11.2三角形高、中线、角平分线
- 格式:ppt
- 大小:1.07 MB
- 文档页数:21
11.1.2 三角形的高、中线与角平分线编制:一、知识要点:1、三角形的高:(1)定义(2)三角形三条高的位置2、三角形的中线:(1)定义(2)三角形的重心3、三角形角平分线4、三角形具有稳定性二. 典例和变式知识点1:三角形的高例1:如图,AB⊥BD于点B,AC⊥CD于点C,且AC与BD交于点E,那么:(1)△ADE的边DE上的高为,边AE上的高为;(2)若AE=5,DE=2,CD=1.8 ,则AB= .【变式练习1】1.△ABC,∠C=90°AB=5,BC=4,AC=3,求AB边上的高。
2.如图所示,在△ABC中,AC=7,BC=4,高BD=2.5,试作出BC边上的高AE,并求出AE 的长.3.已知△ABC中,AB=2,AC=3,BC=4,AB,AC,BC边上的高分别为h1,h2,h3,则h1:h2:h3= 。
4.已知AD是△ABC的高,∠BAD=72°,∠CAD=21°,则∠BAC的度数是。
知识点2:三角形的中线例2:(1)在△ABC中,AD为BC边的中线,若△ABD与△ACD的周长差为3,AB=8,则AC= 。
(2)如图,在△ABC中,D,E分别为BC,AD的中点,且△ABC的面积为4,则图中阴影部分的面积是 .【变式练习2】1.如图,在△ABC中,已知点D, E, F分别为BC, AD, CE的中点,且S△ABC=8cm2,则S 阴影等于。
2.已知如图S△ODA=3,S△ODC=4,S△OBC=5,则S△OAB= .(例5)(变式练习1)(变式练习2)3.已知一个等腰三角形一腰上的中线将该三角形的周长分成8和10两部分,试求该三角形的三边是多少?3、三角形的角平分线例题3:如下图所示,AE是△ABC的角平分线,AD是△ABE的角平分线,若∠BAC=80°,则∠EAD的度数是。
【变式练习3】如图,在△ABC中,AD是高,AE是∠BAC的平分线,∠B=20°,∠C=60°,求∠DAE的度数。
三角形的中线、高线、角平分线【考点精讲】三角形的重要线段定义图形表示法说明三角形的高线从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段。
1. AD是△ABC的BC边上的高线。
2. AD⊥BC于D。
3.∠ADB=∠ADC=90°。
三角形有三条高,且它们(或它们的延长线)相交于一点,这个交点叫做三角形的垂心。
三角形的中线三角形中,连接一个顶点和它对边中点的线段。
1. AD是△ABC的BC边上的中线。
2. BD=DC=12BC。
三角形有三条中线,都在三角形的内部,且它们相交于一点,这个交点叫做三角形的重心。
三角形的重心在三角形的内部。
三角形的角平分线三角形一个内角的平分线与它的对边相交,连接这1. AD是△AB C的∠BAC的平分线。
2.∠1=∠2=12∠BA C三角形有三条角平分线,都在三角形的内部,且它们相交于一点,这个交点叫做三角形个角的顶点与交点之间的线段。
的内心。
三角形的内心在三角形的内部。
【典例精析】例题1 如图,是甲、乙、丙、丁四位同学画的钝角△ABC 的高BE ,其中画对的是_______。
甲 乙 丙 丁思路导航:根据三角形的高是过一个顶点向对边引垂线,顶点与垂足之间的线段是该三角形的高,对各图形作出判断。
答案:丁点评:这是学生在画图时的一个易错点,通过本题理解画高时的两个注意点:一是过哪个点;二是垂直于哪条边。
这道题是过B 点,垂直于AC 边。
例题 2 等腰三角形一腰上的中线把这个三角形的周长分成12cm 和21cm 两部分,则这个等腰三角形的底边长是______。
思路导航:根据等腰三角形的性质和已知条件求出腰长和底边长,然后根据三边关系进行讨论,即可得出结论。
答案:设等腰三角形的腰长是x cm ,底边是y cm 。
根据题意,得:⎪⎪⎩⎪⎪⎨⎧=+=+212122x y x x 或⎪⎪⎩⎪⎪⎨⎧=+=+122212x y x x , 解得:⎩⎨⎧==178y x 或⎩⎨⎧==514y x根据三角形的三边关系,知:8,8,17不能组成三角形,应舍去。
11.1.2 三角形的高、中线与角平分线一、教学目标(一)学习目标1.理解三角形的高的概念,会画不同三角形的高.2.掌握三角形中线、角平分线的概念.3.能正确运用三角的高、中线、角平分线的相关概念及性质解决实际问题.(二)学习重点三角形的高、中线、角平分线的概念.(三)学习难点运用三角形高、中线、角平分线的概念解决三角形有关实际问题.二、教学设计(一)课前设计1.预习任务从三角形的一个顶点向它的对边所在直线画垂线,顶点和垂足之间的线段叫做高;在三角形中,连接一个顶点和它的对边中点的线段叫做中线;三角形的一个角平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做角平分线.2.预习自测(1)如图,在△ABC中,BC边上的高是________ ,在△AEC中,AE边上的高是_______,EC边上的高是_________.【知识点】三角形的高的概念【解题过程】BC边是顶点A得对边,过点A作BC边的垂线,交点B是垂足,所以AB 为BC边上的高.同理AE边上的高为CD,EC边上的高为AB.【思路点拨】运用高的定义,过三角形一点向它的对边作垂线,这一点与垂足之间的连线叫做三角形的高.【答案】AB.CD.AB(2)如图,在△ABC中,D是BC的中点,E是AB 的中点,则△ABC 的中线是________,△ABD的中线是_______.B【知识点】三角形中线的概念【解题过程】△ABC的顶点A和它对边中点D的连线AD为△ABC的中线;而△ABD中,顶点D与它对边中点E的连线DE为△ABD的中线.【思路点拨】三角形的顶点和它对边中点的连线成为中线,故找准顶点和它的对边中点是关键.【答案】AD.DE(3)△ABC的角平分线BE是()A.射线B.直线C.线段D.都有可能【知识点】三角形的角平分线的概念,它与角平分线的区别【解题过程】三角形的一个角平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.【思路点拨】三角形的角平分线是线段,而角平分线是射线.【答案】C(二)课堂设计1.知识回顾(1)三角形:由不在同一条直线上的三条线段首尾顺次相接组成的图形.(2)构成三角形的元素:①三个顶点;②三条边;③三个内角.(3)三角形三边的数量关系:两边之和大于第三边,两边之差小于第三边.2.问题探究探究一三角形的高.●活动①回顾旧知师:回顾构成三角形的元素并回忆小学时如何作出三角形的高.(1)三个顶点;三条边;三个内角.(2)过三角形一个顶点向它的对边画垂线段.B教师总结:从△ABC的顶点A向它所对的边BC画垂线,垂足为D,所得线段AD叫做△ABC的边BC上的高.【设计意图】通过对旧知识的复习,为新知识的学习作铺垫.●活动②画出以下三角形的高AD.BE.CF.师问:一个三角形有几条高?三角形的高是什么线?三个图形的高有什么区别?它们在位置上有什么关系?学生抢答:看谁总结得最快最完整?学生回答:三角形有三条高,都是线段.锐角三角形的高在三角形内部,直角三角形有两条高在边上,钝角三角形有两条高在三角形外部,每个三角形的三条高(或高所在的直线)都相交于一点.教师总结:任意一个三角形都有三条高,三角形的高是线段;锐角三角形的高在三角形内部、直角三角形有两条高在边上、钝角三角形有两条高在外部;三角形的三条高(或高所在的直线)都相交于一点(如上图点O),锐角三角形的三条高相交于三角形内部一点、直角三角形的三条高相交于直角顶点、钝角三角形的三条高所在的直线相交于三角形外部一点.【设计意图】鼓励学生独立自主解决问题,让学生初步感受通过动手操作来掌握几何知识的相关概念,引导学生由观察得到的感性认识转化为理性认识.探究二三角形的中线与角平分线. ▲●活动①大胆猜想,探究新知识师问:妈妈有一块三角形蛋糕,她想平均分给小明和小亮,并且两人所得蛋糕均为三角形,你能帮妈妈出主意吗?学生回答:找到一边的中点,然后和这边所对的顶点相连,沿着这条连线切割,所得的两个三角形面积相等.学生回答:分割后的两个三角形底相同,高相同,所以面积相等.【设计意图】通过探究,促使学生找到三角形边上的中点,为得出中线的概念作铺垫.●活动②反思过程,发现新概念.教师展示新知:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线.B师问:三角形的中线是什么线?一个三角形有几条中线?三角形的中线所分成的两个三角形面积有什么关系?学生回答:三角形的中线是线段,并且每个三角形都有三条中线.三角形的中线所分成的两个三角形的面积相等,因为等底等高的三角形面积相等.【设计意图】让学生更加全面的掌握中线的概念以及它平分三角形面积的性质.●活动③动手操作,大胆发现.如图,画出三角形的三条中线,并认真观察三条中线的位置关系.B师问:你发现了什么?学生回答:三角形的三条中线都在三角形内部,并且相交于一点.教师展示新知:三角形的三条中线都在三角形内部,并且相交于一点,这个点就是三角形的重心.【设计意图】通过动手实践找到三角形的重心,深刻理解三角形的重心在三角形内部.●活动④集思广益,探究新知.师问:请同学们画出三角形中∠A的平分线(量角器)B教师总结:如图,画∠B的平分线BD,交∠B所对的边AC于点D,所得线段BD叫做△ABC的角平分线.师问:你能画出三角形另外的角平分线吗?学生展示:B师问:三角形的角平分线是什么线?与角平分线有什么区别?一个三角形有几条角平分线?在位置上有什么关系?学生回答:三角形的角平分线是线段,而角的平分线是射线,任何三角形都有三条角平分线,并且三条角平分线交于三角形内部的一点.教师总结:任何三角形都有三条角平分线,并且都在三角形内部交于一点,我们把这个点称为三角形的内心(内切圆的圆心)三角形的角平分线是一条线段,而角平分线是一条射线.【设计意图】通过学生动手实践,掌握三角形的角平分线的概念,区别三角形的角平分线与角平分线的不同,并找到三角形的内心.为初三学习三角形的内切圆奠定基础.探究三 利用三角形的高、中线及角平分线的概念解决问题.★▲ ●活动① 三角形的高、中线、角平分线的概念及性质例1如图(1)所示,AD.BE.CF 是△ABC 的三条中线,则AB=2_____,BD=_____,AE= ______.如图(2)所示,AD.BE.CF 是△ABC 的三条角平分线,则∠1=________,∠3= ______,∠ACB=2__________.4321(2)(1)F EFEBC A BC【知识点】 三角形的中线和角平分线的概念【解题过程】(1)因为AD ,BE ,CF 是△ABC 的三条中线,则AB=2AF=2BF ,BD=CD ,AE=CE=AC ;(2)因为AD.BE.CF 是△ABC 的三条角平分线,则∠1=∠2,∠3=∠ABC ,∠ACB=2∠4.【思路点拨】已知三角形的中线,找准中点可得线段的数量关系;三角形的角平分线平分三角形的一个内角,所得的两个小角相等.【答案】(1)AF 或BF ,CD ,AC (2)∠2,∠ABC ,∠4练习:如图,在△ABC 中,AE 是中线,AD 是角平分线,AF 是高.则BE=_____=________;∠BAD=________=_______;∠AFB=______=90°.D E FABC【知识点】三角形的高、中线及角平分线的概念【解题过程】因为AE 是中线,则点E 为BC 的中点,所以BE=CE=BC ;因为AD 是角平分线,所以∠BAD=∠CAD=∠BAC ;又因为AF 是高,即 AF ⊥BC ,所以∠AFB=∠AFC=90°.【思路点拨】运用高、中线、角平分线的概念进行求解.【答案】BE=CE=BC ;∠BAD=∠CAD=∠BAC_;∠AFB=∠AFC=90°【设计意图】让学生熟练掌握三角形高、中线、角平分线的概念.能准确判定三角形的高、中线及角平分线.●活动② 三角形的中线运用例2 在△ABC 中,AD 是△ABC 的中线,E 为AB 的中点,则△AED 的面积与△ACD 的面积的数量关系为____________________.EBC【知识点】三角形的中线平分三角形的面积.【解题过程】在△ABC 中,AD 是△ABC 的中线,所以=;又因为E 为AB的中点,所以==【思路点拨】AD 是△ABC 的中线,所以AD 平分△ABC 的面积,同理DE 也平分△ABD 的面积.【答案】=练习:如图,点D.E.F分别是BC.AD.BE 的中点,且=1,求.EFB C【知识点】三角形的中线.【解题过程】∵D.E.F分别是BC.AD.BE的中点,∴AD是△ABC的中线,BE是△ABD的中线,AF是△ABE的中线,又∵=1,∴=2=2,=2=4,∴==8.【思路点拨】利用三角形的中线平分三角形的面积进行求解.【答案】83. 课堂总结知识梳理(1)三角形的高、中线、角平分线的概念.(2)三角形的高所在直线相交于一点;三角形的中线交于三角形内部一点,这个点叫做三角形的重心;三角形三条角平分线交于三角形内部一点,这个点叫做三角形的内心.(3)三角形的中线把三角形分成两个面积相等的三角形.重难点归纳(1)三角形的高、中线、角平分线都是线段.(2)注意重心和内心分别是三角形的中线和角平分线的交点.(3)灵活运用三角形的高、中线、角平分线的概念解决有关问题.。
人教版八年级数学上册11.1.2《三角形的高、中线与角平分线》教学设计一. 教材分析《三角形的高、中线与角平分线》是人教版八年级数学上册第11.1.2节的内容。
本节主要介绍了三角形的高、中线与角平分线的概念及其性质。
通过学习,学生能够理解三角形的高、中线与角平分线的定义,掌握它们之间的关系,并能运用它们解决实际问题。
本节内容是学生进一步学习三角形和其他几何图形的基础,对于培养学生的空间想象能力和逻辑思维能力具有重要意义。
二. 学情分析学生在学习本节内容前,已经学习了三角形的性质、角的度量等基础知识,对几何图形的认识有一定的基础。
但是,对于三角形的高、中线与角平分线的概念和性质,学生可能还不够熟悉。
因此,在教学过程中,需要通过实例和练习,帮助学生理解和掌握这些概念和性质。
三. 教学目标1.了解三角形的高、中线与角平分线的概念及其性质。
2.能够运用三角形的高、中线与角平分线解决实际问题。
3.培养学生的空间想象能力和逻辑思维能力。
四. 教学重难点1.三角形的高、中线与角平分线的概念及其性质。
2.运用三角形的高、中线与角平分线解决实际问题。
五. 教学方法1.采用问题驱动的教学方法,通过引导学生思考和探究,激发学生的学习兴趣和积极性。
2.利用几何画板和实物模型,直观展示三角形的高、中线与角平分线的性质,帮助学生理解和掌握。
3.通过练习和问题解决,巩固所学知识,提高学生的应用能力。
六. 教学准备1.准备几何画板和实物模型,用于展示三角形的高、中线与角平分线的性质。
2.准备相关的练习题和实际问题,用于巩固和应用所学知识。
七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾三角形的基本概念和性质,为新课的学习做好铺垫。
2.呈现(10分钟)利用几何画板和实物模型,展示三角形的高、中线与角平分线的定义和性质。
引导学生观察和思考,引导学生总结出三角形的高、中线与角平分线的性质。
3.操练(10分钟)让学生分组合作,利用几何画板和实物模型,进行三角形的高、中线与角平分线的操作练习。
第十一章三角形11.1与三角形有关的线段11.1.2三角形的高、中线与角平分线一、教学目标1.理解三角形的高、中线、角平分线的概念,让学生感受数学的严谨性。
2.能正确作出一个三角形的高、中线、角平分线.提高学生动手操作及解决问题的能力二、教学重点、难点重点:了解三角形的高、中线及角平分线概念的同时还要掌握它们的画法难点:钝角三角形的高的画法及不同类型的三角形高线的位置关系.三、教学用具刻度尺、直尺、量角器四、相关资源三角形三线的动态演示五、教学过程(一)复习导入把一根橡皮筋的一端固定在△ABC的顶点A上,再把橡皮筋的另一端从点B沿着BC边移动到点C.观察移动过程中形成的无数条线段(AD,AE,AF,AG…)中有没有特殊位置的线段?你认为有哪些特殊位置?学生根据以往的经验积累,找到以下特殊位置的线段(AD,AE,AF).设计意图:初步感知三角形的高、中线、角平分线,为下面抽象出它们的概念做准备.(二)探索新知1.教师布置学习任务,学生通过自学完成下表:设计意图:通过完成表格,使学生通过自主学习,掌握有关的概念.2.教师布置学习任务,要求学生按照三角形高线的定义分别画出锐角三角形、直角三角形、钝角三角形的高线,观察各个图形间的相同或不同点,并要求学生进行归纳.(1)任意画一个锐角△ABC,请你画出BC边上的高.(2)你能画出其他两边上的高吗?(3)通过画图你发现了什么?三角形的重要线段概念图形几何语言表示三角形的高线从三角形的一个顶点向它的对边所在直线作垂线段,顶点和垂足之间的线段叫做三角形的高∵AD是△ABC的BC上的高,∴AD⊥BC∠ADB=∠ADC=90°.三角形的中线三角形中,连接顶点和对边中点的线段叫做三角形的中线∵AE是△ABC的BC上的中线,∴BE=CE=12BC.三角形的角平分线三角形一个内角的平分线与它的对边相交,这个角的顶点与交点间的线段叫做三角形的角平分线∵AF是△ABC的∠BAC的角平分线,∴∠BAF=∠CAF=12BAC锐角三角形的三条高交于同一点.(4)锐角三角形的三条高是在三角形的内部还是外部?锐角三角形的三条高都在三角形的内部.(5)画出直角三角形的三条高,它们有怎样的位置关系?直角三角形的三条高交于直角顶点.直角边BC边上的高是AB;直角边AB边上的高是CB;斜边AC边上的高是BD.(6)钝角三角形的三条高交于一点吗?钝角三角形的三条高不相交于一点.(7)它们所在的直线交于一点吗?钝角三角形的三条高所在直线交于一点.学生操作,观察,交流,归纳.归纳:三角形的三条高的特性:锐角三角形直角三角形钝角三角形高在三角形内部的数量 3 1 1 高之间是否相交相交相交不相交高所在的直线是否相交相交相交相交三条高所在直线的交点的位置三角形内部直角顶点三角形外部三角形的三条高所在直线交于一点.在此过程中,教师要关注学生能否正确地画出钝角三角形的高,这是本节课的难点. 设计意图:通过学生的动手操作、交流,讨论掌握三角形高线的画法,通过进一步观察,归纳得出三角形高线的特性.3.类似地,要求学生按照三角形中线与角平分线线的定义分别画出锐角三角形、直角三角形、钝角三角形的中线与角平分线,观察各个图形间的相同或不同点,并要求学生进行归纳.结论:三角形的三条中线在三角形的内部交于一点.结论:三角形的三条角平分线在三角形的内部交于一点.设计意图:类比三角形的高的探究,得出三角形中线、角平分线的画法和相关性质,培养学生的观察与概括能力,体验学习数学的过程.(三)课堂练习1.三角形的三条高在( ).A .三角形的内部B .三角形的外部C .三角形的边上D .三角形的内部、外部或边上2.如图,BO ,CO 分别平分∠ABC 和∠ACB ,∠A =40°,则∠BOC = .3.如图,AD 是△ABC 的中线,则ABD S △ ACD S △.学生独立完成.答案:1.D.2.110°.3.=.设计意图:通过练习,加深对三角形的高、中线、角平分线的认识.六、课堂小结1.三角形的高、中线、角平分线等有关概念及它们的画法.2.三角形的高、中线、角平分线的几何表达及简单应用.注意:(1)每个三角形都有三条高、三条中线、三条角平分线.(2)三角形的三条高交于一点:锐角三角形的高交于三角形内一点,直角三角形的高交于直角的顶点,钝角三角形的高交于三角形外一点.三角形的三条中线交于三角形内一点,三角形的三条角平分线也交于三角形内一点.(3)三角形的高、中线、角平分线都是线段.(4)能将三角形的面积平均分成两部分的线是三角形的中线.设计意图:通过小结,使学生梳理本节所学内容,培养学生总结概括的能力.七、板书设计11.1.2三角形的高、中线与角平分线三角形的高:从三角形的一个顶点向它的对边所在直线作垂线段,顶点和垂足之间的线段叫做三角形的高三角形的中线:三角形中,连接顶点和对边中点的线段叫做三角形的中线三角形的角平分线:三角形一个内角的平分线与它的对边相交,这个角的顶点与交点间的线段叫做三角形的角平分线三角形的高、中线、角的平分线的作法。