,两直线一条斜率为0,一条斜率不存在,但两直线仍然垂直.因此 是题目中给出的两条直线垂直的充分但不必要条件. 故答案选B ;小结:解析几何中要注意一些特殊情况的数量关系问题.如截距相等要注意为0的特殊情况,对于两条直线垂直的充要条件分为①k1,k2都存在时,k1•k2=-1;②k1,k2中有一个不存在,另一个为零.类似情况,不要忽略,要注意积累.例3分析:本题以充要条件知识为载体,考查一元二次不等式知识、偶函数、集合及简单的三角知识. 解:①中:q 成立.则△=m2-4(m +3)>0,解得m <-2,或m >6.可知①满足条件;②中:p 变形为f(-x)=f(x).可知是y=f(x)是偶函数;反之,y=f(x)是偶函数时,f(x)可以为0.如y=x2(x ∈R)是偶函数,但是 不存在,即p 为q 的充分不必要条件;③中:p :cos α=cos β不能推出q 成立.如: ∴p 成立,而q 不成立;反之q 成立不能推出p 成立.如: ∴q 成立,而p 不成立; ④中:p 成立,则A B ,q 成立; 同样,q 成立,则A B ,即p 成立 所以,p 是q 的充要条件. 所以答案选D小结:充要条件的判断,首先要理解条件和结论,其次掌握三种条件的定义及判别方法,同时要注意不同知识点的应用与渗透.例4分析:可以利用四种命题关系判断 解:依题意 p q ,且q p ,由联系四种命题可知“ p q ”为原命题真, ∴ q p 也为真(逆否命题). 同理p q .∴p 是 q 的必要不充分条件. 所以答案选B .小结:充分利用原命题与其逆否命题的等价性是常见的思想方法.。
专题一集合与逻辑关系词一、选择题(本大题共39小题,共195.0分)1.下面几组对象可以构成集合的是()A. 视力较差的同学B. 2013年的中国富豪C. 充分接近2的实数的全体D. 大于-2小于2的所有非负奇数【答案】D【解析】【分析】根据集合元素所具有的性质逐项判断即可.本题考查集合的定义、集合元素的性质,属基础题,理解相关概念是解决问题的关键.【解答】解:集合的元素具有“确定性”、“互异性”、“无序性”,选项A、B、C均不满足“确定性”,故排除A、B、C.故选D.2.下列不属于集合中元素的特性的是()A. 确定性B. 真实性C. 互异性D. 无序性【答案】B【解析】解:集合元素有三个特性:确定性,互异性,无序性,故选:B集合元素有三个特性,确定性,互异性,无序性,分析四个答案,可得结论.本题考查的知识点是集合的含义,其中熟练掌握集合元素的三个特性,是解答的关键.3.已知集合M={x∈Z|-2<x≤1},则M的元素个数为()A. 4B. 3C. 7D. 8【答案】B【解析】【分析】本题考查集合中元素个数的求法,考查列举法表示集合等基础知识,考查运算求解能力,考查函数与方程思想,是基础题,利用列举法表示集合M,由此能出M的元素个数.【解答】解:∵集合M={x∈Z|-2<x≤1}={-1,0,1},∴M的元素个数为:3.故选B.4.下列五个写法:①{0}∈{1,2,3};②∅⊆{0};③{0,1,2}⊆{1,2,0};④0∈∅;⑤0∩∅=∅,其中错误写法的个数为()A. 1B. 2C. 3D. 4【答案】C【解析】解:对于①,“∈”是用于元素与集合的关系故①错对于②,∅是任意集合的子集,故②对对于③,集合中元素的三要素有确定性、互异性、无序性故③对对于④,因为∅是不含任何元素的集合故④错对于⑤,因为∩是用于集合与集合的关系的,故⑤错故选:C.据“∈”于元素与集合;“∩”用于集合与集合间;判断出①⑤错,∅是不含任何元素的集合且是任意集合的子集判断出②④的对错;据集合元素的三要素判断出③对本题考查集合部分的一些特定符号、一些特殊的集合、集合中元素的三要素.5.已知集合P={x|y=√x+1},集合Q={y|y=√x+1},则P与Q的关系是()A. P=QB. P⊆QC. Q⊆PD. P∩Q=∅【答案】C【解析】解:依题意得,P={x|x+1≥0}={x|x≥-1},Q={y|y≥0},∴Q⊆P,故选:C.通过求集合P中函数的定义域化简集合p,通过求集合Q中函数的值域化简集合Q,利用集合间元素的关系判断出集合的关系.本题考查了集合的表示方法,进行集合间的元素或判断集合间的关系时,应该先化简各个集合,再借助数轴或韦恩图进行运算或判断.6.把集合{x|x2-4x-5=0}用列举法表示为()A. {x=-1,x=5}B. {x|x=-1或x=5}C. {x2-4x-5=0}D. {-1,5}【答案】D【解析】解:根据题意,解x2-4x-5=0可得x=-1或5,用列举法表示可得{-1,5};故选:D.根据题意,解x2-4x-5=0可得x=-1或5,即可得{x|x2-4x-5=0}={-1,5},即可得答案.本题考查集合的表示法,注意正确求解一元二次方程.7.已知集合P={0,2,4,6},集合Q={x∈N|x≤3},则P∩Q=()A. {2}B. {0,2}C. {0,1,2,3,4,6}D. {1,2,3,4,6}【答案】B【解析】【分析】本题考查了集合的表示和交集的运算,是个基础题,比较容易.【解答】解:∵P={0,2,4,6},Q={x∈N∣x≤3}={0,1,2,3},∴P∩Q={0,2},故选B.8.下列能表示集合的是()A. 很大的数B. 聪明的人C. 大于√2的数D. 某班学习好的同学【答案】C【解析】解:对于选项A:很大的数;B:聪明的人;D:学习好的同学;描述不够准确具体,元素不能确定,所以都不正确;选项C大于√2的数,故选C.从集合的定义入手,集合中的元素是确定的、互异的、无序的特征,判定选项的正误即可.本题考查了集合的确定性、互异性、无序性,集合的定义,属于基础题.9.下列表述正确的是()A. 0∈∅B. {0}∈∅C. {0}⊆∅D. ∅⊆{0}【答案】D【解析】根据元素和集合之间的关系进行判断即可.本题主要考查元素和集合关系的判断和表示,要正确理解空集的含义,比较基础.解:A.∅不含有任何元素,∴0∈∅错误.B.∅不含有任何元素,∴{0}∈∅错误.C.∅不含有任何元素,∴{0}⊆∅错误.D..∅不含有任何元素,∴∅⊆{0}正确.故选:D.10.设集合A={-1,0,1},B={x|x>0,x∈A},则B=()A. {-1,0}B. {-1}C. {0,1}D. {1}【答案】D【解析】解:∵A={-1,0,1},B={x|x>0,x∈A},∴B={1}.故选:D.直接由交集的运算性质计算得答案.本题考查了交集及其运算,熟练掌握交集的定义是解本题的关键,是基础题.11.已知集合A={x|x2-x-2≤0,x∈Z},则集合A非空子集的个数为()A. 14B. 15C. 16D. 17【答案】B【解析】解:∵集合A={x|x2-x-2≤0,x∈Z}={x|-1≤x≤2,x∈Z}={-1,0,1,2},∴集合A非空子集的个数为:24-1=15.故答案为:15.故选:B.先求出集合A={-1,0,1,2},由此能求出集合A非空子集的个数.本题考查集合的非空子集的个数的求法,考查子集、不等式性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.12.设集合A={x|x2-4x+3<0},B={x|-1<x<3},则A. A=BB. A⊇BC. A⊆BD. A⋂B=⌀【答案】C【解析】【分析】本题考查了一元二次不等式和集合的关系和运算,属于基础题.【解答】解:A={x|x2-4x+3<0}={x|1<x<3},可得A⊆B.故选C.13. 设集合A ={x |x 2-4x +3<0},B ={x |2x -3>0},则A ∩B =( )A. (-3,-32)B. (-3,32)C. (1,32)D. (32,3)【答案】D【解析】【分析】本题考查集合的交集及其运算,同时考查二次不等式的求解,解不等式求出集合A ,B ,结合交集的定义,可得答案. 【解答】解:∵集合A ={x |x 2-4x +3<0}=(1,3), B ={x |2x -3>0}=(32,+∞),∴A ∩B =(32,3), 故选D .14. 已知集合A ={1,2,3,4},B ={2,4,6,8},则A ∩B 中元素的个数为( )A. 1B. 2C. 3D. 4 【答案】B【解析】解:∵集合A ={1,2,3,4},B ={2,4,6,8}, ∴A ∩B ={2,4},∴A ∩B 中元素的个数为2. 故选:B .利用交集定义先求出A ∩B ,由此能求出A ∩B 中元素的个数.本题考查交集中元素个数的求法,是基础题,解题时要认真审题,注意交集定义的合理运用.15. 设集合A ={1,2,6},B ={2,4},C ={1,2,3,4},则(A ∪B )∩C =( )A. {2}B. {1,2,4}C. {1,2,4,6}D. {1,2,3,4,6} 【答案】B【解析】解:∵集合A ={1,2,6},B ={2,4},C ={1,2,3,4}, ∴(A ∪B )∩C ={1,2,4,6}∩{1,2,3,4}={1,2,4}. 故选:B .由并集定义先求出A ∪B ,再由交集定义能求出(A ∪B )∩C .本题考查并集和交集的求法,是基础题,解题时要认真审题,注意交集和交集定义的合理运用.16. 已知集合A ={x |x >-2},B ={x |x ≥1},则A ∪B =( )A. {x |x >-2}B. {x |-2<x ≤1}C. {x |x ≤-2}D. {x |x ≥1}【答案】A【解析】解:集合A ={x |x >-2},B ={x |x ≥1}, 则A ∪B ={x |x >-2}. 故选:A .根据并集的定义写出A ∪B .本题考查了并集的定义与应用问题,是基础题.17.已知集合A={x|x2-2x<0},B={x|-1<x<1},则A∪B=()A. (-1,1)B. (-1,2)C. (-1,0)D. (0,1)【答案】B【解析】解:集合A={x|x2-2x<0}={x|0<x<2},B={x|-1<x<1},则A∪B={x|-1<x<2}=(-1,2).故选:B.化简集合A,根据并集的定义写出A∪B.本题考查了集合的化简与运算问题,是基础题.18.已知全集U={1,2,3,4,5,6,7},集合A={1,3,5,6},则∁U A=()A. {1,3,5,6}B. {2,3,7}C. {2,4,7}D. {2,5,7}【答案】C【解析】解:∵全集U={1,2,3,4,5,6,7},集合A={1,3,5,6},∴∁U A={2,4,7}.故选:C.根据全集U以及A,求出A的补集即可.此题考查了补集及其运算,熟练掌握补集的定义是解本题的关键.19.命题“若a>b,则a+c>b+c”的逆命题是()A. 若a>b,则a+c≤b+cB. 若a+c≤b+c,则a≤bC. 若a+c>b+c,则a>bD. 若a≤b,则a+c≤b+c【答案】C【解析】解:命题“若a>b,则a+c>b+c”的逆命题是“若a+c>b+c,则a>b”.故选:C.根据命题“若p,则q”的逆命题是“若q,则p”,写出即可.本题考查了命题与它的逆命题的应用问题,是基础题.20.已知全集U={2,3,5,7,9},A={2,|a-5|,7},C U A={5,9},则a的值为()A. 2B. 8C. 2或8D. -2或8【答案】C【解析】解:U={2,3,5,7,9},C U A={5,9},∴A={2,|a-5|,7}={2,3,7},∴|a-5|=3,解得:a=2或8,故选:C.求出集合A中的元素,得到|a-5|=3,解出即可.本题考查了补集的定义,考查绝对值问题,是一道基础题.21.设全集U=R,集合A={x|x2-2x-3<0},B={x|x-1≥0},则图中阴影部分所表示的集合为()A. {x|x≤-1或x≥3}B. {x|x<1或x≥3}C. {x|x≤1}D. {x|x≤-1}【答案】D【解析】解:由图象可知阴影部分对应的集合为∁U(A∪B),由x2-2x-3<0得-1<x<3,即A=(-1,3),∵B={x|x≥1},∴A∪B=(-1,+∞),则∁U(A∪B)=(-∞,-1],故选:D.由阴影部分表示的集合为∁U(A∪B),然后根据集合的运算即可.本题主要考查集合的基本运算,利用Venn图确定集合的关系是解决本题的关键.22.已知全集U=R,集合A={x|x2>4},B={x|x+3≤0},则(C U A)∩B等于()x−1A. {x|−2≤x<1}B. {x|−3≤x<2}C. {x|−2≤x<2}D. {x|−3≤x≤2}【答案】A【解析】【分析】先分别求出集合A、B,从而求出C U A,由此能求出(C U A)∩B.本题考查补集、交集的求法,是基础题,解题时要认真审题,注意补集、交集定义的合理运用.【解答】解:∵全集U=R,集合A={x|x2>4}={x|x>2或x<−2},≤0}={x|−3≤x<1},B={x|x+3x−1∴C U A={x|−2≤x≤2},∴(C U A)∩B={x|−2≤x<1}.故选A.23.已知集合P={x|x2-2x≥0},Q={x|1<x≤2},则(∁R P)∩Q=()A. [0,1)B. (0,2]C. (1,2)D. [1,2]【答案】C【解析】解:由P中不等式变形得:x(x-2)≥0,解得:x≤0或x≥2,即P=(-∞,0]∪[2,+∞),∴∁R P=(0,2),∵Q=(1,2],∴(∁R P)∩Q=(1,2),故选:C.求出P中不等式的解集确定出P,求出P补集与Q的交集即可.此题考查了交、并、补集的混合运算,熟练掌握运算法则是解本题的关键.24.已知全集U={1,3,5,7},集合A={1,3},B={3,5},则如图所示阴影区域表示的集合为()A. {3}B. {7}C. {3,7}D. {1,3,5}【答案】B【解析】【分析】本题考查集合的求法,考查并集、补集、维恩图等基础知识,考查运算求解能力,考查集合思想,是基础题.先求出A∪B={1,3,5},阴影区域表示的集合为∁U(A∪B),由此能求出结果.【解答】解:∵全集U={1,3,5,7},集合A={1,3},B={3,5},∴A∪B={1,3,5},∴如图所示阴影区域表示的集合为:∁U(A∪B)={7}.故选B.25.下列语句不是命题的是()A. -3>4B. 0.3是整数C. a>3D. 4是3的约数【答案】C【解析】解:A,B,D都是表示判断一件事情,C无法判断,故选:C命题是表示判断一件事情的语句,根据定义分别判断即可.本题考查了命题的定义,属于基础题.26.命题“若a>b,则a-1>b-1”的逆否命题是()A. 若a<b,则a-1<b-1B. 若a-1>b-1,则a>bC. 若a≤b,则a-1≤b-1D. 若a-1≤b-1,则a≤b【答案】D【解析】解:命题“若a>b,则a-1>b-1”的逆否命题是“若a-1≤b-1,则a≤b”.故选:D.根据命题“若p则q”的逆否命题是“若¬q则¬p”,写出即可.本题考查了命题与它的逆否命题的应用问题,是基础题目.27.命题“若|x|+|y|=0,则x=0或y=0”的逆否命题是()A. 若|x|+|y|=0,则x=0且y=0B. 若|x|+|y|≠0,则x≠0或y≠0C. 若x=0或y=0,则|x|+|y|≠0D. 若x≠0且y≠0,则|x|+|y|≠0【答案】D【解析】【分析】本题主要考查了四种命题的逆否关系,注意命题的否定与否定命题的关系,是基础题,直接对原命题进行逆否命题变换即可求得答案.【解答】解:命题“若|x|+|y|=0,则x=0或y=0”的逆命题为若x=0或y=0,则|x|+|y|=0,此命题的否定为若x≠0且y≠0,则|x|+|y|≠0 .故选D.28.命题P:“若x>1,则x2>1”,则命题P:以及它的否命题、逆命题、逆否命题这四个命题中真命题的个数为()A. 1B. 2C. 3D. 4【答案】B【解析】解:命题P:“若x>1,则x2>1”,它是真命题;它的否命题是:“若x≤1,则x2≤1”,它是假命题;逆命题是:“若x2>1,则x>1”,它是假命题;逆否命题是:“若x2≤1,则x≤1”,它是真命题;综上,这四个命题中真命题的个数为2.故选:B.根据四种命题之间的关系,分别写出原命题P的否命题、逆命题和逆否命题,再判断它们的真假性.本题考查了四种命题之间的关系和命题真假性的判断问题,是基础题.29.“若x,y∈R,x2+y2=0,则x,y全为0”的逆否命题是()A. 若x,y∈R,x,y全不为0,则x2+y2≠0B. 若x,y∈R,x,y不全为0,则x2+y2=0C. 若x,y∈R,x,y不全为0,则x2+y2≠0D. 若x,y∈R,x,y全为0,则x2+y2≠0【答案】C【解析】解:依题意得,原命题的题设为若x2+y2=0,结论为则x,y全为零.逆否命题:若x,y不全为零,则x2+y2≠0,故选C.由已知可得,原命题的题设P:x2+y2=0,结论Q:x,y全为零.在根据原命题依次写出否命题、逆命题、逆否命题.否命题是若非P,则非Q;逆命题是若Q,则P;逆否命题是若非去,则非P写四种命题时应先分清原命题的题设和结论,在写出原命题的否命题、逆命题、逆否命题,属于基础知识30.“若x2=1,则x=1”的否命题为()A. 若x2≠1,则x=1B. 若x2=1,则x≠1C. 若x2≠1,则x≠1D. 若x≠1,则x2≠1【答案】C【解析】解:同时否定条件和结论即得命题的否命题,即若x2≠1,则x≠1,故选:C根据否命题的定义进行判断.本题主要考查四种命题的判断,根据否命题的定义是解决本题的关键.31.下列命题是真命题的为()A. 若1x =1y,则x=y B. 若x2=1,则x=1C. 若x=y,则√x=√yD. 则x<y,则x2<y2【答案】A【解析】【分析】本题主要考查命题的真假,属于基础题.【解答】解:A,显然成立,故是真命题;B,x=-1或x=1,故是假命题;C,当x<0,y<0时,不成立,故是假命题;D,如果x=-3,y=1时,不成立,故是假命题.故选A.32.∀x∈R,x2-2x+3≥0的否定为()A. ∀x∈R,x2-2x+3≤0B. ∀x∈R,x2-2x+3<0C. ∃x0∈R,x02−2x0+3≤0D. ∃x0∈R,x02−2x0+3<0【答案】D【解析】【分析】全称命题的否定为特称命题,本题考查全称命题的否定的概念,属基础题目.【解答】解:∀x∈M,p(x)的否定∃x0∈M,¬p(x0),故选D.33.若a,b∈R,则“a>0,b>0”是“a+b>0”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】【分析】本题考查充要条件的判断,属基本题型的考查,较简单.判断充要条件,即判断“a>0,b>0”⇒“a+b>0”和“a+b>0”⇒“a>0,b>0”是否成立,可结合不等式的性质进行判断.【解答】解:当“a>0,b>0”时,由不等式的性质可知“a+b>0”,反之若“a+b>0”,如a=-1,b=2,不满足“a>0,b>0”,则“a>0,b>0”是“a+b>0”的充分不必要条件故选A.34.已知甲:x<0或x>1,乙:x≥2,则甲是乙的()A. 充要条件B. 必要不充分条件C. 充分不必要条件D. 既不充分也不必要条件【答案】B【解析】甲:x<0或x>1,则甲:A=(-∞,0)∪(1,+∞),乙:x≥2,则乙:B=[2,+∞),又B⊊A,即甲是乙的必要不充分条件,故选:B.先写出命题甲、乙所对应的集合,甲:A=(-∞,0)∪(1,+∞),乙:B=[2,+∞),再结合两集合的包含关系B⊊A,再判断即可,本题考查了集合与充要条件之间的关系,充分条件、必要条件、充要条件,属简单题35.“b>a>0”是“1a >1b”的()A. 充分不必要条件B. 充要条件C. 必要不充分条件D. 既不充分也不必要条件【答案】A【解析】解:当b>a>0时,1a >1b成立,反之当b<0,a>0时,满足1a>1b,但b>a>0不成立,即b>a>0”是“1a >1b”的充分不必要条件,故选:A.根据不等式的关系,结合充分条件和必要条件的定义进行判断即可.本题主要考查充分条件和必要条件的判断,结合不等式的关系是解决本题的关键.36.“a>b”是“a3>b3”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分又不必要条件【答案】C【解析】解:由于函数y=x3在R上单调递增,∴a3>b3⇔a>b.∴“a>b“是“a3>b3”的充要条件.故选:C.根据不等式的性质结合充分条件和必要条件的定义进行判断.本题主要考查充分条件和必要条件的判断,根据不等式的关系是解决本题的关键.是基础题.37.下列命题为真命题的是()A. 若p∨q为真命题,则p∧q为真命题B. “x=5”是“x2-4x-5=0”的充分不必要条件C. 命题“若x<1,则x2-2x-3=0”的否命题为:“若x<1,则x2-2x-3≤0”D. 已知命题p:∃x∈R,使得x2+x-1<0,则¬p:∀x∈R,使得x2+x-1>0.【答案】B【解析】【分析】本题主要考查必要条件、充分条件与充要条件的判断和全称命题、特称命题的否定.由复合命题的真值表判断A;利用充分必要条件的定义判断B;同时否定原命题的题设和结论,得到原命题的否命题,再判断其真假,由此判断C;利用特称命题的否定为全称命题,判断D.【解答】解:对于A,∵p∨q为真命题,则p、q中只要有一个命题为真命题即可,p∧q为真命题,则需两个命题都为真命题,∴p∨q为真命题不能推出p∧q为真命题,故A为假;对于B,当x=5成立时有52-20-5=0,即x2-4x-5=0成立,当x2-4x-5=0成立时,有x=-1或x=5,不一定有x=5成立,故“x=5”是“x2-4x-5=0”的充分不必要条件;故B为真;对于C,命题“若x<1,则x2-2x-3=0”的否命题为:若x≥1,则x2-2x-3≠0,为假命题;故C假;对于D,∵命题p:∃x∈R,使得x2+x-1<0是特称命题,∴¬p为:∀x∈R,使得x2+x-1≥0,故D为假.故选B.38.若命题“p∧q”和“¬p”都为假命题,则()A. p∨q为假B. q假C. q真D. 不能判断q的真假【答案】B【解析】【分析】本题考查了复合命题真假的判断,根据条件∵命题“p∧q”为假,且“¬p”为假,得命题p为真,q为假,从而可得选项,属基础题.【解答】解:∵命题“p∧q”为假,且“¬p”为假,∴命题p为真,q为假,则p或q为真,故选B.39.“¬p是真”是“p∨q为假”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】B【解析】解:“¬p是真”则p为假.“p∨q为假”则p与q都为假.∴“¬p是真”是“p∨q为假”的必要不充分条件.故选:B.“¬p是真”则p为假.“p∨q为假”则p与q都为假.即可判断出结论.本题考查了简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.。