常减压蒸馏装置腐蚀与防护
- 格式:doc
- 大小:34.00 KB
- 文档页数:6
2017年10月常减压蒸馏中的设备腐蚀与防护冯纯妍(秦皇岛中石油燃料沥青有限责任公司,河北秦皇岛066000)摘要:文章阐述了在常减压蒸馏过程中发生腐蚀反应的重点部位、腐蚀类型和防护措施,并总结了近年相关研究的进展。
关键词:常减压蒸馏设备;腐蚀;防护1常减压蒸馏设备的腐蚀机理环烷酸、硫化物以及部分无机盐是导致常减压蒸馏设备侵蚀的罪魁祸首。
文章重点分析环烷酸以及硫化物对减压蒸馏设备侵蚀的机理。
1.1硫对常减压设备的侵蚀机理低温下的HCl -H 2S -H 2O 腐蚀在低温下,单质硫一般不具有活性,对常减压设备不构成侵蚀,这个时候主要表现为HCl -H 2S -H 2O 酸性介质对金属的腐蚀。
原油中的HCl 、H 2S 随着挥发性油到达常压塔顶部和冷却系统后,冷凝结露为浓度较高的HCl 、H 2S 水溶液,其酸浓度可达到1%~2%,pH 值达1~1.3的强酸性腐蚀介质,成为一个腐蚀性很强的酸环境,其腐蚀原理如下:1.2环烷酸的侵蚀机理分析石油中所包含的有机酸种类有很多,其中环烷酸是环状结构的有机酸,其也是饱和酸的一种。
另外,石油中还有脂肪酸、环烷酸以及芳香酸等等,但由于环烷酸在石油中所占的比例很大,因此环烷酸在业界公认为石油的所有酸的总称。
从上反应式可以看出,和FeS 不同,铁和环烷酸反应生成的产物是Fe(RCOO)2。
Fe(RCOO)2是油溶性腐蚀物,不具备在金属表面形成“保护膜”,在油品的冲刷下Fe(RCOO)2最终会被带走。
最后导致的后果是铁在不断的侵蚀下,形成一道道沟槽最终被侵蚀殆尽。
2影响常减压蒸馏设备腐蚀的参数2.1原油的硫含量从腐蚀机理分析可知,原油中硫对常减压设备的腐蚀起到关键作用的一个因素。
在低温HCl -H 2S -H 2O 腐蚀和高温硫腐蚀中,反应式左边的物质一旦增加,会造成腐蚀的速度加快。
2.2酸值酸值是判断原油和馏分油腐蚀性的一个重要因素。
据相关数据表明,原油酸值小于0.5mgKOH/g 、馏分油酸值小于1.5mgKOH/g 时,环烷酸的腐蚀性很小。
常减压蒸馏装置腐蚀与防护秦风杜新燕金文房(克拉玛依市科比技术有限责任公司,克拉玛依834003)摘要:原油中含有大量的盐、含硫化合物及酸性物质,对常减压装置产生严重的腐蚀。
本文通过对蒸馏装置减压塔的腐蚀分析,提出针对这种腐蚀情况的防护措施。
关键词:减压塔环烷酸腐蚀电偶腐蚀在线监测技术1、概述原油中含有大量的盐、含硫化合物及酸性物质,会对常减压装置产生严重的腐蚀。
在2012年某石化公司大检修过程中发现蒸馏装置减压塔塔体发现了严重腐蚀穿孔。
1.1腐蚀情况概述(1)减二线、减三线塔体环焊缝出现严重腐蚀,其中,减三线的环焊缝出现两段深度大于10mm的腐蚀沟槽和三处处于同一水平高度的衬里腐蚀穿孔现象。
(2)塔内有300多处焊缝出现焊接质量问题,出现不同程度的咬边,表面裂纹现象,还有焊缝的焊条材质使用错误。
2、常减压蒸馏装置简介常减压蒸馏是指在常压和减压条件下,根据原油中各组分的沸点不同,把原油切割成不同馏分的工艺过程(工艺流程图见图1)。
常压蒸馏就是在常压下对原油进行加热气化分馏和冷凝,原油经过常压蒸馏可分馏出汽油、煤油、柴油馏分。
常压塔的作用是在接近常压状态下分离出原油中的部分组分,获得汽油煤油些油,为了使堂压侧线产品初馏点和闪点合格,在常压塔侧还设有一汽提塔,采用水蒸汽蒸馏的方式分离出常压侧线产品中的部分组分,一般常一线常结线需设汽提塔,常压汽提塔是各侧线汽提塔连接起来的组合塔。
减压蒸馏就是原料经加热后,在一定的真空度下使更高沸点的烃类气化分馏再冷凝,将常压塔底油进行减压蒸馏,得到的馏分视其原油性质或加工方案不同,可以作裂化(热裂化、催化裂化、加氢裂化等)原料或润滑油原料,也可以作乙烯裂解原料。
减压塔底油可作为燃料油、沥青焦化或其他渣油加工(溶剂脱沥青、渣油催化裂化、渣油加氢裂化等)的原料。
减压塔的作用是在减压状态下,对经常压塔分馏后的常底油继续进行分馏获得重柴蜡油润滑油基础油等产品。
图1 典型三段气汽化常减压蒸馏装置流程图3、腐蚀检测结果3.1 超声波测厚通过超声波测厚数据来看,塔除了两个腐蚀穿孔外,其余部分的厚度均在14.5mm左右。
原油之所以对装置具有一定的腐蚀性,主要是因为其中含有一定的盐、硫物质。
我国油田油品含有较高的硫,进口原油往往高酸高硫,所以原油生产中,常减压装置时刻处于腐蚀环境中。
另外石化工艺流程复杂,在高温高压环境中,腐蚀性介质可能会发生一系列化学反应,给设备带来更加严重的腐蚀环境。
实际化工生产中,常减压装置通常被作为第一加工装置,原油劣质化问题会首先反映到这类设备中,同时常减压设备会对原油进行脱盐脱硫处理,其工作效率也决定了原油是否会对后续设备带来腐蚀性影响。
可以说,加强对常减压装置腐蚀问题的分析,对于保持整套设备平稳运行具有积极的意义。
1、常减压装置中常见的腐蚀介质(1)化工腐蚀介质中,氯化物是非常常见的一种,原油经过初步的脱水处理后,依然会有少量的水残留下来,残留水分一般含有由氯化物构成的盐类成分,比如,氯化钠、氯化镁、氯化钙等,这些盐类成分受热后,会发生化学反应—水解反应,产生氯化氢,氯化氢具有强腐蚀性。
(2)硫化物也是一种常见的腐蚀性介质,一般来说,硫化物的腐蚀性的发挥往往受环境温度因素的影响。
原油中所含有的硫化物一般具有不稳定性,如果环境温度升高,这类硫化物就会分解生成分子量相对较小的硫化物。
原油生产中,元素硫与硫化氢之间可以相互转化,在转换过程中,硫化物分布在装置的不同部位,比如具有强腐蚀性的硫化氢一般聚集在装置低温部位,而硫元素则聚集在装置的高温部位。
(3)除了上述两种腐蚀性物质,有机酸、游离状态的氧、二氧化碳、水也会对常减压装置造成腐蚀性影响。
2、常减压装置腐蚀类型2.1 低温露点腐蚀引起这类腐蚀的主要原因是原油中含有盐类成分,主要发生在常减压蒸馏塔顶管部位以及初馏塔。
原油生产加工中,原油中的盐类物质发生水解反应,生成氯化氢,比如:在系统中,如果HCl以气体形式存在,其具有的腐蚀性几乎可以忽略,但是当氯化性进入到冷凝区后,遇到水,迅速溶于水形成稀盐酸,经测定,冷凝区域的稀盐酸浓度处于1%-2%,对于设备来说,系统内部就形成了强酸性腐蚀环境,继而给系统带来严重的腐蚀性影响。
常减压蒸馏装置腐蚀分析及防护措施优化钟书明(中国石油天然气股份有限公司大庆炼化分公司,黑龙江大庆163411)摘要:因长周期运行,常减压装置设备的老化和腐蚀问题逐渐显现,给正常生产带来隐患。
因此,为加深对腐蚀介质以及腐蚀机理的进一步研究,文章在原防腐工艺措施的基础上,参考国内先进的生产工艺,对常减压工艺流程的一些环节和设备进行了优化和生产工艺的改进,切实为防腐工作以及保障常态化作业、长周期运行提供一些参考建议。
关键词:常减压装置腐蚀防护措施优化长周期运行常减压装置的腐蚀涉及面广,严重影响设备的寿命和长周期运行。
要解决好这一问题,必须从工艺、选材、现场监控等方面采取有效、经济的防护措施,才能取得最佳效果。
1·常减压装置中易发生腐蚀部位及腐蚀机理近年来,大部分进口原油中硫和酸的含量较高,在加工过程中,硫化物和环烷酸发生分解或水解,产生酸性的硫化氢和有机酸等腐蚀性介质,长期加工该种原油使常减压装置设备和管道受到严重的腐蚀。
而且,在加热炉中硫化氢燃烧会生成含有二氧化硫和三氧化硫的高温强酸性烟气,在设备底部低温冷凝,会与空气中的水发生化学反应生成强氧化性的腐蚀性酸。
而且经常的开停车或者闭路循环,也增加了腐蚀的可能性。
1.1低温部位腐蚀机理低温部位的腐蚀主要属于HCl-H2O型和HCl-H2S-H2O型腐蚀。
腐蚀主要发生在初馏塔、常压塔和减压塔顶部,以及塔顶冷凝冷却系统的空冷器、水冷器等有液态水存在的低温部位[1]。
腐蚀因素主要取决于pH值、Cl-以及H2S的含量。
其中Cl-是初馏塔、常压塔顶部腐蚀最主要的因素,主要来源于原油中的氯盐,如MgCl2和CaCl2在120℃左右发生水解,生成HCl。
MgCl2+2H2 O→Mg(OH)2+2HClCaCl2+2H2 O→Ca(OH)2+2HClH2 S是减压塔顶部和冷凝冷却系统腐蚀的主要因素。
H2S主要是加工过程中由硫化物热分解而成。
在该腐蚀环境中,HCl溶于水生成盐酸。
1000万吨/年常减压蒸馏联合装置设备的腐蚀及防护概述就像运动是绝对的,静止是相对的一样,腐蚀现象是时时刻刻发生的。
防腐措施只能起到监控和减缓的作用,但绝对不能从根本上完全杜绝腐蚀的发生。
1.常减压蒸馏装置的主要腐蚀类型及防护1)低温(≤150℃)轻油部位HCl-H2S-H2O腐蚀:腐蚀部位主要是初馏塔、常压塔上部五层塔盘(降液管及受液盘)、塔体及部分挥发线。
初馏塔、常压塔顶冷凝冷却系统、减压塔部分挥发线和冷凝冷却系统及酸性水部分的腐蚀。
HCl+H2O→2HCl·H2O2HCl+Fe→FeCl2 +H2↑FeCl2+H2S→FeS+2HCl防护措施:电脱盐、塔顶注缓蚀剂(或中和剂)、塔顶注水,塔顶设备材质升级。
初馏塔选材初馏塔壳体主体材料为16MnR顶部约五层塔盘高的筒体选用16MnR+Alloy400(包括顶封头)顶部五层塔盘的材质选用Alloy400(抗酸腐蚀性能较好)其余塔内件材料为0Cr13常压塔选材壳体材料根据介质在不同的温度下的不同的腐蚀机理和腐蚀速率分别选用16MnR+0Cr13A1、16MnR+304L、16MnR+316L,塔内件材料亦分别选用0Cr13、304L(304不锈钢成分为0Cr18Ni9 C <0.1 Cr 18% Ni9%)、316L(316的不锈钢成分为0Cr17Ni12Mo2 C <0.1 Cr 17% Ni12% Mo2%) 2) 高温硫化物、环烷酸腐蚀及冲腐腐蚀部位主要是240~400℃与原油、馏分油接触的设备与管道。
Fe+S→FeSFe+2RCOOH→Fe(RCOO)2+ H2↑Fe+ H2S→FeS+H2↑FeS+2RCOOH→Fe(RCOO)2+H2S环烷酸腐蚀的特点:(1)220℃时,环烷酸腐蚀已开始,随着温度的升高腐蚀加剧;(2)270~280℃时环烷酸腐蚀较剧烈,以后随温度的上升而逐渐减弱;(3)280~380℃时环烷酸腐蚀急剧增加。
常减压蒸馏装置腐蚀与防护随着社会的发展,石油需求量越来越大,炼油厂的工作量随之猛增,这对常减压蒸馏装置带去了极大的挑战。
加工高硫原油导致常减压蒸馏装置的防腐工作难度增大,而裝置的防护与企业经济效益息息相关。
本文对常减压蒸馏装置的腐蚀与防护进行了探讨,阐述了硫腐蚀特点、机理,装置腐蚀情况、原因,并对防护措施提出了建议。
标签:常减压蒸馏装置;装置腐蚀;防护措施石油需求量迅速增长导致中国进口原油量不断增加,这使相当一部分的炼油厂面临着加工高硫原油的问题。
原料硫含量的提高和大幅波动使装置腐蚀问题更加严重,为此,研究硫腐蚀的特点、机理,分析装置腐蚀情况、腐蚀原因,有针对性的制定防护措施是企业必须重视的工作内容,具有很重要的现实意义。
1 硫腐蚀特点及其机理1.1 腐蚀特点原油中所含的硫分有两种,一种是活性硫,能通过直接与金属作用而腐蚀装置,如硫化氢;一种是非活性硫,不能直接作用于金属,但可以在高温高压等条件下转化为活性硫。
原油中硫分对炼油装置的腐蚀作用存在于炼油的整个过程。
原油硫含量与其对装置的腐蚀度之间对应关系并不精确,腐蚀度主要取决于硫分的种类、含量、稳定性。
对装置有腐蚀作用的硫分是单质硫等活性硫,原油中活性硫的含量与装置腐蚀强度成正比,但油中非活性硫在容易转化成活性硫的环境下也会严重腐蚀装置。
硫腐蚀的腐蚀对象多,腐蚀环境多元,硫分之间的转化复杂,增加了防护工作难度。
1.2 腐蚀机理如果将原油加热温度作为划分标准,常减压蒸馏过程可分为220~240℃、355~365℃、390~400℃三个阶段。
第一阶段发生在初馏塔,第二阶段在常压塔进行,这两个阶段中原油中存在硫化氢、氯化氢、水蒸气,发生硫化氢—水蒸气—氯化氢型腐蚀;第三阶段在减压塔中进行,温度升至400℃左右,油中非活性硫分解,活性硫含量增加,装置腐蚀更加严重。
即低温部位装置腐蚀类型为硫化氢—水蒸气—氯化氢型,高温部位发生的腐蚀则主要为活性硫造成的腐蚀。
常减压蒸馏装置的低温腐蚀与防护措施摘要:随着石油化工企业发展规模的不断壮大,企业内部对常减压蒸馏装置设备的保护也越发重视。
由炼油常减压蒸馏的运行环节来看,常减压蒸馏装置通常会在低温和高温部位产生腐蚀现象。
本文针对常减压蒸馏装置的低温腐蚀与防护措施展开简要分析,希望能够进一步提升常减压蒸馏装置的防护效力,更好的保障炼油操作的有序开展。
关键词:常减压蒸馏装置;腐蚀;防护;措施人们生活水平的提升使得石油产品的需求越发提升,同步推动着石油化工产业的运营与发展,石油的基本质量将是决定化工产业发展的重中之重。
对化工企业当中的炼油设备进行科学的保养和损伤防护,是保证企业生产顺利开展的必要途径,其中常减压蒸馏装置的防护措施开展,为化工炼油企业的运行提供了极大的保障条件。
1常减压蒸馏装置低温部位的腐蚀在常减压蒸馏装置中,常压塔塔顶换热器和减压塔顶水冷器都归属于常减压蒸馏装置的低温部位,由于原油中存在的活性硫成分,能够与金属设备产生一定的化学反应,直接导致了常减压蒸馏设备产生腐蚀损伤,非常不利于设备功效的充分发挥。
通常情况下,在常减压蒸馏装置低温部位的装置腐蚀,主要表现为硫腐蚀(H,S一HCL- -H2O)现象,原油中的硫含量越高,对常压塔顶换热器与减压塔顶水冷器部位的腐蚀损伤就越严重。
而且在常减压蒸馏装置的应用当中,硫腐蚀会贯穿于炼油环节的整个过程当中,原油中的硫其实与腐蚀损伤并没有明显的对应关系,硫腐蚀涉及装置多腐蚀环境具备着极强的多样性和多元化特点,硫化物自身种类、物质总量和化学稳定性的不同,其所造成的设备服腐蚀损伤程度也不同。
在常减压蒸馏装置的应用当中,像是硫化氢、单质硫、硫醇等活性硫化物含量越高,设备产生的腐蚀反应越明显。
如果把原油中的非活性硫易物质转化为活性硫,不管含量高低,都会对炼油设备造成严重的腐蚀损伤,也由于含硫化合物的转化关系的复杂,硫腐蚀的研究、防腐蚀措施的制定存在很大的实施困难,需要在常减压蒸馏装置的应用中,依照具体的设备问题进行具体的总结和分析。
炼油厂常减压装置常见腐蚀与防护措施探析摘要:近年来,我国的炼油厂建设不断增加,但是在炼油厂中,由于原油成分各不相同,尤其是高硫原油对设备的腐蚀较为严重。
因此,本文首先分析加热炉及烟风换热系统腐蚀情况检查,其次对原油炼化生产中对常减压装置带来的腐蚀分析,最后就常减压装置的腐蚀防护措施进行研究,希望能够为相关研究提供一定的参考。
关键词:炼油厂;常减压装置;腐蚀;防护引言常减压装置是炼油厂生产的重要装置,该装置在生产运行时,很容易受到腐蚀影响,尤其是原油中的一些物质会在炼油生产条件下加剧对常减压装置的腐蚀,对炼油生产安全带来非常严重的影响。
为解决这一问题,有必要加强对常减压装置腐蚀与防护措施的探索分析,从而有效缓解腐蚀对常减压装置带来的负面影响,加强对装置的防护,避免出现严重的生产安全事故,推动炼油厂生产经营实现更好的发展。
1加热炉及烟风换热系统腐蚀情况检查加热炉辐射室炉墙总体较好,只有两路进料顶部衬里有部分脱落,分别进行了补修、清理。
空气预热器系统低温露点腐蚀较为严重,换热管翅片上附着黄色黏稠物质较多,由于管束交错排列,比较紧凑很难清理。
另外,换热管积灰现象比较明显,位于空气预热器顶部的激波吹灰器套管有腐蚀漏洞,空气预热器出口至引风机入口内衬脱落,分别进行了清扫、更换及修补。
引风机本体腐蚀漏点较多,直接焊接整块钢板进行修补,涂有机硅高温漆对手动调节阀及引风机本体进行防腐。
2原油炼化生产中对常减压装置带来的腐蚀分析原油的存在,对常减压装置带来的腐蚀包括以下几点:(1)在常减压装置中,一般会存在很多焊接接头,这些接头必然会存在焊缝。
从炼油生产实践来看,原油对这些焊接接头的焊缝带来的腐蚀影响比较大。
因为在接头焊接时,带来的高温降低了焊接接头处的耐腐蚀性。
(2)常压塔腐蚀。
常压塔是常减压装置的关键组成部分,主要由碳钢与不锈钢衬里材料组成。
但在该装置低温运行时,很容易遭受低温腐蚀影响,出现裂纹,影响装置安全性。
常减压蒸馏装置腐蚀与防护
摘要:原油中含有大量的盐、含硫化合物及酸性物质,对常减压装置产生严重的腐蚀。
本文通过对蒸馏装置减压塔的腐蚀分析,提出针对这种腐蚀情况的防护措施。
关键词:减压塔环烷酸腐蚀电偶腐蚀在线监测技术
一、概述
原油中含有大量的盐、含硫化合物及酸性物质,会对常减压装置产生严重的腐蚀。
在2012年某石化公司大检修过程中发现蒸馏装置减压塔塔体发现了严重腐蚀穿孔。
减二线、减三线塔体环焊缝出现严重腐蚀,减三线的环焊缝出现两段深度大于10mm的腐蚀沟槽和三处处于同一水平高度的衬里腐蚀穿孔现象;塔内有300多处焊缝出现焊接质量问题,出现不同程度的咬边,表面裂纹问题。
二、常减压蒸馏装置简介
常压蒸馏就是在常压下对原油进行加热气化分馏和冷凝,原油经过常压蒸馏可分馏出汽油、煤油、柴油馏分。
减压蒸馏就是原料经加热后,在一定的真空度下使更高沸点的烃类气化分馏再冷凝,将常压塔底油进行减压蒸馏,得到的馏分视其原油性质或加工方案不同,可以作裂化原料或润滑油原料,也可以作乙烯裂解原料。
三、腐蚀检测结果
1.超声波测厚
通过超声波测厚数据来看,塔除了两个腐蚀穿孔外,其余部分的厚度均在14.5mm左右。
2.焊缝焊接质量检测
通过检测可知,焊缝焊接问题主要集中在焊条使用错误,焊缝气孔、咬边、和表面裂纹。
3.材质分析
通过对焊缝和塔体的材质检测可知:塔体的材质是316l,塔体内部的焊缝除了一部分焊条使用错误外,其余大部分的焊缝材质也是316l。
4.无损检测
通过对焊缝的检测发现,焊缝出现大面积的气孔、夹杂、未熔合,未焊透现象,焊接质量存在很大的问题,这就为后来的腐蚀提供了埋下了很大的隐患。
5.电极电位测试
通过对塔体,焊缝和填料的检测可知:填料未经打磨时电位:旧填料0.260v,新填料为0.220v;填料经打磨后的电位为—0.06v;焊缝(减二线)电位:—0.045v(1#试样清洁前),—0.003v(2#试样清洁前),—0.083v(1#试样清洁后),—0.012v(2#试样清洁后)。
从测试实验来看,填料和焊缝的电位差为200mv,此电位差正好是阴极保护达到效果的极化电位差值,这样就相当于做了牺牲阳极
保护,焊缝被牺牲腐蚀减薄,形成电偶腐蚀。
四、腐蚀原因分析
1.焊缝焊接质量原因
按焊接缺陷在焊缝中的位置,可分为外部缺陷和内部缺陷两大类。
咬边是指由于焊接参数选择不当,或操作工艺不正确,沿焊趾的母材部位产生的沟槽或凸陷即为咬边。
咬边使母材金属的有效截面减少,减弱了焊接接头的强度,而且在咬边处易引起应力集中,承载后有可能在咬边处产生裂纹,甚至引起结构的破坏。
修补方法是选用较小的焊条,最好是打磨或者挖凿后用低氢焊条补焊。
焊接裂纹指在焊接应力及其他致脆因素共同作用下,焊接接头中局部地区
的金属原子结合力遭到破坏而形成的新界面所产生的缝隙。
焊接裂纹是最危险的焊接缺陷,严重的影响着焊接结构的使用性能和安全可靠性。
从检测结果可以看出:塔的焊接质量存在严重的问题,塔内焊缝出现大面积的咬边、焊接裂纹现象,这说明在焊接过程中缺乏严格的管理和监管。
2.环烷酸腐蚀
环烷酸腐蚀主要是指当温度高于350℃,h2s开始分解生成h2和活性很高的s,s和fe反应非常剧烈,生成fes,并生成一层半保
护性膜。
当环烷酸存在时,环烷酸与硫化铁膜直接反应,生成环烷酸铁和h2s,h2s和fe又可以反应,从而加剧腐蚀。
原油中环烷酸分子的组成也不完全相同,一部分沸点范围为232~288℃,另一部分的沸点范围是350~400℃,温度升高,环烷酸逐渐气化,在气相中聚集,在两个温度段发生腐蚀。
随着介质的流动,使金属表面不断受到冲刷、暴露并受到环烷酸腐蚀。
3.电偶腐蚀
两种或两种以上不同电极电位的金属处于腐蚀介质内相互接触而引起的电化学腐蚀,又称接触腐蚀。
发生电偶腐蚀时,电极电位较负的金属通常会加速腐蚀,而电极电位较正的金属的腐蚀则会减慢。
影响电偶腐蚀速度的因素主要有:①所形成的电偶间的电极电位差;②腐蚀介质的电导;③金属表面的极化和由于阴、阳极反应生成表面膜或腐蚀产物的影响;④电偶间的空间布置。
两金属之间的电极电位差愈大、电流愈大,则腐蚀愈快。
电偶腐蚀的主要防止措施有:①选择在工作环境下电极电位尽量接近的金属作为相接触的电偶对;②减小较正电极电位金属的面积,尽量使电极电位较负的金属表面积增大;③尽量使相接触的金属电绝缘,并使介质电阻增大;④充分利用防护层,或设法外加保护电位。
通过检测可以看到塔体的电极电位和填料的电极电位相差已达
200mv以上,这就验证了塔体存在电偶腐蚀。
五、腐蚀防护措施
1.加强焊接质量管理
焊接质量的检验主要分为三个阶段,即焊前检验,焊接过程中检验,焊后成品
检验,必须严格控制检测的各阶段确保焊接质量。
1.1焊前检验
主要是检查技术文件是否完整齐全,并符合各项标准,法规的要求;焊接材料和基本金属原材料的质量验收;焊接工艺评定试验结果及编制的焊接工艺文件或工艺规程的审查;焊接设备是否完好、可靠以及焊工操作水平、资格的认可等。
1.2焊接过程中检验
主要包括焊接设备运行情况、焊接工艺执行情况的检查;产品试板的检验;焊缝的无损检测及外观质量检验等。
其目的是及时发现焊接过程中的问题,以随时加以纠正,同时通过对焊接工艺实施情况的检查及焊接过程中的质量控制,防止缺陷的产生。
1.3焊后成品检验
成品检验的方法和内容主要包括:外观检验—结构成形与尺寸及焊缝表面质量的检验;焊缝的无损探伤;焊缝金属堆焊层化学成分分析,铁素体含量和堆焊层结合强度的测定等。
2.优化工艺流程
主要是搞好“一脱四注”,及时调节工艺参数,不断优选破乳剂和缓蚀剂。
根据原油的性质,适量加入注脱盐剂,提高脱盐的效率。
3.防腐蚀材料的选择和新防腐技术的应用
集团公司下发了装置防腐材料指导意见,可以依据这个选取合适的防腐蚀材料。
并积极采用先进的防腐技术对装置设备进行防腐。
对材料表面进行防腐蚀涂料、表面渗镀、衬里等技术处理提高设备的防腐蚀能力。
4.在线监测技术
腐蚀在线监测技术是在设备运行过程中,对设备的腐蚀和破坏进行连续的系统监测,目前,油气田工业生产系统较为广泛的在线监测技术是电阻法和电感法。
研究人员通过监测冷凝水的ph值、cl-和h2s的质量浓度、水中铁离子的含硫以及油品来间接的检测装置内部结构的腐蚀情况。
另外,还通过定期的对腐蚀较严重部位的壁厚进行检测,实现装置腐蚀情况的直接监测。
在今后的工作中,可以引入在线监测技术对减压塔进行监测,为装置的腐蚀与防腐提供技术支持。
参考文献
中国石油化工设备管理协会设备防腐蚀专业组编中国石化装
置设备腐蚀与防护手册【m】北京:中国石化出版社.。