大学生数学建模竞赛活动的一些问题
- 格式:ppt
- 大小:214.50 KB
- 文档页数:38
全国大学生数学建模竞赛的竞赛宗旨:创新意识,团队精神,重在参与,公平竞争。
全国大学生数学建模竞赛的指导原则:扩大受益面,保证公平性,推动教学改革,提高竞赛质量,扩大国际交流,促进科学研究。
全国大学生数学建模竞赛参赛规则根据《全国大学生数学建模竞赛章程》(以下简称《章程》)和竞赛活动的实践,为了促进全国大学生数学建模竞赛活动的健康发展,保障竞赛的公正公平,特制订本规则。
1、指导教师和参赛学生必须严格遵守《章程》和《全国大学生数学建模竞赛论文格式规范》(以下简称《规范》)中的各项规定,认真履行所签署的《全国大学生数学建模竞赛承诺书》中的各项承诺。
对违反承诺及不符合《章程》和《规范》要求的论文,将无条件取消评奖资格。
2、参赛学校有责任结合本校的学风建设,敦促和指导参赛学生和指导教师严格遵守竞赛纪律,支持和配合全国大学生数学建模竞赛组委会(以下简称全国组委会)及各赛区组委会对违规违纪行为的处理。
对出现违纪行为并处理不力的学校,全国组委会将不受理该校下一年参加本竞赛的报名申请。
3、指导教师主要从事赛前辅导和参赛的组织工作,但在竞赛期间必须回避参赛队员,不得进行指导或参与讨论(包括不得向同学解释赛题或提供选题、解题建议,不得为同学提供资料,不得为同学修改论文或提供修改建议等),否则一律按违反纪律处理。
对出现违纪行为的指导教师,全国组委会两年内将不受理该指导教师指导学生参加本竞赛的报名申请。
4、参赛论文引用他人的研究成果或其他任何公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出,否则视为学术不端行为和违反竞赛纪律,相应的参赛队将被无条件取消评奖资格。
5、抄袭是严重违反竞赛规则的行为,有抄袭行为的参赛队在全国和赛区评阅时视为严重违反竞赛纪律;竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人,包括指导教师,研究及讨论与赛题有关的问题,否则也视为严重违反竞赛纪律。
2016年全国大学生数学建模竞赛B题解题分析与总结2016年全国大学生数学建模竞赛B题解题分析与总结一、题目分析2016年全国大学生数学建模竞赛B题是一个与经济学、金融学相关的问题,要求参赛者通过对问题的深入分析和建模,以及对模型的求解和结果的解释,提出合理的结论。
二、问题描述本题的题目为《贷款利率调控模型》。
题目给出了一组数据,包括贷款利率、消费者价格指数、人均可支配收入、外汇储备等指标,要求参赛者针对这些指标进行分析,并建立合适的模型来解释这些指标之间的关系。
三、解题思路1. 数据分析:首先,我们需要对给定的数据进行分析。
通过绘制图表和计算一些统计量,我们可以对这些数据的变化和趋势进行初步了解。
2. 建立模型:在了解了数据的基本特征之后,我们需要以此为基础,建立起合适的数学模型。
这个模型应该能够描述贷款利率与消费者价格指数、人均可支配收入、外汇储备之间的关系,并能够进行预测。
3. 参数估计:建立好模型之后,我们需要对模型中的参数进行估计。
这需要依赖于数学推导和数据拟合的方法,通过最小二乘法等方法,确定模型的参数。
4. 模型求解:有了模型和参数之后,我们可以使用计算机软件进行模型的求解。
通过数值计算的方法,我们可以得到模型的解析解或数值解,并进行结果的分析和解释。
5. 结论与反思:最后,我们需要根据模型的结果,对问题进行结论和反思。
我们可以分析模型的合理性、可靠性,以及对解决实际问题的指导意义。
同时,我们也可以对模型的不足之处进行总结,并提出改进的建议。
四、模型建立与结果解释在解题的过程中,我们可以考虑建立如下的模型:贷款利率=消费者价格指数+人均可支配收入+外汇储备。
通过对这三个指标的分析,我们可以发现它们之间存在着一定的关系。
消费者价格指数和人均可支配收入可以反映经济的收入水平和购买力,而外汇储备可以反映国家的经济实力。
在建立了模型之后,我们可以对模型进行求解,并得到相应的结果。
根据模型的求解结果可以得出以下结论:贷款利率与消费者价格指数、人均可支配收入和外汇储备之间存在着一定的关系。
数学建模题目———组队问题全国大学生数学建模比赛是由教育部发起的18项大学生创新训练项目之一,目前已为广大大学生所熟悉。
目的在于激励学生学习数学的积极性,提高学生建立数学模型和运用计算机技术解决实际问题的综合能力,鼓励广大学生踊跃参加课外科技活动,开拓知识面,培养创造精神及合作意识,推动大学数学教学体系、教学内容和方法的改革。
河海大学常州校区每年都会有一定数量的学生参加此项赛事,并取得了一定的成绩。
为此,数理部每年暑期将会对学生进行培训,最后选拔出参赛的队员。
选拔条件为:思维活跃、编程能力强、熟练的写作技巧、良好团队合作意识。
附件里给出了某年的已经选拔出来的学生相关信息,包括:编程、想法、写作、数学能力等。
根据根据所给的信息,进行组队,每队三人,组队原则如下:1)尽可能地不同学院、不同性别2)如果同一学院,尽可能地不同专业3)每个队伍中,至少一个人能胜任编程、想法、写作中的一项。
根据如下要求,完成下面的问题:1.如何组队,使得每队的实力相当;2.如果考虑到获奖最大化,如何组队;3.数据中没有给出团队合作意识的量化数据,问,如果考虑团队合作意识这一因素,如何建立模型。
姓名年级性别学院专业编程想法写作数学能力A 2007 女计信、通信工程8 7 9 9B 2008 男机电、机自8 9 7 10C 2008 男机电、机自10 9 7 10D 2008 女计信、电信8 8 8 9E 2009 男计信、自动化7 8 8 8F 2009 男计信、自动化7 7 8 8G 2008 男机电、机自8 8 7 9H 2009 男机电、机自7 8 7 8I 2009 女机电工业设计 6 7 8 8 J 2009 男机电、机自7 7 8 9 K 2009 女商院、国贸 6 6 7 8 L 2008 男机电、机自8 9 7 9 M 2007 男机电、机自9 9 8 10 N 2008 男计信、计算机10 9 9 9 O 2008 女计信、通信9 8 9 8 P 2009 男机电、材料7 8 6 8 Q 2009 男计信、计算机7 7 7 9 R 2009 男计信、计算机8 7 8 8 S 2007 男机电、热动10 10 8 9 T 2008 女机电、热动8 9 8 8 U 2008 男机电、机自8 7 9 8 V 2009 女机电、材料9 9 9 9W 2008 男机电、机自9 10 9 9 X 2008 男计信、计算机10 9 9 9 X 2008 女机电、热动9 9 9 10 Z 2008 男机电、机自9 8 7 9 A1 2008 男机电、机自9 9 9 10 A2 2008 男计信、自动化8 9 8 7 A3 2008 男计信、自动化7 8 8 9 A4 2009 男计信、自动化7 8 9 82010年河海大学数学建模作业论文题目:组队问题队员:姓名:张霞学号:0861310107 姓名:黄舒婷学号:0861310101 姓名:廖唯学号:0861410106组队问题摘要组队问题,主要运用层次分析的方法,将队员具有的素质进行多方面的分析,综合考虑个人的各项指标以及整队的专业倾向,利用数学知识联系实际问题,做出相应的解答和处理,最终从30名队员中建立了最佳组队的方案。
目录一 问题重述问题重述......................................................... ......................................................... 1 二 问题分析问题分析......................................................... ......................................................... 2 三 模型假设模型假设......................................................... ......................................................... 2 四 符号说明符号说明......................................................... ......................................................... 2 五 模型的建立与求解模型的建立与求解................................................. ................................................. 3 六结果分析六结果分析......................................................... (12)一 问题重述通常加油站都有若干个储存燃油的地下储油罐,并且一般都有与之配套的“油位计量管理系统”,采用流量计和油位计来测量进/出油量与罐内油位高度等数据,等数据,通过预先标定的罐容表通过预先标定的罐容表通过预先标定的罐容表(即罐内油位高度与储油量的对应关系)(即罐内油位高度与储油量的对应关系)(即罐内油位高度与储油量的对应关系)进行实进行实时计算,以得到罐内油位高度和储油量的变化情况。
《2016年全国大学生数学建模竞赛B题解题分析与总结》篇一一、引言2016年全国大学生数学建模竞赛(CUMCM)是面向全国各高校学生的大型数学建模类比赛。
在众多赛题中,B题以其复杂的实际问题背景和深入的应用数学知识引起了广泛关注。
本文旨在针对B题的解题过程进行详细分析,并做出相应的总结。
二、题目概述B题主要描述了一个实际生活中遇到的问题:基于网络平台的交通流量预测。
题目要求参赛者根据历史交通流量数据,分析交通流量的变化规律,并建立数学模型进行预测。
三、解题分析1. 数据收集与预处理首先,我们需要收集相关的历史交通流量数据。
这些数据可能包括时间、地点、交通流量等信息。
收集到的原始数据需要进行清洗和预处理,例如去除异常值、缺失值等,以获得更为准确的数据。
2. 建立数学模型根据数据的特点和问题需求,我们选择合适的数学模型进行建模。
考虑到交通流量与时间的关系较为密切,我们可以选择时间序列分析模型,如ARIMA模型等。
此外,考虑到不同地点之间的交通流量可能存在相互影响,我们还可以引入空间相关性分析,如空间自回归模型等。
3. 模型优化与验证建立数学模型后,我们需要对模型进行优化和验证。
这包括调整模型的参数、对模型进行诊断分析等。
我们可以通过对比模型的预测值与实际值,计算误差指标(如均方误差、平均绝对误差等)来评估模型的性能。
同时,我们还可以使用交叉验证等方法来验证模型的稳定性。
4. 模型应用与结果展示最后,我们将建立的数学模型应用于实际问题中,对未来的交通流量进行预测。
我们将预测结果以图表等形式进行展示,方便评委和观众理解。
同时,我们还可以对结果进行解释和讨论,说明模型的优点和局限性。
四、总结通过本文总结:经过详细的分析与探讨,针对2016年全国大学生数学建模竞赛B题,我们采取了有效的解决策略。
从数据收集与预处理到模型建立与优化,每一步都紧密联系实际,充分考虑了交通流量数据的特性和问题需求。
在建模过程中,我们选择了合适的时间序列分析模型和空间相关性分析模型,旨在捕捉交通流量的变化规律。
全国大学生数学建模竞赛的注意事项数学建模竞赛是大学生们展示数学能力和创新思维的重要舞台。
参加全国大学生数学建模竞赛需要高度的准备和专注。
为了帮助准备参赛的同学们更好地应对挑战,下面是一些需要注意的事项。
1.详细阅读竞赛规则:在参赛之前,请仔细阅读竞赛规则和要求。
确保你明确理解和遵守规则,包括选题范围、时间限制和提交要求等。
2.选择适合的队友:组队参加数学建模竞赛是常见的形式。
选择适合的队友很重要,队友之间应该有良好的沟通和合作能力。
团队合作可以促进好的思想碰撞和解决问题的能力。
3.合理安排时间:数学建模竞赛通常是一个时间紧迫的过程。
在开始竞赛之前,制定一个合理的计划。
给每个任务和阶段都设定时间限制,确保在规定时间内完成。
4.选择合适的选题:在确定选题时,选择一个感兴趣且有挑战性的课题。
避免选择过于简单或过于复杂的题目,因为这会影响团队的工作效率。
5.准备必备工具和资料:确保所有需要用到的工具和资料都准备齐全。
这可能包括计算器、电脑、数学参考书和相关的数据集等。
提前准备会帮助你在竞赛过程中更加高效。
6.分工合作:为了时间利用效率和团队协作的需要,将任务合理地分配给队友。
每个人都应负责特定的部分,并及时交流进展和意见。
7.思路清晰,解题方法灵活:竞赛中遇到的问题可能是多样且复杂的。
在思考解决方案时,要确保思路清晰,并在需要时灵活地调整解题方法。
实践不同的数学模型和技巧可能会有助于获得更好的结果。
8.注意问题的提出和解释:在书写和解释问题陈述时,要简洁明了。
使用图表、符号等辅助说明,以便清楚地传达你的观点。
9.检查和校对:在提交前,请仔细检查和校对你的作品。
查看是否有语法错误、拼写错误或其他错误。
确保所有数据和结果的准确性,并确认是否符合竞赛要求。
10.积极面对挑战:数学建模竞赛是一个考验挑战解决能力的过程。
在竞赛中遇到问题时,保持积极的态度,坚持努力,不断尝试解决办法。
总之,全国大学生数学建模竞赛需要准备充分、合理规划时间、合作紧密以及具备灵活的思维和解题能力。
全国大学生数学建模竞赛赛题基本解法全国大学生数学建模竞赛是中国高校中最具权威和影响力的学科竞赛之一。
该竞赛由教育部、中共中央组织部、中国科学院及其他部门共同主办。
该竞赛旨在促进青年学生对于数学和工程的综合应用,培养学生的创新能力和实践能力。
竞赛模式全国大学生数学建模竞赛一般分为两个阶段:第一阶段为选拔赛,第二阶段为决赛。
选拔赛一般在当年11月份进行,由各高校数学系作为考场。
每个参赛队伍由3名学生组成,比赛时间为两天。
选手可以使用任何工具,比如计算器、软件、读者,但是不得使用互联网。
决赛一般在翌年1月份或2月份举行,由主办单位确定比赛地点。
决赛选手数量有限制,根据各省市选手数量的比例确定。
赛题解法全国大学生数学建模竞赛的赛题涵盖的面非常广,包括应用数学、工程数学、运筹学、优化理论等多个领域。
以下是该竞赛可能出现的赛题及其基本解法:1. 背包问题背包问题是计算机科学和数学中的一个经典问题,指在给定约束条件下,从若干种物品中选择若干件物品装入背包,使得背包能够承载的重量最大或体积最大。
解法:背包问题可以用动态规划、贪心算法、分支定界等算法解决。
2. 最优路径问题最优路径问题也就是指在一个有向加权图中,找到从起点到终点的最短路径或者最长路径。
解法:最优路径问题通常可以用Dijkstra算法、Bellman-Ford算法、Floyd算法等解决。
3. 线性规划问题线性规划问题是运筹学中的一个重要问题,由一个线性目标函数和多个约束条件组成,目的是找出一组变量,使得目标函数最大或最小,并同时满足全部的约束条件。
解法:线性规划问题可以使用单纯性算法、内点法等算法进行解决。
4. 工程优化问题工程优化问题是指如何在给定资源的限制之下,设计和生产最符合要求的产品或系统。
工程优化问题常常包含多个目标和多个变量,并且这些变量之间具有复杂的相关性。
解法:工程优化问题可以使用遗传算法、蚁群算法、模拟退火等高级优化算法进行解决。
全国大学生数学建模竞赛经典试题导语:数模参赛者应根据题目要求,完成一篇包括模型的假设、建立和求解、计算方法的设计和计算机实现、结果的分析和检验、模型的改进等方面的论文(即答卷)。
竞赛评奖以假设的合理性、建模的创造性、结果的正确性和文字表述的清晰程度为主要标准。
欢迎阅读,仅供参考,更多相关的知识,请关注CNFLA学习网的经典的数学建模问题:运用灰色关联模型为我国产业结构的调整和优化提供建议改革开放以来,中国的产业结构优化都是以经济增长为主要目标,在该目标下所形成的产业结构己经使中国经济保持了近三十年的高速增长。
但是,由于忽视了能源与环境目标,过快的经济增长导致了产业结构失衡、能源消耗过渡、环境污染严重等问题。
因此,产业结构优化作为促进经济发展的重要手段已不是传统意义所指,结构优化的目标更着重于促进产业持续、健康发展以及产业与自然、社会和谐发展,结构状态和变化趋势符合可持续发展要求,结构的优化和变革促进产业可持续发展能力增强,结构优化政策贯彻可持续发展战略思想等。
基于此结合收集的资料,建立数学模型,解决一下问题。
问题一:建立各产业对我国经济增长影响的定量数学模型。
问题二:定量分析能源消费结构对空气质量的的关系。
问题三:建立数学模型分析未来能源消费的大体趋势。
问题四:结合以上问题结论为我国产业结构的调整和优化提供一些建议。
一、问题分析问题一我们发现我国各产业对经济的增长都有一定的作用,通过表分析我们需要定量分析各产业对我国经济增长影响的大小,于是我们通过建立灰色关联的数学模型计算各产业灰色相对关联度p1,p2,p3,比较其大小发现各产业对我国经济增长的定量影响。
问题二我们认为SO2排放放映出我国空气质量的大体状况,而无论是煤炭,石油,天然气,电能等能源的消耗都会排放一定量的的SO2,但我们无法准确确定影响大小,于是我们考虑建立灰色关联的数学模型,计算出各能源对SO2排放的影响程度大小,进而确定能源消费结构对空气质量的关系。