数学选修2-2第一章试题
- 格式:doc
- 大小:269.50 KB
- 文档页数:13
数学选修 2-2 第一章单元测试题一、选择题 ( 本大题共 12 小题,每小题 5 分,共 60 分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数f ( x) 的定义域为开区间 ( a,b) ,导函数f′(x) 在( a,b) 内的图像如图所示,则函数 f ( x)在开区间( a,b)内有极小值点()A.1 个B.2 个C.3 个D.4 个1 12.在区间[ 2,2] 上,函数 f ( x)=x2+px+q 与g( x)=2x+x2在1同一点处取得相同的最小值,那么f(x)在[2,2]上的最大值是()C.8D.423.点P在曲线y=x3-x+3上移动,设点P处的切线的倾斜角为α,则α 的取值范围是( )ππ3A.[0 ,2 ] B.[0 ,2 ] ∪[ 4π,π)3 π 3C.[ 4π,π ) D.[ 2,4π]14.已知函数f ( x) =2x4-2x3+3m,x∈R,若f ( x) +9≥0恒成立,则实数 m的取值范围是()3 3A.m≥2 B.m>23 3C.m≤2 D.m<2x2 25.函数f ( x) =cos x-2cos 2的一个单调增区间是 ()f x 0+3 -f x 06.设f ( x) 在x=x0 处可导,且lim Δx=1,Δx→0则 f ′(x0)等于( )A.1 B.0C.3x+97.经过原点且与曲线y=x+5相切的切线方程为()A.x+y=0B.x+25y=0C.x+y= 0 或x+25y=0D.以上皆非8.函数f ( x) =x3+ax2+bx+c,其中a,b,c为实数,当a2-3b<0 时,f ( x) 是()A.增函数B.减函数C.常数D.既不是增函数也不是减函数13 29.若a>2,则方程3x -ax +1=0 在(0,2) 上恰好有 ()A.0 个根B.1 个根C.2 个根D.3 个根1 10.一点沿直线运动,如果由始点起经过t s 后距离为s=4t 4-53t 3+2t 2,那么速度为零的时刻是( )A.1 s 末B.0 sC.4 s 末D.0,1,4 s 末x2,x∈[0,1],2f(x) d x 等于 () 11.设f ( x) =则2-x,x∈ 1,2] ,0D.不存在sin x sin x1 sin x2 12.若函数 f(x) =x,且 0<x1<x2 <1,设 a=x1 ,b=x2 ,则 a,b 的大小关系是 ( )A.a>b B.a<bC.a=b D.a、b的大小不能确定二、填空题 ( 本大题共 4 小题,每小题 5 分,共 20 分.把答案填在题中横线上 )1 3 213.若 f(x) =3x -f ′(1)x +x+5,则 f ′(1) = ________.π π14.已知函数 f(x) 满足 f(x) =f( π-x) ,且当 x∈ -2,2 时,f(x) =x+sin x,设a=f(1) ,b=f(2) ,c=f(3) ,则a、b、c 的大小关系是 ________.15.已知函数f(x) 为一次函数,其图像经过点(2,4) ,且1f(x) d x=3,则函数f(x) 的解析式为________.16.(2010 ·江苏卷) 函数2y=x(x>0)的图像在点 2(a k,a k) 处的切线与x 轴的交点的横坐标为a k+1,其中k∈N*. 若a1=16,则a1+a3+a5的值是________.三、解答题 ( 本大题共 6 小题,共 70 分,解答应出写文字说明、证明过程或演算步骤 )17.(10 分) 如图,直线y=kx分抛物线y=x-x2与x轴所围成图形为面积相等的两部分,求k 的值.18.(12 分) 已知函数 f(x) =x4-4x3+ax2-1 在区间 [0,1] 上单调递增,在区间 [1,2) 上单调递减.(1)求 a 的值;(2)若点 A(x0,f(x0)) 在函数 f(x) 的图像上,求证:点 A关于直线x=1 的对称点 B 也在函数 f(x) 的图像上.19.(12 分) 设 x=- 2 与 x=4 是函数 f(x) =x3+ax2+bx 的两个极值点.(1)求常数 a,b;(2)试判断 x=- 2,x= 4 是函数 f(x) 的极大值还是极小值,并说明理由.20.(12 分) 已知 f(x) =ax3-6ax2+b,x∈[ -1,2] 的最大值为 3,最小值为- 29,求 a,b 的值.21.(12 分)(2010 ·重庆卷 ) 已知函数 f(x) =ax3+x2+ bx( 其中常数a,b∈R) ,g( x) =f ( x) +f′(x) 是奇函数.(1)求 f ( x)的表达式;(2)讨论 g( x)的单调性,并求 g( x)在区间[1,2]上的最大值与最小值.1-x22.(12 分) 已知函数f ( x) =ln( ax+1) +1+x,x≥0,其中a>0.(1)若 f ( x)在 x=1处取得极值,求 a 的值;(2)求 f ( x)的单调区间;(3)若 f ( x)的最小值为1,求 a 的取值范围.参考答案1.答案 A解析设极值点依次为 x1,x2,x3且 a<x1<x2<x3<b,则 f ( x) 在( a,x1) ,( x2,x3) 上递增,在 ( x1,x2) ,( x3,b) 上递减,因此,x1、x3是极大值点,只有x2是极小值点.2.答案 D3.答案 B4.答案 A1解析因为函数 f ( x)=2x4-2x3+3m,所以 f ′(x)=2x3-6x2.令 f ′(x)=0,得 x=0或 x=3,经检验知 x=3是函数的一个最27小值点,所以函数的最小值为 f (3)=3m-2.不等式 f ( x)+9≥0恒成27 3立,即 f ( x)≥-9恒成立,所以3m-2≥-9,解得 m≥2.5.答案 A解析 f ( x)=cos2x-cos x-1,∴f′(x)=-2sin x·cos x+sin x=sin x·(1-2cos x).令 f ′(x)>0,结合选项,选A.6. 答案 D7. 答案 D8. 答案 A9. 答案 B解析 1 3 2设 f ( x ) =3x -ax +1,则2f ′(x )=x -2ax =x ( x -2a ) ,当 x ∈(0,2) 时, f ′(x )<0,f ( x ) 在(0,2) 上为减函数,又 f (0) f (2) =8 111 3-4a +1 = 3 -4a <0,f ( x ) =0 在(0,2) 上恰好有一个根,故选 B.10. 答案 D11. 答案 C解析 数形结合,如图.2f(x) d x = 1x 2d x + 2(2 -x) d x0 11 3 11 22= 3x+ 2x -2x11 1= 3+(4 -2-2+2)5= 6,故选 C .12. 答案Af ′(x) =x cos x -sin x解析 x 2, 令 g(x) =x cos x -sin x ,则g ′(x) =- x sin x +cos x -cos x =- x sin x.∵0<x<1,∴ g ′(x)<0 ,即函数 g(x) 在 (0,1) 上是减函数,得 g(x)<g(0) =0,故 f ′(x)<0 ,函数 f(x) 在(0,1) 上是减函数,得 a>b ,故选A .213. 答案 32 2解析 f ′(x) = x -2f ′(1)x + 1,令 x=1,得 f ′(1) =3.14. 答案 c<a<b解析f(2) = f( π-2) , f(3) = f( π- 3) ,因为 f ′(x) = 1+π ππcos x≥0,故f(x)在-2,2上是增函数,∵2 >π-2>1>π-3>0,∴f( π-2)>f(1)>f( π-3) ,即 c<a<b.2815.答案 f(x) =3x+3解析设函数 f(x) =ax+b(a ≠0) ,因为函数 f(x) 的图像过点(2,4) ,所以有 b=4-2a.∴1 f(x) d x= 1 (ax +4-2a) d x0 01 2 1 1=[ ax +(4 -2a)x] | 0=a+4-2a=1.2 22 8 2 8∴a=3. ∴b=3. ∴f(x) =3x+3.16. 答案21解析2 2∵y′=2x,∴过点( a k,a k)处的切线方程为y-a k=2a k( x1-a k),又该切线与 x 轴的交点为( a k+1,0),所以 a k+1=2a k,即数列{ a k}1是等比数列,首项a1=16,其公比q=2,∴ a3=4,a5=1,∴ a1+a3 +a5=21.17. 解析抛物线 y =x -x 2 与 x 轴两交点的横坐标为x 1=0,x 2=1,所以,抛物线与 x 轴所围图形面积 S = 12) d x =x 2 x 3 11 (x -x 2 -3 0=2-1 13=6.y =x -x 2,又 由此可得抛物线 y =x -x 2 与 y =kx 两交点的横y =kx ,S- 2 x 3 -坐标 x 3= , 4= - ,所以 = 1-k (x - x 2 kx) d x =1 k x - 1k -0 x 1 k 2 02313=6(1 -k) .3又 S = ,所以 (1 -k) 3=1,∴ k =1- 4.622118. 解析 (1) 由函数 f(x) =x4-4x3+ax2-1 在区间 [0,1] 单调递增,在区间 [1,2) 单调递减,∴x =1 时,取得极大值,∴ f ′(1) = 0.又 f ′(x) = 4x3-12x2+2ax ,∴4-12+2a = 0? a = 4.(2) 点 A(x0,f(x0)) 关于直线 x =1 的对称点 B 的坐标为 (2 -x0, f(x0)) ,f(2 -x0) =(2 -x0)4 -4(2 -x0)3 +4(2 -x0)2 -1= (2 -x0)2[(2 -x0) -2]2 -1= x 40-4x30+ ax20- 1=f(x0) ,∴A 关于直线 x =1 的对称点 B 也在函数 f(x) 的图像上.19.解析 f ′(x) =3x2+2ax+b.(1) 由极值点的必要条件可知:12-4a+b=0,f ′( - 2) =f ′(4) = 0,即48+8a+b=0,解得 a=- 3,b=- 24.或f ′(x) = 3x2+2ax+b=3(x +2)(x -4)=3x2-6x-24,也可得 a=- 3,b=- 24.(2) 由 f ′(x) = 3(x +2)(x -4) .当 x<- 2 时, f ′(x) > 0,当- 2<x<4 时, f ′(x) < 0. ∴x=- 2 是极大值点,而当x>4 时, f ′(x) > 0,∴x=4 是极小值点.20.解析 a≠0( 否则 f(x) =b 与题设矛盾 ) ,由f ′(x) = 3ax2-12ax=0 及 x∈[ - 1,2] ,得 x=0. (1) 当 a>0 时,列表:x ( -1,0) 0 (0,2)f ′(x) +0 -f(x) 增极大值 b 减由上表知, f(x) 在[ - 1,0] 上是增函数,f(x) 在[0,2] 上是减函数.则当 x=0 时, f(x) 有最大值,从而b=3.又f( -1) =- 7a+3,f(2) =- 16a+3,∵a>0,∴ f( -1) >f(2) .从而 f(2) =- 16a+3=- 29,得a=2.(2)当 a<0 时,用类似的方法可判断当 x=0 时 f(x) 有最小值.当x=2 时, f(x) 有最大值.从而 f(0) =b=- 29, f(2)=-16a-29=3,得a=- 2.综上, a= 2,b=3 或 a=- 2,b=- 29.21.解析 (1) 由题意得f′(x) = 3ax2+2x+b. 因此g( x) =f ( x) +f′(x)=ax3+(3 a+1) x2+( b+2) x+b.因为函数 g( x)是奇函数,所以g(-x)=- g( x),即对任意实数x,有 a(- x)3+(3 a+1)(-x)2+( b +2)( -x) +b=- [ ax3+(3 a+1) x2+( b+2) x+b] ,从而 3a+1=0,b=0,解得a=-1,b=0,因此f ( x) 的解析式为f ( x) =-x3+x2. 331(2)由(1) 知g( x) =-1x3+2x,所以g′(x) =-x2+2. 3令g′(x)=0,解得x1=-2,x2=2,则当x<-2或x> 2时,g′(x)<0,从而 g( x)在区间(-∞,-2],[ 2,+∞)上是减函数;当- 2<x< 2时,g′(x)>0 ,从而g( x) 在[ - 2, 2] 上是增函数.由前面讨论知, g( x)在区间[1,2] 上的最大值与最小值只能在x=1,2,2 时取得,而g(1)5=3,g( 2) =4 23,g(2)4=3. 因此g( x)在区间 [1,2] 上的最大值为g( 2) =4 2,最小值为3g(2)4=3.22. 分析解答本题,应先正确求出函数 f ( x)的导数f ′(x),再利用导数与函数的单调性、导数与极值、导数与最值等知识求解,并注意在定义域范围内求解.a 2 ax2+a-2解析 (1) f′(x) =ax+1-1+x 2=ax+1 1+x 2,∵f ( x)在 x=1处取得极值,2∴f ′(1)=0,即 a·1+a-2=0,解得 a=1.(2) f′(x) =ax2+a-22,ax+1 1+x∵x≥0, a>0,∴ ax+1>0.①当 a≥2时,在区间[0,+∞)上, f ′(x)>0,∴f( x)的单调增区间为[0,+∞).②当 0<a<2 时,由 f ′(x)>0,解得 x> 2-a a.由 f ′(x)<0,解得 x< 2-a a.∴f ( x)的单调减区间为(0, 2-a 2-a a ) ,单调增区间为 ( a,+∞ ) .(3) 当a≥2时,由 (2) ①知,f ( x) 的最小值为f (0) =1;当 0<a<2,由 (2) ②知,f ( x) 在x=2-aa 处取得最小值,且2-af ( a )< f (0) =1.综上可知,若 f ( x)的最小值为1,则 a 的取值范围是[2,+∞).。
一、选择题1.在数学归纳法的递推性证明中,由假设n k =时成立推导1n k =+时成立时,()f n =1+1112321n ++⋅⋅⋅+-增加的项数是( ) A .1B .21k +C .2kD .21k -2.某个命题与正整数n 有关,如果当()n k k N +=∈时命题成立,那么可推得当1n k =+时命题也成立. 现已知当8n =时该命题不成立,那么可推得 ( ) A .当7n =时该命题不成立 B .当7n =时该命题成立 C .当9n =时该命题不成立D .当9n =时该命题成立3.某单位实行职工值夜班制度,已知,,,,5A B C D E 共名职工每星期一到星期五都要值一次夜班,且没有两人同时值夜班,星期六和星期日不值夜班,若A 昨天值夜班,从今天起,B C 至少连续4天不值夜班,D 星期四值夜班,则今天是星期几( )A .五B .四C .三D .二4.设函数()nf x '是()n f x 的导函数,0()(cos sin )xf x e x x =+,1()f x '=,2()f x '=,*1())n f x n N '+=∈,则2018()f x =( ) A .(cos sin )x e x x + B .(cos sin )x e x x - C .(cos sin )x e x x -+ D .(cos sin )x e x x --5.给出下面四个推理:①由“若a b 、是实数,则+≤+a b a b ”推广到复数中,则有“若12z z 、是复数,则1212z z z z +≤+”;②由“在半径为R 的圆内接矩形中,正方形的面积最大”类比推出“在半径为R 的球内接长方体中,正方体的体积最大”;③以半径R 为自变量,由“圆面积函数的导函数是圆的周长函数”类比推出“球体积函数的导函数是球的表面积函数”;④由“直角坐标系中两点11(,)A x y 、22(,)B x y 的中点坐标为1212(,)22x x y y ++”类比推出“极坐标系中两点11(,)C ρθ、22(,)D ρθ的中点坐标为1212(,)22ρρθθ++”.其中,推理得到的结论是正确的个数有( )个 A .1B .2C .3D .46.德国数学家科拉茨1937年提出了一个著名的猜想:任给一个正整数n ,如果n 是偶数,就将它减半(即2n);如果n 是奇数,则将它乘3加1(即3n+1),不断重复这样的运算,经过有限步后,一定可以得到1. 对于科拉茨猜想,目前谁也不能证明,也不能否定,现在请你研究:如果对正整数n (首项)按照上述规则施行变换后的第8项为1(注:l 可以多次出现),则n 的所有不同值的个数为 A .4B .6C .8D .327.在等差数列{}n a 中,如果,,,m n p r N *∈,且3m n p r ++=,那么必有3m n p r a a a a ++=,类比该结论,在等比数列{}n b 中, 如果,,,m n p r N *∈,且3m n p r ++=,那么必有( )A .3++=m n p r b b b bB .3++=m n p r b b b b C .3=m n p r b b b bD .3m n p r b b b b =8.袋子里有编号为2,3,4,5,6的五个球,某位教师从袋中任取两个不同的球. 教师把所取两球编号的和只告诉甲,其乘积只告诉乙,让甲、乙分别推断这两个球的编号. 甲说:“我无法确定.” 乙说:“我也无法确定.”甲听完乙的回答以后,甲又说:“我可以确定了.” 根据以上信息, 你可以推断出抽取的两球中 A .一定有3号球B .一定没有3号球C .可能有5号球D .可能有6号球9.有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说:“是乙或丙获奖.”乙说:“甲、丙都未获奖.”丙说:“我获奖了.”丁说:“是乙获奖.”四位歌手的话只有两句是对的,则获奖的歌手是( ) A .甲 B .乙C .丙D .丁10.用反证法证明“平面四边形中至少有一个内角不超过90︒”,下列假设中正确的是( )A .假设有两个内角超过90︒B .假设有三个内角超过90︒C .假设至多有两个内角超过90︒D .假设四个内角均超过90︒11.在一次连环交通事故中,只有一个人需要负主要责任,但在警察询问时,甲说:“主要责任在乙”;乙说:“丙应负主要责任”;丙说“甲说的对”;丁说:“反正我没有责任”,四人中只有一个人说的是真话,则该事故中需要负主要责任的人是( ) A .丁B .乙C .丙D .甲12.一名法官在审理一起珍宝盗窃案时,四名嫌疑人甲、乙、丙、丁的供词如下,甲说:“罪犯在乙、丙、丁三人之中”;乙说:“我没有作案,是丙偷的”;丙说:“甲、乙两人中有一人是小偷”;丁说:“乙说的是事实”.经过调查核实,四人中有两人说的是真话,另外两人说的是假话,且这四人中只有一人是罪犯,由此可判断罪犯是( ) A .乙B .甲C .丁D .丙二、填空题13.已知f (x )=21xx +(x >0),若f 1(x )=f (x ),f n +1=f (f n (x )),n ∈N *,则猜想f 2020(x )=_____.14.数表的第1行只有两个数字3,7,从第2行开始,先按序照搬上一行的数再在相邻两数之间插入这两个数的和,如下图所示,那么第10行的各个数之和等于__________.15.“开心辞典”中有这样一个问题:给出一组数,要你根据规律填出后面的第几个数.现给出一组数:11315,,,,228432---,…,则第8个数可以是__________.16.刘老师带甲、乙、丙、丁四名学生去西安参加自主招生考试,考试结束后刘老师向四名学生了解考试情况.四名学生回答如下: 甲说:“我们四人都没考好.” 乙说:“我们四人中有人考的好.” 丙说:“乙和丁至少有一人没考好.” 丁说:“我没考好.”结果,四名学生中有两人说对了,则这四名学生中的______________两人说对了. 17.研究cos n α的公式,可以得到以下结论:2cos )22cos )32cos )42cos )22cos )52cos )32cos )62cos )42cos )22cos )72cos )52cos )32cos 2(2,2cos3(3(2cos ),2cos 4(4(2,2cos5(5(5(2cos ),2cos 6(6(9(2,2cos 7(7(14(7(2cos ααααααααααααααααααααα=-=-=-+=-+=-+-=-+-),以此类推:422cos8(2cos )(2cos )(2cos )16(2cos )m p n q r ααααα=++-+,则m n p q r ++++=__________.18.如图所示,在三棱锥S ﹣ABC 中,SA ⊥SB ,SB ⊥SC ,SC ⊥SA ,且SA ,SB ,SC 和底面ABC 所成的角分别为α1,α2,α3,△SBC ,△SAC ,△SAB 的面积分别为S 1,S 2,S 3,类比三角形中的正弦定理,给出空间图形的一个猜想是________.19.观察下列等式:……据此规律,第个等式可为____________________________________.20.用反证法证明“,a b N ∈,ab 可被5整除,那么a ,b 中至少有一个能被5整除”时,应假设_______.三、解答题21.设数列{}n x 各项均为正数,且满足()22221222,n x x x n n n N ++++=+∈,(1)求数列{}n x 的通项公式n x ; (2)已知122311113n n x x x x x x ++++=+++,求n ;(3)试用数学归纳法证明:2122312(1)1n n x x x x x x n +⎡⎤+++<+-⎣⎦.22.用数学归纳法证明:111111111234212122n n n n n-+-+⋯+-=++⋯+-++. 23.已知{}n a 是等差数列,{}n b 是等比数列,11331542,,a b a b a a b ===+=.设,n n n n c a b S =是数列{}n c 的前n 项和.(1)求,n n a b ;(2)试用数学归纳法证明:18(34)2n n S n +=+-⋅.24.已知数列{}n a 满足1a a =,112n na a +=-(*n N ∈); (1)求2a 、3a 、4a ; (2)猜想数列{}n a 的通项公式; (3)用数学归纳法证明你的猜想; 25.在数列{}n a 中,111,21nn n a a a a +==+,其中1,2,3,n =.(Ⅰ)计算234,,a a a 的值;(Ⅱ)猜想数列{}n a 的通项公式,并用数学归纳法加以证明.26.在数列{}n a 中,112a =,133n n n a a a +=+,求2a 、3a 、4a 的值,由此猜想数列{}n a 的通项公式,并用数学归纳法证明你的猜想.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】分析:分别计算当n k =时,()1?f k = + 1112321k ++⋅⋅⋅+-,当1n k =+成立时, ()1?f k = + 1111123212221k k k k ++⋅⋅⋅+++⋅⋅⋅+-+-,观察计算即可得到答案 详解:假设n k =时成立,即()1?f k = + 1112321k ++⋅⋅⋅+- 当1n k =+成立时,()1?f k = + 1111123212221k k k k ++⋅⋅⋅+++⋅⋅⋅+-+- ∴增加的项数是()()221212k k k k +---=故选C点睛:本题主要考查的是数学归纳法。
数学选修2-2第一章导数及其应用1.一质点的运动方程是253s t =-,则在一段时间[11]t +∆,内相应的平均速度为( ) A.3()6t ∆+ B.3()6t -∆+ C.3()6t ∆- D.3()6t -∆-2.下列说法正确的是( )A.函数的极大值就是最大值 B.函数的极小值就是函数的最小值 C.函数的最值一定是极值 D.闭区间上的连续函数一定存在最值3.抛物线214y x =在点(21)Q ,处的切线方程( ) A.10x y -++= B.30x y +-= C.10x y -+= D.10x y +-=4.设21()(1)f x x =-,则(0)f '等于( ) A.2-B.1- C.1 D.25.0'()f x =0是可导函数y =f(x)在点x =x 0处有极值的 ( )A 充分不必要条件B 必要不充分条件C 充要条件 (D )非充分非必要条件6.曲线y=x 3+x-2 在点P 0处的切线平行于直线y=4x ,则点P 0的坐标是( ) A .(0,1) B.(1,0) C.(-1,-4)或(1,0) D.(-1,-4)7.函数y=2x 3-3x 2-12x+5在[0,3]上的最大值与最小值分别是( ) A .5 , -15 B.5 , 4 C.-4 , -15 D.5 , -168.已知201()212x x f x x x ⎧⎪=⎨-<⎪⎩,,,, ≤≤ ≤则20()f x dx =⎰( )A.56 B.76 C.43 D.53 9.设()f x '是函数()f x 的导函数,()y f x '=的图象如图所示,则()y f x =的图象最有可能的是( )10.设313y x ax c =-+在()-+,∞∞上单调递增,则( ) A.0a <且0c = B.0a >且c 是任意实数 C.0a <且c 是任意实数 D.0a <且0c ≠11.从边长为10cm 16cm ⨯的矩形纸板的四角截去四个相同的小正方形,作成一个无盖的盒子,则盒子容积的最大值为( ) A.312cmB.372cmC.3144cmD.3160cm12.如图,由曲线32y x x =-与2y x =所围图形的面积为( ) A.512B.3712C.94 D.8313.若对于任意x ,有3()4(1)1f x x f '==-,,则此函数解析式为 . 14.函数32x x y -=的单调增区间为 ,单调减区间为__________________; 15.函数()323922y x x x x =---<<有极大值 ,极小值 ;16.若()sin cos f x x α=-,则'()f α等于 ;17、已知3)2(3123++++=x b bx x y 是R 上的单调增函数,则b 的取值范围是 18.设321()252f x x x x =--+,当]2,1[-∈x 时,()f x m <恒成立,则实数m 的取值范围为 ; 19.计算下列定积分。
数学选修2-2第一章单元测试题一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数f (x )的定义域为开区间(a ,b ),导函数f ′(x )在(a ,b )内的图像如图所示,则函数f (x )在开区间(a ,b )内有极小值点( )A .1个B .2个C .3个D .4个2.在区间[12,2]上,函数f (x )=x 2+px +q 与g (x )=2x +1x2在同一点处取得相同的最小值,那么f (x )在[12,2]上的最大值是( )A.134 B.54 C .8D .43.点P 在曲线y =x 3-x +23上移动,设点P 处的切线的倾斜角为α,则α的取值范围是( )A .[0,π2]B .[0,π2]∪[34π,π)C .[34π,π)D .[π2,34π]4.已知函数f (x )=12x 4-2x 3+3m ,x ∈R ,若f (x )+9≥0恒成立,则实数m 的取值范围是( )A .m ≥32B .m >32C .m ≤32D .m <325.函数f (x )=cos 2x -2cos 2x2的一个单调增区间是( )A.⎝ ⎛⎭⎪⎫π3,2π3B.⎝ ⎛⎭⎪⎫π6,π2C.⎝⎛⎭⎪⎫0,π3D.⎝ ⎛⎭⎪⎫-π6,π66.设f (x )在x =x 0处可导,且lim Δx→0 错误!=1,则f ′(x 0)等于( )A .1B .0C .3D.137.经过原点且与曲线y =x +9x +5相切的切线方程为( )A .x +y =0B .x +25y =0C .x +y =0或x +25y =0D .以上皆非8.函数f (x )=x 3+ax 2+bx +c ,其中a ,b ,c 为实数,当a 2-3b <0时,f (x )是( )A .增函数B .减函数C .常数D .既不是增函数也不是减函数9.若a >2,则方程13x 3-ax 2+1=0在(0,2)上恰好有( )A .0个根B .1个根C .2个根D .3个根10.一点沿直线运动,如果由始点起经过t s 后距离为s =14t 4-53t 3+2t 2,那么速度为零的时刻是( )A .1 s 末B .0 sC .4 s 末D .0,1,4 s 末11.设f (x )=错误!则错误!f(x)d x 等于( ) A .34 B .45 C .56D .不存在12.若函数f(x)=sinx x ,且0<x 1<x 2<1,设a =sinx1x1,b =sinx2x2,则a ,b 的大小关系是( ) A .a>b B .a<bC .a =bD .a 、b 的大小不能确定二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.若f(x)=13x 3-f ′(1)x 2+x +5,则f ′(1)=________.14.已知函数f(x)满足f(x)=f(π-x),且当x ∈⎝ ⎛⎭⎪⎫-π2,π2时,f(x)=x +sin x ,设a =f(1),b =f(2),c =f(3),则a 、b 、c 的大小关系是________.15.已知函数f(x)为一次函数,其图像经过点(2,4),且⎠⎛01f(x)d x =3,则函数f(x)的解析式为________.16.(2010·江苏卷)函数y =x 2(x >0)的图像在点(a k ,a 2k )处的切线与x 轴的交点的横坐标为a k +1,其中k ∈N *.若a 1=16,则a 1+a 3+a 5的值是________.三、解答题(本大题共6小题,共70分,解答应出写文字说明、证明过程或演算步骤)17.(10分)如图,直线y =kx 分抛物线y =x -x 2与x 轴所围成图形为面积相等的两部分,求k 的值.18.(12分)已知函数f(x)=x4-4x3+ax2-1在区间[0,1]上单调递增,在区间[1,2)上单调递减.(1)求a 的值;(2)若点A(x0,f(x0))在函数f(x)的图像上,求证:点A 关于直线x =1的对称点B 也在函数f(x)的图像上.19.(12分)设x =-2与x =4是函数f(x)=x3+ax2+bx 的两个极值点.(1)求常数a ,b ;(2)试判断x =-2,x =4是函数f(x)的极大值还是极小值,并说明理由.20.(12分)已知f(x)=ax3-6ax2+b ,x ∈[-1,2]的最大值为3,最小值为-29,求a ,b 的值.21.(12分)(2010·重庆卷)已知函数f(x)=ax 3+x 2+bx(其中常数a ,b ∈R ),g (x )=f (x )+f ′(x )是奇函数.(1)求f (x )的表达式;(2)讨论g (x )的单调性,并求g (x )在区间[1,2]上的最大值与最小值.22.(12分)已知函数f (x )=ln(ax +1)+1-x 1+x ,x ≥0,其中a >0.(1)若f (x )在x =1处取得极值,求a 的值; (2)求f (x )的单调区间;(3)若f (x )的最小值为1,求a 的取值范围.参考答案 1.答案 A解析 设极值点依次为x 1,x 2,x 3且a <x 1<x 2<x 3<b ,则f (x )在(a ,x 1),(x 2,x 3)上递增,在(x 1,x 2),(x 3,b )上递减,因此,x 1、x 3是极大值点,只有x 2是极小值点.2.答案 D3.答案 B4.答案 A解析 因为函数f (x )=12x 4-2x 3+3m ,所以f ′(x )=2x 3-6x 2.令f ′(x )=0,得x =0或x =3,经检验知x =3是函数的一个最小值点,所以函数的最小值为f (3)=3m -272.不等式f (x )+9≥0恒成立,即f (x )≥-9恒成立,所以3m -272≥-9,解得m ≥32.5.答案 A解析 f (x )=cos 2x -cos x -1,∴f ′(x )=-2sin x ·cos x +sin x =sin x ·(1-2cos x ). 令f ′(x )>0,结合选项,选A. 6.答案 D 7.答案 D 8.答案 A 9.答案 B解析 设f (x )=13x 3-ax 2+1,则f ′(x )=x 2-2ax =x (x -2a ),当x∈(0,2)时,f ′(x )<0,f (x )在(0,2)上为减函数,又f (0)f (2)=1⎝ ⎛⎭⎪⎫83-4a +1=113-4a <0, f (x )=0在(0,2)上恰好有一个根,故选B. 10.答案 D 11.答案 C解析 数形结合,如图.⎠⎜⎛02f(x)d x =⎠⎜⎛01x 2d x +⎠⎜⎛12(2-x)d x =⎪⎪⎪13x310错误!错误! =13+(4-2-2+12) =56,故选C . 12.答案 A解析 f ′(x)=xcosx -sinxx2,令g(x)=x cos x -sin x ,则g ′(x)=-x sin x +cos x -cos x =-x sin x.∵0<x<1,∴g ′(x)<0,即函数g(x)在(0,1)上是减函数,得g(x)<g(0)=0,故f ′(x)<0,函数f(x)在(0,1)上是减函数,得a>b ,故选A .13.答案 23解析 f ′(x)=x 2-2f ′(1)x +1,令x =1,得f ′(1)=23.14.答案 c<a<b解析 f(2)=f(π-2),f(3)=f(π-3),因为f ′(x)=1+cos x ≥0,故f(x)在⎝ ⎛⎭⎪⎫-π2,π2上是增函数,∵π2>π-2>1>π-3>0,∴f(π-2)>f(1)>f(π-3),即c<a<b.15.答案 f(x)=23x +83解析 设函数f(x)=ax +b(a ≠0),因为函数f(x)的图像过点(2,4),所以有b =4-2a.∴⎠⎛01f(x)d x =⎠⎛01 (ax +4-2a)d x =[12ax 2+(4-2a)x] |10=12a +4-2a =1. ∴a =23.∴b =83.∴f(x)=23x +83.16.答案 21解析 ∵y ′=2x ,∴过点(a k ,a 2k )处的切线方程为y -a 2k =2a k (x -a k ),又该切线与x 轴的交点为(a k +1,0),所以a k +1=12a k ,即数列{a k }是等比数列,首项a 1=16,其公比q =12,∴a 3=4,a 5=1,∴a 1+a 3+a 5=21.17.解析 抛物线y =x -x 2与x 轴两交点的横坐标为x 1=0,x 2=1,所以,抛物线与x 轴所围图形面积S =⎠⎜⎛01(x -x 2)d x =⎪⎪⎪⎝ ⎛⎭⎪⎫x22-x3310=12-13=16. 又⎩⎪⎨⎪⎧y =x -x2,y =kx ,由此可得抛物线y =x -x 2与y =kx 两交点的横坐标x 3=0,x 4=1-k ,所以S2=⎠⎛01-k (x -x 2-kx)d x =⎪⎪⎪⎝ ⎛⎭⎪⎫1-k 2x2-x331-k 0=16(1-k)3. 又S =16,所以(1-k)3=12,∴k =1-342.18.解析 (1)由函数f(x)=x4-4x3+ax2-1在区间[0,1]单调递增,在区间[1,2)单调递减,∴x =1时,取得极大值,∴f ′(1)=0. 又f ′(x)=4x3-12x2+2ax , ∴4-12+2a =0⇒a =4.(2)点A(x0,f(x0))关于直线x =1的对称点B 的坐标为(2-x0,f(x0)),f(2-x0)=(2-x0)4-4(2-x0)3+4(2-x0)2-1 =(2-x0)2[(2-x0)-2]2-1 =x40-4x30+ax20-1=f(x0),∴A 关于直线x =1的对称点B 也在函数f(x)的图像上. 19.解析 f ′(x)=3x2+2ax +b.(1)由极值点的必要条件可知:f ′(-2)=f ′(4)=0,即⎩⎪⎨⎪⎧12-4a +b =0,48+8a +b =0,解得a =-3,b =-24.或f ′(x)=3x2+2ax +b =3(x +2)(x -4) =3x2-6x -24, 也可得a =-3,b =-24. (2)由f ′(x)=3(x +2)(x -4).当x <-2时,f ′(x)>0,当-2<x <4时,f ′(x)<0. ∴x =-2是极大值点,而当x >4时,f ′(x)>0, ∴x =4是极小值点.20.解析 a ≠0(否则f(x)=b 与题设矛盾), 由f ′(x)=3ax2-12ax =0及x ∈[-1,2],得x =0. (1)当a >0时,列表:f(x)在[0,2]上是减函数.则当x =0时,f(x)有最大值,从而b =3. 又f(-1)=-7a +3,f(2)=-16a +3, ∵a >0,∴f(-1)>f(2). 从而f(2)=-16a +3=-29, 得a =2.(2)当a <0时,用类似的方法可判断当x =0时f(x)有最小值.当x =2时,f(x)有最大值.从而f(0)=b =-29, f(2)=-16a -29=3,得a =-2.综上,a =2,b =3或a =-2,b =-29.21.解析 (1)由题意得f ′(x )=3ax 2+2x +b .因此g (x )=f (x )+f ′(x )=ax 3+(3a +1)x 2+(b +2)x +b .因为函数g (x )是奇函数,所以g (-x )=-g (x ),即对任意实数x ,有a (-x )3+(3a +1)(-x )2+(b +2)(-x )+b =-[ax 3+(3a +1)x 2+(b +2)x +b ],从而3a +1=0,b =0,解得a =-13,b =0,因此f (x )的解析式为f (x )=-13x 3+x 2. (2)由(1)知g (x )=-13x 3+2x ,所以g ′(x )=-x 2+2. 令 g ′(x )=0,解得x 1=-2,x 2=2,则当x <-2或x >2时,g ′(x )<0,从而g (x )在区间(-∞,-2],[2,+∞)上是减函数;当-2<x <2时, g ′(x )>0,从而g (x )在[-2,2]上是增函数.由前面讨论知,g (x )在区间[1,2]上的最大值与最小值只能在x =1,2,2时取得,而g (1)=53,g (2)=423,g (2)=43.因此g (x )在区间[1,2]上的最大值为g (2)=423,最小值为g (2)=43. 22.分析 解答本题,应先正确求出函数f (x )的导数f ′(x ),再利用导数与函数的单调性、导数与极值、导数与最值等知识求解,并注意在定义域范围内求解.解析 (1)f ′(x )=a ax +1-错误!=错误!, ∵f (x )在x =1处取得极值,∴f′(1)=0,即a·12+a-2=0,解得a=1.(2)f′(x)=错误!,∵x≥0,a>0,∴ax+1>0.①当a≥2时,在区间[0,+∞)上,f′(x)>0,∴f(x)的单调增区间为[0,+∞).②当0<a<2时,由f′(x)>0,解得x> 2-a a.由f′(x)<0,解得x< 2-a a.∴f(x)的单调减区间为(0, 2-aa),单调增区间为(2-aa,+∞).(3)当a≥2时,由(2)①知,f(x)的最小值为f(0)=1;当0<a<2,由(2)②知,f(x)在x=2-aa处取得最小值,且f(2-aa)<f(0)=1.综上可知,若f(x)的最小值为1,则a的取值范围是[2,+∞).。
目录:数学选修2-2第一章 导数及其应用 [基础训练A 组] 第一章 导数及其应用 [综合训练B 组] 第一章 导数及其应用 [提高训练C 组] 第二章 推理与证明 [基础训练A 组] 第二章 推理与证明 [综合训练B 组]第二章 推理与证明 [提高训练C 组] 第三章 复数 [基础训练A 组] 第三章 复数 [综合训练B 组]第三章 复数 [提高训练C 组](数学选修2-2)第一章 导数及其应用[基础训练A 组]一、选择题1.若函数()y f x =在区间(,)a b 内可导,且0(,)x a b ∈则000()()limh f x h f x h h→+--的值为( )A .'0()f xB .'02()f xC .'02()f x - D .02.一个物体的运动方程为21t t s +-=其中s 的单位是米,t 的单位是秒, 那么物体在3秒末的瞬时速度是( ) A .7米/秒 B .6米/秒 C .5米/秒 D .8米/秒 3.函数3yx x 的递增区间是( )A .),0(+∞B .)1,(-∞C .),(+∞-∞D .),1(+∞4.32()32f x ax x =++,若'(1)4f -=,则a 的值等于( )A .319 B .316C .313 D .310 5.函数)(x f y =在一点的导数值为0是函数)(x f y =在这点取极值的( )A .充分条件B .必要条件C .充要条件D .必要非充分条件6.函数344+-=x x y 在区间[]2,3-上的最小值为( )A .72B .36C .12D .0二、填空题1.若3'0(),()3f x x f x ==,则0x 的值为_________________;2.曲线x x y 43-=在点(1,3)- 处的切线倾斜角为__________; 3.函数sin xy x=的导数为_________________; 4.曲线x y ln =在点(,1)M e 处的切线的斜率是_________,切线的方程为_______________; 5.函数5523--+=x x x y 的单调递增区间是___________________________。
新课标高二数学选修2-2第一章测试题高二数学选修2-2第一章导数及其应用测试题时间:120分钟,分值:150分说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)。
第Ⅰ卷(选择题,共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将所选答案写在答题卡上)1.设 $y=\frac{1-x^2}{\sin x}$,则 $y'=$()。
A。
$-\frac{2x\sin x+(1-x^2)\cos x}{\sin^2x}$B。
$-\frac{2x\sin x-(1-x^2)\cos x}{\sin^2x}$C。
$-\frac{2x\sin x+(1-x^2)\cos x}{\sin x}$D。
$-\frac{2x\sin x-(1-x^2)\cos x}{\sin x}$2.设 $f(x)=\ln(x^2+1)$,则 $f'(2)=$()。
A。
$\frac{4}{13}$B。
$\frac{2}{5}$C。
$\frac{1}{2}$D。
$\frac{1}{5}$3.函数 $f(x)$ 和 $g(x)$ 是定义在 $\mathbb{R}$ 上的两个可导函数,若 $f'(x)=g'(x)$,则 $f(x)$ 和 $g(x)$ 满足()。
A。
$f(x)=g(x)$B。
$f(x)-g(x)$ 为常数函数C。
$f(x)=g(x)=0$D。
$f(x)+g(x)$ 为常数函数4.函数 $y=x-3x^3$ 在 $[-1,2]$ 上的最小值为()。
A。
2B。
$-2$C。
3D。
$-4$5.曲线 $y=x^3$ 在点 $(2,8)$ 处的切线方程为()。
A。
$y=6x-4$B。
$y=12x-16$XXXD。
$y=2x-4$6.已知函数 $f(x)=ax^3+bx^2+cx+d$ 的图象与 $x$ 轴有三个不同交点 $(x_1,0)$,$(x_2,0)$,$(x_3,0)$,且 $f(x)$ 在$x=1$,$x=2$ 时取得极值,则 $x_1\cdot x_2$ 的值为()。
第一章 综合能力检测一、选择题:本大题共12小题,每小题5分,共60分. 1.函数y =sin(π4-x )的导数为( )A .-cos(π4+x )B .cos(π4-x )C .-sin(π4-x )D .-sin(x +π4)2.(2009·广东三校联考)函数f (x )=a ln x +x 在x =1处取得极值,则a 的值为( ) A.12B .-1C .0D .-123.如果f (x )为定义在R 上的偶函数,且导数f ′(x )存在,则f ′(0)的值为( ) A .2B .1C .0D .-14.(2009·全国卷Ⅰ)已知直线y =x +1与曲线y =ln(x +a )相切,则a 的值为( ) A .1B .2C .-1D .-25.已知f (x )=(x -1)2+2,g (x )=x 2-1,则f [g (x )]( ) A .在(-2,0)上递增 B .在(0,2)上递增 C .在(-2,0)上递增 D .在(0,2)上递增6.已知三次函数f (x )=13x 3-(4m -1)x 2+(15m 2-2m -7)x +2在R 上是增函数,则m 的取值范围是( )A .m <2或m >4B .-4<m <-2C .2<m <4D .2≤m ≤47.(2009·江西高考)若存在过点(1,0)的直线与曲线y =x 3和y =ax 2+154x -9都相切,则a 等于( )A .-1或-2564B .-1或214C .-74或-2564D .-74或78.若f (x )=-12x 2+b ln(x +2)在(-1,+∞)上是减函数,则b 的取值范围是( )A .[-1,+∞)B .(-1,+∞)C .(-∞,-1]D .(-∞,-1) 9.由y =sin x ,y =cos x ,x =0,x =π所围成图形的面积可表示为( ) A.⎠⎛0π(sin x -cos x )dxC.⎠⎛0π(cos x -sin x )dx10.已知f (a )=⎠⎛01(2ax 2-a 2x )dx ,则f (a )的最大值为( )A .-12B.19C.29D .不存在11.(2009·青岛模拟)如右图,在一个长为π,宽为2的矩形OABC 内,由曲线y =sin x (0≤x ≤π)与x 轴围成如图所示的阴影部分,向矩形OABC 内随机投一点(该点落在矩形OABC 内任何一点是等可能的),则所投的点落在阴影部分的概率是( )A.1πB.2πC.3πD.π412.f (x )是定义在(0,+∞)上的非负可导函数,且满足xf ′(x )+f (x )≤0,对任意正数a ,b ,若a <b ,则必有( )A .af (b )≤bf (a )B .bf (a )≤af (b )C .af (a )≤f (b )D .bf (b )≤f (a ) 二、填空题:本大题共4小题,每小题5分,共20分. 13.⎠⎛02(2x -e x )dx =________.14.(2009·海淀区模拟)已知函数f (x )=sin(ωx +φ)(ω>0,|φ|<π2)的导函数y=f ′(x )的部分图象如右图所示,且导函数f ′(x )有最小值-2,则ω=________,φ=________.15.若函数y =a (x 3-x )的单调递减区间为(-33,33),则a 的取值范围是________. 16.物体A 以速度v =3t 2+1在一直线上运动,在此直线上物体A 出发的同时,物体B 在物体A 的正前方5 m 处以v =10t 的速度与A 同向运动,当t =________ s 时,两物体相遇,相遇时物体A 走过________m.三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.(本小题满分10分)(2009·浙江高考)已知函数f(x)=x3+(1-a)x2-a(a+2)x+b(a,b∈R).(1)若函数f(x)的图象过原点,且在原点处的切线斜率是-3,求a,b的值;(2)若函数f(x)在区间(-1,1)上不单调...,求a的取值范围.18.(本小题满分12分)已知F(x)=⎠⎛x-1t(t-4)dt,x∈(0,+∞).(1)求F(x)的单调区间;(2)求函数F(x)在[1,5]上的最值.19.(本小题满分12分)已知f(x)=ax3+bx2+cx(a≠0)在x=±1时取得极值,且f(1)=-1.(1)试求常数a,b,c的值;(2)试判断x=±1是函数的极小值点还是极大值点,并说明理由.20.(本小题满分12分)求函数y=x3-3ax+2的极值,并说明方程x3-3ax+2=0何时有三个不同的实根?何时有唯一的实根?(其中a>0)21.(本小题满分12分)已知函数f(x)=13ax3-bx2+(2-b)x+1,在x=x1处取得极大值,在x=x2处取得极小值,且0<x1<1<x2<2.(1)证明a>0;(2)求z=a+2b的取值范围.22.(本小题满分12分)(2009·湖北黄冈模拟)已知函数f(x)=12x2-a ln x(a∈R).(1)若f(x)在x=2时取得极值,求a的值;(2)求f(x)的单调区间;(3)求证:当x>1时,12x2+ln x<23x3.第二章 综合能力检测一、选择题:本大题共12小题,每小题5分,共60分.1.所有自然数都是整数,4是自然数,所以4是整数,以上三段推理( ) A .正确 B .推理形式不正确 C .两个“自然数”概念不一致 D .两个“整数”概念不一致 2.若a >0,b >0,则有( )A.b 2a >2b -aB.b 2a <2b -aC.b 2a ≥2b -a D.b 2a≤2b -a 3.设S (n )=1n +1n +1+1n +2+1n +3+…+1n 2,则( )A .S (n )共有n 项,当n =2时,S (2)=12+13B .S (n )共有n +1项,当n =2时,S (2)=12+13+14C .S (n )共有n 2-n 项,当n =2时,S (2)=12+13+14D .S (n )共有n 2-n +1项,当n =2时,S (2)=12+13+144.F (n )是一个关于自然数n 的命题,若F (k )(k ∈N *)真,则F (k +1)真,现已知F (7)不真,则有:①F (8)不真;②F (8)真;③F (6)不真;④F (6)真;⑤F (5)不真;⑥F (5)真.其中为真命题的是( )A .③⑤B .①②C .④⑥D .③④5.若x ,y ∈R ,且2x 2+y 2=6x ,则x 2+y 2+2x 的最大值为( ) A .14B .15C .16D .176.设f (x )(x ∈R )为奇函数,f (1)=12,f (x +2)=f (x )+f (2),则f (5)等于( )A .0B .1 C.52D .57.若O 是平面上一定点,A ,B ,C 是平面上不共线的三个点,动点P 满足OP →=OA →+λ(AB →|AB →|+AC→|AC →|),λ∈[0,+∞),则动点P 的轨迹一定通过△ABC 的( ) A .外心 B .内心 C .重心D .垂心8.如图所示为某旅游区各景点的分布图,图中一支箭头表示一段有方向的路,试计算顺着箭头方向,从A 到H 有几条不同的旅游路线可走( )A .15B .16C .17D .189.对于直角坐标平面内的任意两点A (x 1,y 1)、B (x 2,y 2)定义它们之间的一种“距离”:||AB ||=|x 2-x 1|+|y 2-y 1|.给出下列三个命题:①若点C 在线段AB 上,则||AC ||+||CB ||=||AB ||; ②在△ABC 中,若∠C =90°,则||AC ||2+||CB ||2=||AB ||2; ③在△ABC 中,||AC ||+||CB ||>||AB ||. 其中真命题的个数为( ) A .0B .1C .2D .310.已知a ,b ,c ,d 是正实数,P =a a +b +c +b a +b +d +c c +d +a +d c +d +b ,则有( )A .0<P <1B .1<P <2C .2<P <3D .3<P <411.一个等差数列{a n },其中a 10=0,则有a 1+a 2+…+a n =a 1+a 2+…+a 19-n (1≤n ≤19).一个等比数列{b n },其中b 15=1.类比等差数列{a n }有下列结论,正确的是( )A .b 1b 2…b n =b 1b 2…b 29-n (1≤n ≤29,n ∈N *)B .b 1b 2…b n =b 1b 2…b 29-nC .b 1+b 2+…+b n =b 1+b 2+…+b 29-n (1≤n ≤29,n ∈N *)D .b 1+b 2+…+b n =b 1+b 2+…+b 29-n 12.观察数表1 2 3 4 …第一行 2 3 4 5 …第二行 3 4 5 6 …第三行 4 5 6 7 …第四行 … … … …第一列 第二列 第三列 第四列根据数表中所反映的规律,第n 行与第n 列的交叉点上的数应该是( ) A .2n -1 B .2n +1 C .n 2-1D .n 2二、填空题:本大题共4小题,每小题5分,共20分.13.若三角形内切圆的半径为r ,三边长分别为a ,b ,c ,则三角形的面积S =12r (a +b +c ),根据类比推理的方法,若一个四面体的内切球的半径为R ,四个面的面积分别为S 1,S 2,S 3,S 4,则四面体的体积V =________.14.若符号“*”表示求实数a 与b 的算术平均数的运算,即a *b =a +b2,则两边均含有运算符号“*”和“+”,且对于任意3个实数a 、b 、c 都能成立的一个等式可以是________.15.把数列{2n +1}依次按第一个括号一个数,第二个括号两个数,第三个括号三个数,第四个括号四个数,第五个括号一个数……循环下去,如:(3),(5,7),(9,11,13),(15,17,19,21),…,则第104个括号内各数字之和为________.16.已知n 次多项式P n (x )=a 0x n +a 1x n -1+…+a n -2x 2+a n -1x +a n .如果在一种算法中,计算x k 0(k =2,3,4,…,n )的值需要k -1次乘法,计算P 3(x 0)的值共需要9次运算(6次乘法,3次加法),那么计算P n (x 0)的值共需要________次运算.下面给出一种减少运算次数的算法:P 0(x )=a 0,P k +1(x )=xP k (x )+a k +1(k =0,1,2,…,n -1).利用该算法,计算P 3(x 0)的值共需要6次运算,计算P n (x 0)的值共需要________次运算.三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分)证明对于任意实数x ,y 都有x 4+y 4≥12xy (x +y )2.18.(本小题满分12分)(2009·江苏高考)如右图,在直三棱柱ABC -A 1B 1C 1中,E ,F 分别是A 1B ,A 1C 的中点,点D 在B 1C 1上,A 1D ⊥B 1C .求证:(1)EF ∥平面ABC ; (2)平面A 1FD ⊥平面BB 1C 1C .19.(本小题满分12分)求证:y =ax 2+2bx +c ,y =bx 2+2cx +a ,y =cx 2+2ax +b (a ,b ,c 是互不相等的实数)这三条抛物线中,至少有一条与x 轴有两个交点.20.(本小题满分12分)已知函数f(n)(n∈N*),满足条件:①f(2)=2,②f(xy)=f(x)·f(y),③f(n)∈N*,④当x>y时,有f(x)>f(y).(1)求f(1),f(3)的值;(2)由f(1),f(2),f(3)的值,猜想f(n)的解析式;(3)证明你猜想的f(n)的解析式的正确性.21.(本小题满分12分)已知数列a1,a2,…,a30,其中a1,a2,…,a10是首项为1,公差为1的等差数列;a10,a11,…,a20是公差为d的等差数列;a20,a21,…a30是公差为d2的等差数列(d≠0).(1)若a20=40,求d;(2)试写出a30关于d的关系式,并求a30的取值范围;(3)续写已知数列,使得a30,a31,a40是公差为d3的等差数列,…,依次类推,把已知数列推广为无穷数列.提出同(2)类似的问题((2)应当作为特例),并进行研究,你能得到什么样的结论?22.(本小题满分12分)对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点.如果函数f(x)=x2+abx-c(b,c∈N)有且只有两个不动点0,2,且f(-2)<-12.(1)求函数f(x)的解析式;(2)已知各项均不为零的数列{a n}满足4S n·f(1a n)=1,求数列的通项a n;(3)如果数列{a n}满足a1=4,a n+1=f(a n),求证当n≥2时,恒有a n<3成立.第三章 综合能力检测一、选择题:本大题共12小题,每小题5分,共60分. 1.一个实数x 与一个虚数y 的和x +y 必为( )A .实数B .虚数C .可能实数也可能是虚数D .纯虚数 2.复数4+3i1+2i 的实部是( )A .-2B .2C .3D .43.复数z =m -2i1+2i (m ∈R ,i 为虚数单位)在复平面上的对应点不可能位于( )A .第一象限B .第二象限C .第三象限D .第四象限4.若复数a +3i1+2i (a ∈R ,i 为虚数单位)是纯虚数,则实数a 的值为( )A .-2B .4C .-6D .65.若3+2i 是关于x 的方程2x 2+px +q =0(p ,q ∈R )的一个根,则q 的值是( ) A .26B .13C .6D .56.已知z 1=2-5i ,z 2=-3+i ,z 1,z 2的对应点分别为P 1,P 2,则向量P 2P 1→对应的复数为( ) A .-5+6iB .5-6iC .5+6iD .-1-4i7.已知m1+i =1+n i ,其中m ,n 是实数,i 是虚数单位,则m +n i 的值为( )A .1+2iB .1-2iC .2+iD .2-i8.复数z 满足|3z +1|=|z -i|,则复数z 对应点的轨迹是( ) A .直线B .正方形C .圆D .椭圆9.“复数z =12+32i ”是“z +1z ∈R ”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件10.复数-35+2i 2+35i +(21+i )2008的虚部为( )A .-1B .1C .-iD .i11.设f (n )=(1+i 1-i )n +(1-i 1+i )n(n ∈N *),则集合{x |x =f (n )}中的元素有( )A .1个B .2个C .3个D .无穷多个12.若复数z ,a ,x 满足x =a -z 1-a z,且|z |=1,则|x |等于( )A .0B .1C .|a |D.12二、填空题:本大题共4小题,每小题5分,共20分.13.已知复数z 0=3+2i ,复数z 满足z ·z 0=3z +z 0,则复数z =________. 14.复数z 满足|z +2+2i|=|z |,那么|z -1+i|的最小值是________. 15.i 是虚数单位,若1+7i 2-i=a +b i(a ,b ∈R ),则乘积ab =________.16.对于n 个复数z 1,z 1,…,z n ,如果存在n 个不全为零的实数k 1,k 2,…,k n ,使得k 1z 1+k 2z 2+…+k n z n =0,就称z 1,z 2,…,z n 线性相关.若要说明复数z 1=1+2i ,z 2=1-i ,z 3=-2线性相关,那么可取{k 1,k 2,k 3}=________.(只要写出满足条件的一组值即可)三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分)(1)设复数z 1=1+i ,z 2=x +2i(x ∈R ).若z 1z 2为实数,求实数x ; (2)计算:(4-i 5)(6+2i 7)+(7-i 11)(4-3i).18.(本小题满分12分)在复数范围内解方程|z 2|+(z +z )i =3-i2+i .(i 为虚数单位)19.(本小题满分12分)已知z =(-1+3i)(1-i)-(1+3i)i ,ω=z +a i(a ∈R ),当|ωz |≤2时,求a的取值范围.20.(本小题满分12分)已知z ∈C ,z -1z +1是纯虚数,求|z 2-z +2|的最小值.21.(本小题满分12分)设虚数z 满足|2z +5|=|z +10|. (1)求|z |的值;(2)若z m +mz为实数,求实数m 的值;(3)若(1-2i)z 在复平面上对应的点在第一、三象限的角平分线上,求复数z .22.(本小题满分12分)对任意一个非零复数α,定义M α={ω|ω=α2n -1,n ∈N *}.(1)设α是方程x +1x =2的一个根,试用列举法表示集合M α.若在M α中任取两个元素,求其和为零的概率P ;(2)若集合M α中只有三个元素,试写出满足条件的一个α值,并说明理由.第一章 综合能力检测答案一、选择题:1.解析:y ′=-cos(π4-x )=-sin[π2-(π4-x )]=-sin(π4+x ). 答案:D2.解析:f ′(x )=ax +1,令f ′(x )=0,得x =-a ,由题知当a =-1时,原函数在x =1处取得极值. 答案:B3.解析:偶函数的导数为奇函数,即f ′(x )为奇函数,故f ′(0)=0. 答案:C4.解析:y ′=1x +a ,设直线y =x +1与曲线y =ln(x +a )相切的切点为(x 0,x 0+1),则1x 0+a =1,∴x 0=1-a ,∴ln(1-a +a )=2-a ,∴e 2-a =1, ∴a =2. 答案:B5.解析:F (x )=f [g (x )]=x 4-4x 2+6,F ′(x )=4x 3-8x .令F ′(x )>0,得-2<x <0或x >2,∴F (x )在(-2,0)上递增. 答案:C6.解析:由题意,得f ′(x )=x 2-2(4m -1)x +(15m 2-2m -7),由于f ′(x )≥0恒成立,故Δ≤0,解得2≤m ≤4. 答案:D7.解析:设直线与曲线y =x 3的切点为P (x 0,y 0), 则⎩⎪⎨⎪⎧y 0=x 30y 0x 0-1=3x 20⇒切线斜率k =3x 20=0或k =274. 若k =0,切线方程为y =0. 由⎩⎪⎨⎪⎧y =0,y =ax 2+154x -9, 消去y ,得ax 2+154x -9=0,其判别式Δ=0⇒a =-2564;若k =274,切线方程为y =274(x -1),由⎩⎨⎧y =274(x -1),y =ax 2+154x -9消去y ,得ax 2-3x -94=0,其判别式Δ=0⇒a =-1. 答案:A8. 解析:∵f ′(x )=-x +b x +2,由题知,f ′(x )<0在(-1,+∞)上恒成立,即-x +bx +2<0,∴b <x (x +2)=(x +1)2-1. ∴b <-1.又当b =-1时,f ′(x )=-x -1x +2=-x (x +2)+1x +2=-(x +1)2x +2<0,∴b ≤-1. 答案:C9.解析:由y =sin x ,y =cos x ,x =0,x =π所围成的图形,如下图的阴影部分.答案:B10.解析:⎠⎛01(2ax 2-a 2x )dx=(23ax 3-12a 2x 2)|10=23a -12a 2, 即f (a )=23a -12a 2=-12(a 2-43a +49)+29=-12(a -23)2+29,∴当a =23时,f (a )有最大值29. 答案:C11.解析:根据几何概型的意义,所投的点落在阴影部分的概率是S 阴影S 矩形,由S 阴影=⎠⎛0πsin xdx =(-cos x )|π0=2,所求概率为S 阴影S 矩形=22π=1π. 答案:A 12.解析:设函数F (x )=xf (x ),∴F ′(x )=[xf (x )]′=f (x )+xf ′(x )≤0,∴F (x )=xf (x )在(0,+∞)上单调递减.∵a <b ,∴F (a )≥F (b ),即af (a )≥bf (b ).又∵0<a <b ,f (b )≥0,∴af (a )≤bf (a ),bf (b )≥af (b ).∴bf (a )≥af (b ). 答案:A二、填空题:13.解析:⎠⎛02(2x -e x )dx =(x 2-e x )|20=4-e 2+1=5-e 2. 答案:5-e 214.解析:f ′(x )=ωcos(ωx +φ), 依题意,得ω=2,2cos(π3+φ)=-1,解得φ=π3.答案:2 π315.解析:∵y ′=a (3x 2-1),令y ′<0,当a >0时,不等式的解集为(-33,33); 当a <0时,不等式的解集为(-∞,-33)∪(33,+∞).∵已知函数y =a (x 3-x )在(-33,33)上单调递减, ∴a >0. 答案:a >016.解析:设A 追上B 时,所用的时间为t 0,依题意有s A =s B +5,即10tdt+5,t 30+t 0=5t 20+5,即t 0(t 20+1)=5(t 20+1),解得t 0=5 s .所以s A =5t 20+5=130(m). 答案:130三、解答题:17.解:(1)由函数f (x )的图象过原点,得b =0, 又f ′(x )=3x 2+2(1-a )x -a (a +2), f (x )在原点处的切线斜率是-3, 则-a (a +2)=-3,所以a =-3,或a =1.(2)由f ′(x )=0,得x 1=a ,x 2=-a +23.又f (x )在(-1,1)上不单调,即⎩⎨⎧-1<a <1,a ≠-a +23,或⎩⎪⎨⎪⎧-1<-a +23<1,a ≠-a +23.解得⎩⎪⎨⎪⎧ -1<a <1,a ≠-12,或⎩⎪⎨⎪⎧-5<a <1,a ≠-12,所以a 的取值范围是(-5,-12)∪(-12,1).18.解:F (x )=⎠⎛x -1(t 2-4t )dt =(13t 3-2t 2)|x -1=13x 3-2x 2-(-13-2)=13x 3-2x 2+73(x >-1). (1)F ′(x )=x 2-4x ,由F ′(x )>0,即x 2-4x >0,得-1<x <0或x >4,由F ′(x )<0,即x 2-4x <0,得0<x <4,∴F (x )的单调递增区间为(-1,0)∪(4,+∞),单调递减区间为(0,4).(2)由(1)知F (x )在[1,4]上递减,[4,5]上递增.又∵F (1)=13-2+73=23,F (4)=13×43-2×42+73=-253,F (5)=13×53-2×52+73=-6,∴F (x )在[1,5]上的最大值为23,最小值为-253. 19.解:(1)f ′(x )=3ax 2+2bx +c ,因为x =±1是函数f (x )的极值点,所以x =±1是方程f ′(x )=0即3ax 2+2bx +c =0的两根.由根与系数的关系,得⎩⎨⎧-2b3a =0,①c3a =-1,②又f (1)=-1,所以a +b+c =-1.③ 由①②③,解得a =12,b =0,c =-32.(2)因为f (x )=12x 3-32x ,所以f ′(x )=32x 2-32=32(x -1)·(x +1).当x <-1或x >1时,f ′(x )>0,当-1<x <1时,f ′(x )<0.所以函数f (x )在(-∞,-1)和(1,+∞)上是增函数,在(-1,1)上是减函数.所以当x =-1时,函数取得极大值f (-1)=1,当x =1时,函数取得极小值f (1)=-1.20.解:函数的定义域为R ,其导函数为y ′=3x 2-3a .由y ′=0,得x=±a ,列表讨论如下:x (-∞,-a ) -a(-a ,a ) a (a ,+∞) f ′(x ) +0 -0 +f (x )极大值极小值由此可得,函数x =-a 处取得极大值2+2a 32;在x =a 处取得极小值2-2a 32.根据列表讨论,可作出函数的草图(如右图所示),因为极大值f (-a )=2+2a 32>0,故当极小值f (a )=2-2a 32<0,即a >1时,方程x 3-3ax +2=0有三个不同的实根;当极小值f (a )=2-2a 32>0,即0<a <1时,方程x 3-3ax +2=0有唯一的实根.21.解:求函数f (x )的导数得 f ′(x )=ax 2-2bx +2-b .(1)证明:由函数f (x )在x =x 1处取得极大值,在x =x 2处取得极小值,知x 1,x 2是f ′(x )=0的两个根.所以f ′(x )=a (x -x 1)(x -x 2). 当x <x 1时,f ′(x )>0,函数为增函数, 由x -x 1<0,x -x 2<0得a >0. (2)在题设下,0<x 1<1<x 2<2等价于⎩⎨⎧f ′(0)>0,f ′(1)<0,f ′(2)>0.即⎩⎪⎨⎪⎧2-b >0,a -2b +2-b <0,4a -4b +2-b >0.化简得⎩⎪⎨⎪⎧2-b >0,a -3b +2<0,4a -5b +2>0.此不等式组表示的区域为平面aOb 上三条直线2-b =0,a -3b +2=0,4a -5b +2=0所围成的△ABC 的内部,其三个顶点分别为A (47,67),B (2,2),C (4,2).z 在这三点的值依次为167,6,8.所以z 的取值范围为(167,8).22.解:(1)f ′(x )=x -ax ,∵x =2是一个极值点,∴2-a2=0.∴a =4.此时f ′(x )=x -4x =x 2-4x =(x -2)(x +2)x.∵f (x )的定义域是{x |x >0},∴当0<x <2时,f ′(x )<0;当x >2时,f ′(x )>0. ∴当a =4时,x =2是f (x )的极小值点.∴a =4. (2)∵f ′(x )=x -ax,∴当a ≤0时,f (x )的单调递增区间为(0,+∞).当a >0时,f ′(x )=x -a x =x 2-a x =(x -a )(x +a )x,令f ′(x )>0有x >a ,∴函数f (x )的单调递增区间为(a ,+∞); 令f ′(x )<0有0<x <a ,∴函数f (x )的单调递减区间为(0,a ). (3)证明:设g (x )=23x 3-12x 2-ln x ,则g ′(x )=2x 2-x -1x,∵当x >1时,g ′(x )=(x -1)(2x 2+x +1)x >0,∴g (x )在(1,+∞)上是增函数. ∴g (x )>g (1)=16>0.∴当x >1时,12x 2+ln x <23x 3.第二章 综合能力检测答案一、选择题:1.解析:三段论中的大前提、小前提及推理形式都是正确的. 答案:A 2.解析:∵b 2a -(2b -a )=b 2-2ab +a 2a =(b -a )2a ≥0,∴b 2a≥2b -a . 答案:C 3.解析:从n 到n 2共有n 2-n +1个自然数,即S (n )共有n 2-n +1项.故选D. 4.解析:若F (k )真,则F (k +1)一定真,其逆否命题为F (k +1)不真,则F (k )不真. ∴F (7)不真,则F (6)不真;F (6)不真,则F (5)不真. 答案:A5.解析:x 2+y 2+2x =x 2+(6x -2x 2)+2x =-x 2+8x =-(x -4)2+16≤16. 答案:C6.解析:∵f (x +2)=f (x )+f (2) ∴令x =-1则有 f (1)=f (-1)+f (2) ∴f (2)=2f (1)又∵f (1)=12,∴f (2)=1∴f (5)=f (2+3)=f (2)+f (3) =f (2)+f (2)+f (1) =2f (2)+f (1)=2+12=52. 答案:C7.解析:OP →=OA →+λ(AB →|AB →|+AC →|AC →|),AP →=λ(AB →|AB →|+AC →|AC →|)=λ(e 1+e 2),∴AP 是∠A 的内角平分线.答案:B8.解析:这是图论中的一个问题,如果一条一条的去数,由于道路错综复杂,哪些已算过,哪些没有算过就搞不清了,所以我们换一个思路,用分析法来试试.要到H 点,需从F 、E 、G 走过来,F 、E 、G 各点又可由哪些点走过来,……,这样一步步倒推,最后归结到A ,然后再反推过去得到如下的计算法:A 至B 、C 、D 的路数记在B 、C 、D 圆圈内,B 、C 、D 分别到F 、E 、G 的路数亦记在F 、E 、G 圆圈内,最后F 、E 、G 各个路数之和,即得至H 的总路数如答图1所示. 答案:C9.解析:①当点C 在线段AB 上时,可知||AC ||+||CB ||=||AB ||,故①是正确的.②取A (0,0),B (1,1),C (1,0),则||AC ||2=1,||BC ||2=1,||AB ||2=(1+1)2=4,故②是不正确的.③取A (0,0),B (1,1),C (1,0),证明||AC ||+||CB ||=||AB ||,故③不正确.故选B. 10.解析:P =a a +b +c +b a +b +d +c c +d +a +dc +d +b>a a +b +c +d +b a +b +d +c +c c +d +a +b +d c +d +b +a =1, P =a a +b +c +b a +b +d +c c +d +a +dc +d +b<a a +b +b a +b +c c +d +d c +d =2, ∴1<P <2. 答案:B11. 解析:在等差数列{a n }中,a 10=0,知以a 10为等差中项的项和为0,如a 9+a 11=a 8+a 12=…=a 2+a 18=a 1+a 19=0.而在等比数列{b n }中,b 15=1,类比地有b 1b 29=b 2b 28=…=b 14b 16=1.从而类似地总结规律应为各项之积.∵等差数列{a n }中a 10=0,∴a 1+a 19=a 2+a 18=…=a 8+a 12=a 9+a 11=0. 即:a 19-n +a n +1=0, a 18-n +a n +2=0, a 17-n +a n +3=0, …∴a 1+a 2+…+a n =a 1+a 2+…+a n +a n +1+a n +2+…+a 19-n . ∵b 15=1,∴b 1b 29=b 2b 28=…=b 14b 16=1. 即b 29-n b n +1=b 28-n b n +2=…=b 14b 16=1.∴b 1b 2…b n =b 1b 2…b 29-n (1≤n ≤29,n ∈N *).故选A.12.解析:根据数表可知,第1行第1列上的数为1,第2行第2列上的数为3,第3行第3列上的数为5,第4行第4列上的数为7,那么,由此可以推导出第n 行第n 列交叉点上的数应该是2n -1. 答案:A二、填空题:13.解析:由平面图形到空间图形的类比过程中,边长→面积,面积→体积. 答案:13R (S 1+S 2+S 3+S 4)14.解析:答案不唯一.因为a +(b *c )=a +b +c 2=2a +b +c 2,又(a +b )*(a +c )=(a +b )+(a +c )2=2a +b +c2,因此答案成立.同时:(a *b )+c =(a *c )+(b *c );a *(b +c )=(a +b )*c =(b +c )*a =(a +c )*b ;(a *b )+c =(b *a )+c 也符合题意. 答案:a +(b *c )=(a +b )*(a +c )15.解析:前面103个括号中共用了256个数,第104个括号有4个数分别是515,517,519,521,其和为2072. 答案:207216.解析:P n (x 0)=a 0x n -10+…+a n -2x 20+a n -1x 0+a n ,共需n 次加法运算,每个小因式中所需乘法运算依次为n ,n -1,…,1.故共需计算次数为n +n (n +1)2=12n (n +3).第二种运算中,P 0(x 0)=a 0,不需要运算,P 1(x 0)=x 0P 0(x 0)+a 1,需2次运算.P 2(x 0)=x 0P 1(x 0)+a 2,需2+2次运算,依次往下,P n (x 0)需2n 次运算. 答案:12n (n +3) 2n三、解答题:17.证明:(分析法)要证x 4+y 4≥12xy (x +y )2,只需证明2(x 4+y 4)≥xy (x +y )2, 即证2(x 4+y 4)≥x 3y +xy 3+2x 2y 2.只需x 4+y 4≥x 3y +xy 3与x 4+y 4≥2x 2y 2同时成立即可. 又知x 4+y 4-2x 2y 2=(x 2-y 2)2≥0,即x 4+y 4≥2x 2y 2成立, 只需再有x 4+y 4≥x 3y +xy 3成立即可. 由于x 4+y 4-x 3y -xy 3=(x -y )(x 3-y 3), ∵x -y 与x 3-y 3同号,∴(x -y )(x 3-y 3)≥0,即x 4+y 4≥x 3y +xy 3成立.∴对于任意实数x ,y 都有x 4+y 4≥12xy (x +y )2成立.18.证明:(1)因为E 、F 分别是A 1B 、A 1C 的中点,所以EF ∥BC ,EF ⊄面ABC ,BC ⊂面ABC .所以EF ∥平面ABC .(2)因为三棱柱ABC -A 1B 1C 1为直三棱柱, 所以BB 1⊥面A 1B 1C 1,BB 1⊥A 1D , 又A 1D ⊥B 1C ,所以A 1D ⊥平面BB 1C 1C , 又A 1D ⊂平面A 1FD , 所以平面A 1FD ⊥平面BB 1C 1C .19.证明:假设三条抛物线均与x 轴无两交点,则Δ1=4b 2-4ac ≤0,Δ2=4c 2-4ab ≤0,Δ3=4a 2-4bc ≤0,∴a 2+b 2+c 2-ab -ac -bc ≤0,即12[(a -b )2+(b -c )2+(c -a )2]≤0,∴a =b =c ,与a ,b ,c 是互不相等的实数矛盾.故三条抛物线中,至少有一条与x 轴有两个交点.20.解:(1)∵f (2)=f (2×1)=f (2)·f (1),又f (2)=2,∴f (1)=1.又∵f (4)=f (2·2)=f (2)·f (2)=4,2=f (2)<f (3)<f (4)=4,且f (3)∈N *.∴f (3)=3.(2)由f (1)=1,f (2)=2,f (3)=3,猜想f (n )=n (n ∈N *).(3)用数学归纳法证明:(ⅰ)当n =1时,f (1)=1,函数解析式成立. (ⅱ)假设n =k 时,f (k )=k ,函数解析式成立.①若k +1=2m (m ∈N *),f (k +1)=f (2m )=f (2)·f (m )=2m =k +1. ②若k +1=2m +1(m ∈N *),f (2m +2)=f [2(m +1)]=f (2)·f (m +1)=2(m +1)=2m +2,2m =f (2m )<f (2m +1)<f (2m +2)=2m +2. ∴f (2m +1)=2m +1=k +1.即当n =k +1时,函数解析式成立. 综合(ⅰ)(ⅱ)可知,f (n )=n (n ∈N *)成立. 21.解:(1)a 10=10,a 20=10+10d =40, ∴d =3.(2)a 30=a 20+10d 2=10(1+d +d 2)(d ≠0), a 30=10[(d +12)2+34],当d ∈(-∞,0)∪(0,+∞)时,a 30∈[7.5,+∞);(3)所给数列可推广为无穷数列{a n },其中a 1,a 2,…,a 10是首项为1,公差为1的等差数列,当n ≥1时,数列a 10n ,a 10n +1,…,a 10(n +1)是公差为d n 的等差数列.研究的问题可以是:试写出a 10(n +1)关于d 的关系式,并求a 10(n +1)的取值范围 研究的结论可以是:由a 40=a 30+10d 3=10(1+d +d 2+d 3), 依次类推可得a 10(n +1)=10(1+d +…+d n ) =⎩⎪⎨⎪⎧10×1-d n +11-d ,d ≠1,10(n +1),d =1.当d >0时,a 10(n +1)的取值范围为(10,+∞). 22.解:(1)依题意有x 2+a bx -c=x ,化简为(1-b )x 2+cx +a =0,由根与系数的关系得⎩⎪⎨⎪⎧2+0=-c 1-b,2·0=a 1-b,解得⎩⎪⎨⎪⎧a =0,b =1+c 2,代入表达式得f (x )=x 2(1+c 2)x -c ,由f (-2)=-21+c <-12,得c <3.又因为c ∈N ,b ∈N ,若c =0,b =1,f (x )=x 不止有两个不动点,若c =1,b =32,则f (x )=x只有一个不动点,所以c =2,b =2,故f (x )=x 22(x -1)(x ≠1).(2)由题设得4S n ·(1a n)22(1a n-1)=1,得2S n =a n -a 2n ,(*) 且a n ≠1,把n -1代入得2S n -1=a n -1-a 2n -1.(**)由(*)与(**)两式相减得2a n =(a n -a n -1)-(a 2n -a 2n -1),即(a n +a n -1)(a n -a n -1+1)=0,所以a n =-a n -1或a n -a n -1=-1,把n =1代入(*)得2a 1=a 1-a 21,解得a 1=0(舍去)或a 1=-1.由a 1=-1,a n =-a n -1,得a 2=1,这与a n ≠1矛盾,所以a n -a n -1=-1,即{a n }是以-1为首项,-1为公差的等差数列,所以a n =-n .(3)证明:(采用反证法)假设a n ≥3(n ≥2),则由(1)知a n +1=f (a n )=a 2n2a n -2,所以a n +1a n =a n 2(a n -1)=12·(1+1a n -1)≤12(1+12)=34<1,即a n +1<a n (n ≥2,n ∈N ),有a n <a n -1<…<a 2,而当n =2时,a 2=a 212a 1-2=168-2=83<3,所以a 2<3.这与假设矛盾,故假设不成立,所以a n <3.第三章 综合能力检测答案一、选择题:1.解析:由复数的概念可知x +y 仍是虚数. 答案:B2. 解析:4+3i 1+2i =(4+3i)(1-2i)1+22=(4+6)+(3-8)i5=2-i. 答案:B3.解析:m -2i 1+2i =(m -2i)(1-2i)(1+2i)(1-2i)=(m -4)-2(m +1)i5,对于m 的值,不存在m 使m -4>0且m+1<0,故对应的点不可能在第一象限. 答案:A4.解析:∵z =(a +3i)(1-2i)(1+2i)(1-2i)=a +65+(3-2a )i 5.若z 为纯虚数,则⎩⎪⎨⎪⎧a +6=0,3-2a ≠0⇒⎩⎪⎨⎪⎧a =-6,a ≠32.答案:C5.解析:由于实系数一元二次方程的虚根成对出现,是互为共轭复数的,故另一根为3-2i ,则(3+2i)·(3-2i)=q2=13.故选A.6.解析:∵P 2P 1→=OP 1→-OP 2→,∴P 2P 1→对应的复数为z 1-z 2=(2-5i)-(-3+i)=5-6i. 答案:B7.解析:由m1+i =1+n i 得m =(1+i)(1-n i)=(1+n )+(1-n )i ,∴⎩⎪⎨⎪⎧ m =1+n ,0=1-n ,∴⎩⎪⎨⎪⎧m =2,n =1,∴m +n i =2+i. 答案:C8.解析:设z =x +y i ,则|3x +3y i +1|=|x +y i -i|. ∴(3x +1)2+9y 2=x 2+(y -1)2, 即4x 2+4y 2+3x +y =0.∴复数z 对应点Z 的轨迹为圆.故选C.9.解析:由z =12+32i 可得,z +1z =12+32i +12-32i =1∈R . ∴z =12+32i 是z +1z ∈R 的充分条件.但z +1z ∈R ⇒|z |=1z =12+32i ,所以z =12+32i 是z +1z∈R 的充分非必要条件. 答案:A10.解析:-35+2i 2+35i +(21+i )2008=i(35i +2)2+35i +1i1004=i +1. 答案:B11.解析:f (n )=(1+i 1-i )n +(1-i1+i )n =i n +(-i)n (n ∈N *),根据i n 取值的周期性,给n 赋值发现集合{x |x =f (n )}={0,-2,2},故应选C.12.解析:由|z |=1,得|z |2=1,即z ·z =1,所以x =a -z z z -a z =a -zz (z -a )=-1z=-z ,所以|x |=|-z |=1. 答案:B二、填空题:13.解析:由已知得z =z 0z 0-3=3+2i 2i =1-32i. 答案:1-32i14.解析:设z =x +y i(x ,y ∈R ),由|z +2+2i|=|z |得(x +2)2+(y +2)2=x 2+y 2,即x +y +2=0,点(1,-1)到直线x +y +2=0的距离为d =|1-1+2|2=2,∴|z -1+i|的最小值为 2. 答案: 215.解析:1+7i 2-i =(1+7i)(2+i)4+1=-1+3i由-1+3i =a +b i 得a =-1,b =3 ∴ab =-3 答案:-316.解析:由k 1z 1+k 2z 2+k 3z 3=0得k 1(1+2i)+k 2(1-i)+k 2·(-2)=0, 即(k 1+k 2-2k 3)+(2k 1-k 2)i =0,∴⎩⎪⎨⎪⎧k 1+k 2-2k 3=0,2k 1-k 2=0.∴k 1∶k 2∶k 3=1∶2∶32.(答案不唯一,只需满足1∶2∶32的任何一组都行) 答案:{1,2,32}三、解答题:17.解:(1)z 1z 2=(1+i)(x +2i)=x +2i +x i -2=(x -2)+(2+x )i ,因为z 1z 2是实数,所以x +2=0,所以x =-2.(2)原式=2(4-i)(3-i)+(7-i)(4-3i)=2(12-3i -4i 2)+(28-4i -21i +3i 2)=2(11-7i)+25(1-i)=47-39i.18.解:原方程化简为|z |2+(z +z )i =1-i ,设z =x +y i(x 、y ∈R ),代入上述方程;得x 2+y 2+2x i =1-i ,所以⎩⎪⎨⎪⎧x 2+y 2=1,2x =-1.解得⎩⎨⎧x =-12,y =±32.所以原方程的解是z =-12±32i.19.解:z =2+4i -(1+3i)i =1+i i =-i(1+i)=1-i ,ω=1+(a -1)i ,ωz =1+(a -1)i1-i=[1+(a -1)i](1+i)2=2-a +a i 2,由|ωz |≤2,得(2-a 2)2+(a2)2≤2,解得1-3≤a ≤1+ 3.故a 的取值范围是[1-3,1+3].20.解:设z =x +y i(x ,y ∈R ),则z -1z +1=(x -1)+y i (x +1)+y i =x 2+y 2-1+2y i(x +1)2+y 2是纯虚数,∴x2+y 2=1且y ≠0,于是-1<x <1.而|z 2-z +2|=|(x +y i)2-(x +y i)+2|=|(x 2-y 2-x +2)+y (2x -1)i|=(x 2-y 2-x +2)2+y 2(2x -1)2=8x 2-6x +2=8(x -38)2+78,∴当x =38时,|z 2-z +2|取得最小值144. 21.解:(1)设z =x +y i(x ,y ∈R ,且y ≠0),则 (2x +5)2+(2y )2=(x +10)2+y 2. 化简得x 2+y 2=25.∴|z |=5. (2)∵z m +m z =x +y i m +m x +y i=(x m +mx x 2+y 2)+(y m -myx 2+y2)i 为实数,∴y m -myx 2+y 2=0. 又y ≠0,且x 2+y 2=25, ∴1m -m25=0,解得m =±5. (3)(1-2i)z =(1-2i)(x +y i)=(x +2y )+(y -2x )i ,依据题意,得x +2y =y -2x . ∴y =-3x .①又∵|z |=5,即x 2+y 2=25.② 由①、②得⎩⎨⎧x =102,y =-3102或⎩⎨⎧x =-102,y =3102.∴z =102-3102i 或z =-102+3102i. 22.解:(1)解方程x +1x =2,得x =22±22i.当α1=22+22i 时,ω=α2n -11=(α21)nα1=[(22+22i)2]n α1=in α1.由i n 的周期性知,ω有四个值,n =1时,ω=22+22i ;n =2时,ω=-22+22i ;n =3时,ω=-22-22i ;n =4是,ω=22-22i. 当α2=22-22i 时,ω=α2n -12=(α22)n α2=(-i)nα2.当n =1时,ω=22-22i ;n =2时,ω=-22-22i ;n =3时,ω=-22+22i ;n =4时,ω=22+22i.∴不论α=22+22i 还是α=22-22i ,都有 M α={22+22i ,22-22i ,-22+22i ,-22-22i},P =2C 24=13. (2)取α=-12+32i ,则α3=1,α5=-12-32i ,于是M α={α,α3,α5}={-12+32i,1,-12-32i}.(或取α=-12-32i ,则α3=1,α5=-12+32i)。
选修2-2 第一章 1.2 1.2.2 第1课时一、选择题1.若曲线y =x 4的一条切线l 与直线x +4y -8=0垂直,则l 的方程为( ) A .4x -y -3=0 B .x +4y -5=0 C .4x -y +3=0 D .x +4y +3=0[答案] A[解析] ∵直线x +4y -8=0的斜率k =-14,∴直线l 的斜率为4,而y ′=4x 3,由y ′=4得x =1而x =1时,y =1,故直线l 的方程为:y -1=4(x -1)即4x -y -3=0.2.已知f (x )=ax 3+9x 2+6x -7,若f ′(-1)=4,则a 的值等于( ) A .193B .163C .103D .133[答案] B[解析] ∵f ′(x )=3ax 2+18x +6,∴由f ′(-1)=4得,3a -18+6=4,即a =163.∴选B.3.(2014·山师附中高二期中)设f (x )=sin x -cos x ,则f (x )在x =π4处的导数f ′(π4)=( )A . 2B .- 2C .0D .22[答案] A[解析] ∵f ′(x )=cos x +sin x , ∴f ′(π4)=cos π4+sin π4=2,故选A.4.设曲线y =x n +1(n ∈N *)在点(1,1)处的切线与x 轴的交点的横坐标为x n ,则x 1·x 2·…·x n的值为( )A .1nB .1n +1C .n n +1D .1[答案] B[解析] 对y =x n +1(n ∈N *)求导得y ′=(n +1)x n ,令x =1得在点(1,1)处的切线的斜率k=n +1,在点(1,1)处的切线方程为y -1=(n +1)(x n -1).令y =0,得x n =nn +1.则x 1·x 2·…·x n =12×23×34×…×n -1n ×n n +1=1n +1,故选B.5.(2014·合肥一六八高二期中)下列函数中,导函数是奇函数的是( ) A .y =sin x B .y =e x C .y =ln x D .y =cos x -12[答案] D[解析] 由y =sin x 得y ′=cos x 为偶函数,故A 错;又y =e x 时,y ′=e x 为非奇非偶函数,∴B 错;C 中y =ln x 的定义域x >0,∴C 错;D 中y =cos x -12时,y ′=-sin x 为奇函数,∴选D.6.已知物体的运动方程是s =14t 4-4t 3+16t 2(t 表示时间,s 表示位移),则瞬时速度为0的时刻是( )A .0秒、2秒或4秒B .0秒、2秒或16秒C .2秒、8秒或16秒D .0秒、4秒或8秒 [答案] D[解析] 显然瞬时速度v =s ′=t 3-12t 2+32t =t (t 2-12t +32),令v =0可得t =0,4,8.故选D.二、填空题7.过曲线y =cos x 上点P ⎝⎛⎭⎫π3,12且与在这点的切线垂直的直线方程为________. [答案] 2x -3y -2π3+32=0[解析] ∵y =cos x ,∴y ′=-sin x , 曲线在点P ⎝⎛⎭⎫π3,12处的切线斜率是 y ′|x =π3=-sin π3=-32.∴过点P 且与切线垂直的直线的斜率为23, ∴所求的直线方程为y -12=23⎝⎛⎭⎫x -π3, 即2x -3y -2π3+32=0.[点评] 在确定与切线垂直的直线方程时,应注意考察函数在切点处的导数y ′是否为零,当y ′=0时,切线平行于x 轴,过切点P 垂直于切线的直线斜率不存在.8.(2014·杭州质检)若f (x )=x 2-2x -4ln x ,则f ′(x )>0的解集为________. [答案] (2,+∞)[解析] 由f (x )=x 2-2x -4ln x ,得函数定义域为(0,+∞),且f ′(x )=2x -2-4x =2x 2-2x -4x =2·x 2-x -2x =2·(x +1)(x -2)x ,f ′(x )>0,解得x >2,故f ′(x )>0的解集为(2,+∞).9.在曲线y =4x 2上求一点P ,使得曲线在该点处的切线的倾斜角为135°,则P 点坐标为________.[答案] (2,1)[解析] 设P (x 0,y 0),∵y ′=⎝⎛⎭⎫4x 2′=(4x -2)′=-8x -3,tan135°=-1, ∴-8x -30=-1.∴x 0=2,y 0=1.三、解答题10.求下列函数的导数:(1)y =x (x 2+1x +1x 3);(2)y =(x +1)(1x -1);(3)y =sin 4x 4+cos 4x4;(4)y =1+x 1-x +1-x 1+x .[解析] (1)∵y =x ⎝⎛⎭⎫x 2+1x +1x 3=x 3+1+1x 2, ∴y ′=3x 2-2x 3.(2)∵y =(x +1)⎝⎛⎭⎫1x -1=-x 12+x -12,∴y ′=-12x -12-12x -32=-12x ⎝⎛⎭⎫1+1x . (3)∵y =sin 4x 4+cos 4x4=⎝⎛⎭⎫sin 2x 4+cos 2x 42-2sin 2x 4cos 2x4=1-12sin 2x 2=1-12·1-cos x 2=34+14cos x ,∴y ′=-14sin x .(4)∵y =1+x 1-x +1-x 1+x =(1+x )21-x +(1-x )21-x=2+2x 1-x =41-x-2, ∴y ′=⎝⎛⎭⎫41-x -2′=-4(1-x )′(1-x )2=4(1-x )2.一、选择题11.(2014·长春市期末调研)已知直线y =kx 是y =ln x 的切线,则k 的值为( ) A .-e B .e C .-1eD .1e[答案] D[解析] y ′=1x =k ,∴x =1k ,切点坐标为⎝⎛⎭⎫1k ,1, 又切点在曲线y =ln x 上,∴ln 1k =1,∴1k =e ,k =1e.12.(2014·山师附中高二期中)直线y =kx +1与曲线y =x 3+ax +b 相切于点A (1,3),则2a +b 的值为( )A .2B .-1C .1D .-2 [答案] C[解析] 由条件知,点A 在直线上,∴k =2,又点A 在曲线上,∴a +b +1=3,∴a +b =2.由y =x 3+ax +b 得y ′=3x 2+a ,∴3+a =k ,∴a =-1,∴b =3,∴2a +b =1.13.若函数f (x )=e x sin x ,则此函数图象在点(4,f (4))处的切线的倾斜角为( ) A .π2B .0C .钝角D .锐角 [答案] C[解析] y ′|x =4=(e x sin x +e x cos x )|x =4=e 4(sin4+cos4)=2e 4sin(4+π4)<0,故倾斜角为钝角,选C.14.设f 0(x )=sin x ,f 1(x )=f 0′(x ),f 2(x )=f 1′(x ),…,f n +1(x )=f n ′(x ),n ∈N ,则f 2013(x )等于( )A .sin xB .-sin xC .cos xD .-cos x[答案] C[解析]f0(x)=sin x,f1(x)=f0′(x)=(sin x)′=cos x,f2(x)=f1′(x)=(cos x)′=-sin x,f3(x)=f2′(x)=(-sin x)′=-cos x,f4(x)=f3′(x)=(-cos x)′=sin x,∴4为最小正周期,∴f2013(x)=f1(x)=cos x.故选C.二、填空题15.等比数列{a n}中,a1=2,a8=4,函数f(x)=x(x-a1)(x-a2)…(x-a8),则f′(0)=________.[答案]212[解析]f′(x)=x′·[(x-a1)(x-a2)…(x-a8)]+[(x-a1)(x-a2)…(x-a8)]′·x=(x-a1)(x-a2)…(x-a8)+[(x-a1)(x-a2)…(x-a8)]′·x,所以f′(0)=(0-a1)(0-a2)...(0-a8)+[(0-a1)(0-a2)...(0-a8)]′.0=a1a2 (8)因为数列{a n}为等比数列,所以a2a7=a3a6=a4a5=a1a8=8,所以f′(0)=84=212.16.(2014·宁夏三市联考)经过点P(2,1)且与曲线f(x)=x3-2x2+1相切的直线l的方程是________.[答案]4x-y-7=0或y=1[解析]设切点为(x0,x30-2x20+1),由k=f′(x0)=3x20-4x0,可得切线方程为y-(x30-2x20+1)=(3x20-4x0)(x-x0),代入点P(2,1)解得:x0=0或x0=2.当x0=0时切线方程为y=1;当x0=2时切线方程为4x-y-7=0.综上得直线l的方程是:4x-y-7=0或y=1.三、解答题17.已知两条曲线y=sin x、y=cos x,是否存在这两条曲线的一个公共点,使在这一点处,两条曲线的切线互相垂直?并说明理由.[解析]由于y=sin x、y=cos x,设两条曲线的一个公共点为P(x0,y0),∴两条曲线在P(x0,y0)处的斜率分别为k1=y′|x=x0=cos x0,k2=y′|x=x0=-sin x0.若使两条切线互相垂直,必须cos x0·(-sin x0)=-1,即sin x0·cos x0=1,也就是sin2x0=2,这是不可能的,∴两条曲线不存在公共点,使在这一点处的两条切线互相垂直.18.已知函数f (x )=ax -6x 2+b 的图象在点M (-1,f (-1))处的切线的方程为x +2y +5=0,求函数的解析式.[分析] f (x )在点M 处切线方程为x +2y +5=0有两层含义,(一)是点M 在f (x )的图象上,且在直线x +2y +5=0上,(二)是f ′(-1)=-12.[解析] 由条件知,-1+2f (-1)+5=0, ∴f (-1)=-2, ∴-a -61+b=-2,(1) 又直线x +2y +5=0的斜率k =-12,∴f ′(-1)=-12,∵f ′(x )=-ax 2+12x +ab(x 2+b )2,∴-a -12+ab (1+b )2=-12,(2) 由(1)(2)解得,a =2,b =3.(∵b +1≠0,∴b =-1舍去). ∴所求函数解析式为f (x )=2x -6x 2+3.。
一、选择题1.数学归纳法证明*1111(1,)n 1n 2n 2n n N n +++>>∈+++,过程中由n k =到1n k =+时,左边增加的代数式为( )A .122k +B .121k + C .11+2122++k k D .112k 12k 2++- 2.正四面体ABCD 的棱AD 与平面α所成角为θ,其中02πθ<<,点D 在平面α内,则当四面体ABCD 转动时( )A .存在某个位置使得BC α,也存在某个位置使得BC α⊥B .存在某个位置使得BC α,但不存在某个位置使得BC α⊥ C .不存在某个位置使得BC α,但存在某个位置使得BC α⊥D .既不存在某个位置使得BC α,也不存在某个位置使得BC α⊥ 3.用反证法证明某命题时,对其结论“a ,b 都是正实数”的假设应为( ) A .a ,b 都是负实数B .a ,b 都不是正实数C .a ,b 中至少有一个不是正实数D .a ,b 中至多有一个不是正实数4.给出下面四个推理:①由“若a b 、是实数,则+≤+a b a b ”推广到复数中,则有“若12z z 、是复数,则1212z z z z +≤+”;②由“在半径为R 的圆内接矩形中,正方形的面积最大”类比推出“在半径为R 的球内接长方体中,正方体的体积最大”;③以半径R 为自变量,由“圆面积函数的导函数是圆的周长函数”类比推出“球体积函数的导函数是球的表面积函数”;④由“直角坐标系中两点11(,)A x y 、22(,)B x y 的中点坐标为1212(,)22x x y y ++”类比推出“极坐标系中两点11(,)C ρθ、22(,)D ρθ的中点坐标为1212(,)22ρρθθ++”.其中,推理得到的结论是正确的个数有( )个 A .1B .2C .3D .45.“杨辉三角形”是古代重要的数学成就,它比西方的“帕斯卡三角形”早了300多年,如图是三角形数阵,记n a 为图中第n 行各个数之和,则411a a +的值为A .528B .1032C .1040D .20646.有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说:“是乙或丙获奖.”乙说:“甲、丙都未获奖.”丙说:“我获奖了.”丁说:“是乙获奖.”四位歌手的话只有两句是对的,则获奖的歌手是( ) A .甲B .乙C .丙D .丁7.圆有6条弦,两两相交,这6条弦将圆最多分割成( )个部分 A .16 B .21 C .22 D .238.数学老师给同学们出了一道证明题,以下四人中只有一人说了真话,只有一人会证明此题,甲:我不会证明;乙:丙会证明;丙:丁会证明;丁:我不会证明.根据以上条件,可以判定会证明此题的人是( ) A .甲B .乙C .丙D .丁9.定义*A B ,*B C ,*C D ,*D A 的运算分别对应下面图中的⑴,⑵,⑶,⑷,则图中⑸,⑹对应的运算是( )A .*B D ,*A D B .*B D ,*AC C .*B C ,*AD D .*C D ,*A D10.由圆心与弦(非直径)中点的连线垂直于弦,想到球心与截面圆(不经过球心的小截面圆)圆心的连线垂直于截面,用的是( )A .类比推理B .三段论推理C .归纳推理D .传递性推理 11.根据给出的数塔猜测12345697⨯+( )19211⨯+=1293111⨯+= 123941111⨯+= 12349511111⨯+= 1234596111111⨯+=…A .1111111B .1111110C .1111112D .111111312.设十人各拿一只水桶,同到水龙头前打水,设水龙头注满第i (i =1,2,…,10)个人的水桶需T i 分钟,假设T i 各不相同,当水龙头只有一个可用时,应如何安排他(她)们的接水次序,使他(她)们的总的花费时间(包括等待时间和自己接水所花费的时间)最少( ) A .从T i 中最大的开始,按由大到小的顺序排队B .从T i 中最小的开始,按由小到大的顺序排队C .从靠近T i 平均数的一个开始,依次按取一个小的取一个大的的摆动顺序排队D .任意顺序排队接水的总时间都不变二、填空题13.观察如图等式,照此规律,第n 个等式为______.11234934567254567891049=++=++++=++++++=14.在圆中:半径为r 的圆的内接矩形中,以正方形的面积最大,最大值为22r .类比到球中:半径为R 的球的内接长方体中,以正方体的体积最大,最大值为__________. 15.某次高三英语听力考试中有5道选择题,每题1分,每道题在三个选项中只有一个是正确的.下表是甲、乙、丙三名同学每道题填涂的答案和这5道题的得分:1 2 3 4 5 得分甲 4 乙 3 丙2则甲同学答错的题目的题号是__________.16.黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案:则第个图案中有白色地面砖 块.17.在探究实系数一元二次方程的根与系数的关系时,可按下述方法进行: 设实系数一元二次方程22100a x a x a ++=……①在复数集C 内的根为1x ,2x ,则方程①可变形为()()2120a x x x x --=, 展开得()222122120a x a x x x a x x -++=.……②比较①②可以得到:11220122a x x a a x x a ⎧+=-⎪⎪⎨⎪=⎪⎩类比上述方法,设实系数一元n 次方程11100nn n n a x a xa x a --++++=(2n ≥且*N n ∈)在复数集C 内的根为1x ,2x ,…,n x ,则这n 个根的积1ni i x ==∏ __________.18.观察下列等式: (1)24sin sin 033ππ+= (2)2468sin sin sin sin 05555ππππ+++= (3)2468sinsin sin sin 7777ππππ+++1012sin sin 077ππ++= …… …… …… …… …… ……由以上规律推测,第n 个等式为:__________.19.小明在做一道数学题目时发现:若复数111cos i?sin ?,z αα=+222 cos i?sin ,z αα=+,333cos i?sin z αα=+(其中123,,R ααα∈), 则121212cos()i?sin(+)z z αααα⋅=++,232323cos()i?sin(+)z z αααα⋅=++ ,根据上面的结论,可以提出猜想: z 1·z 2·z 3=__________________. 20.观察下列各式:0014C =011334C C +=01225554;C C C ++=0123377774C C C C +++=……照此规律,当n ∈N 时,012121212121n n n n n C C C C -----++++=______________.三、解答题21.设数列{}n a 的前n 项和为n S ,对任意*n ∈N 都有2132n n S n a =+. (1)求数列{}n a 的通项公式;(2)记*4()n n b a n N =+∈*1)nn N b ++<∈ 22.已知数列{}n a 满足11a =,1(5)5n n n a a a ++=. (1)计算234,,a a a 的值,猜想数列{}n a 的通项公式; (2)用数学归纳法证明(1)中的猜想. 23.已知数列1111,,,,,112123123n+++++++,其前n 项和为n S ;(1)计算1234,,,S S S S ;(2)猜想n S 的表达式,并用数学归纳法进行证明.24.(1)当1x >时,求2()1x f x x =-的最小值.(2)用数学归纳法证明:11111222n n n +++≥++*()n N ∈. 25.在数列{}n a 中,111,21nn n a a a a +==+,其中1,2,3,n =.(Ⅰ)计算234,,a a a 的值;(Ⅱ)猜想数列{}n a 的通项公式,并用数学归纳法加以证明. 26.已知()()()()20121111nnn x a a x a x a x +=+-+-++-(2,*n n N ≥∈),(1)当5n =时,求12345a a a a a ++++的值; (2)设2233,2n n n n a b T b b b -==+++,试用数学归纳法证明:当2n ≥时,()()113n n n n T +-=。
人教版数学选修2-2第一章练习题及解析1.曲线 y = x 3+ x - 2 在 P 点处的切线平行于直线 y = 4x - 1,则切线方程为 ()A . y = 4xB . y = 4x -4C .y = 4x - 8D . y = 4x 或 y = 4x - 4[答案 ] D[解析 ]y ′ = limy→xx 0[ x + x 3+ x + x -2] - x 3+ x - 2= lim→x 0x= lim2+ 3x x + 3x 2+ 1)→(( x)x 0= 3x 2+ 1.由条件知, 3x 2+ 1= 4,∴ x = ±1,当 x = 1 时,切点为 (1,0) ,切线方程为y = 4(x - 1) ,即 y = 4x - 4.当 x =- 1 时,切点为 (- 1,- 4) ,切线方程为 y + 4= 4(x + 1),即 y = 4x.3x + 2上的任意一点, P 点处的切线倾斜角为α,则 α 的取2.设点 P 是曲线 y = x 3-值3范围为 ()A . 0,π∪2π,πB . 0,π∪5π, π232 62π5π,C . 3π, πD . 26[答案 ] A[解析 ] 设 P(x 0,y 0),x + x 3- 3 x + x + 2- x 3+ 3x -2∵f ′ (x)= li m33→x 0x= 3x 2- 3,∴切线的斜率 k = 3x 02-3,∴ tan α= 3x 02- 3 ≥ - 3.π2∴α∈ 0,2 ∪ 3π, π.故应选 A.3.设 P 为曲线 C :y = x 2+2x + 3 上的点,且曲线C 在点 P 处切线倾斜角的取值范围为π[0, 4],则点 P 横坐标的取值范围为 ()1A . [- 1,- 2] B . [- 1,0] C .[0,1]D . [ 1, 1]2[答案 ] A[解析 ]考查导数的几何意义.π∵ y ′ = 2x + 2,且切线倾斜角 θ∈ [0,4] ,∴切线的斜率 k 满足 0≤ k ≤ 1,即 0≤2x + 2 ≤ 1 ,1∴-1≤x ≤ - 2.4.已知 f(x) = x 2+ 3xf ′ (2) ,则 f ′ (2) = ________.[答案 ] - 2[解析 ]∵f ′ (x) = 2x + 3f ′ (2) ,∴f ′ (2)= 4+ 3f ′ (2),∴f ′ (2) =- 2.15.求过点 (2,0) 且与曲线 y = x相切的直线方程.1上,令切点为(x 0,y 0),则有y 0[解析]易知(2,0)不在曲线y ==1 .①xx 011 -又 y ′ = limyx + x x1= lim=-2 ,→x→xxx 0x 01所以 y ′ |x = x 0=-x 20 ,1即切线方程为y =- x 20 ( x -2) 而 y =- 2 1②x 0- 2 x 0由①②可得 x 0= 1 ,故切线方程为 y +x - 2 = 0.6.若直线 y = kx 是曲线y = x 3- 3x 2+ 2x 上一点处的切线,求实数k 的值.0 32+ 2x 0,x -3x[解析 ] 设切点 (x),y x 0+x3+2 0+x - x 30 + 3x 20 - 2x 0- 3 x x + 2 x∵ x =x= ( x) 2+3x 20+ 3 x ·x 0- 6x 0-3 x + 2 ,∴ limy=3x 20 -6x 0 +2,→xx 0∴ k = 3x 20 - 6x 0 + 2,切线方程为y - (x 30- 3x 20+ 2x 0)= (3x 20 - 6x 0 + 2)(x - x 0),切线过原点,∴ 0- (x 30- 3x 20 + 2x 0)= (3x 20 - 6x 0+ 2)(0 - x 0),31解得 x 0= 0 或 2,则 k =2 或- 4.7.已知直线 l 1为曲线 y = x 2+ x - 2 在点 (1,0) 处的切线, l 2 为该曲线的另一条切线,且l 1⊥ l 2.(1) 求直线 l 2 的方程;(2) 求由直线 l 1、 l 2 和 x 轴所围成的三角形的面积.[解析 ](1)y ′ |x = 11+ x2+ 1 + x - 2- 12+1- 2= li m= 3,→x 0x所以 l 1 的方程为:y = 3(x - 1) ,即 y = 3x -3.设 l 2 过曲线 y = x 2+ x - 2 上的点B( b , b 2+ b - 2) ,b + x 2+ b + x - 2- b 2+ b -2y ′ |x = b = li m→x 0x= 2b +1,所以 l 2 的方程为: y -(b 2+ b - 2) =(2b + 1) · (x - b),即 y = (2b + 1)x - b 2- 2.21 22因为 l 1⊥l 2,所以3×(2b + 1)=- 1,所以 b =- 3,所以l 2的方程为:y =- 3x - 9 .1(2) 由y = 3x - 3 ,x =6,1 22得y =- 3x - 9 ,y =-5,2即 l 1 与 l 2 的交点坐标为1,- 5.62又 l 1, l 2 与 x 轴交点坐标分别为(1,0) , - 22,0 .31522 125×- ×所以所求三角形面积 S = 2 21+3 =12. 8. (2014 郑·州一中期中 )函数 f(x) 的定义域为 R , f(- 2) = 2013,对任意 x ∈ R ,都有f ′ (x)<2 x 成立,则不等式f(x)>x 2+ 2009 的解集为 ()A . (- 2,2)B . (- 2,+∞ )C .( -∞,- 2)D . (-∞,+∞ )[答案 ] C[解析 ] 令 F(x) =f(x)- x 2- 2009 ,则 F ′(x) = f ′ (x) - 2x<0 ,∴ F(x) 在 R 上为减函数,又 F( -2) = f(- 2)- 4- 2009 = 2013 - 2013 = 0, ∴当 x<- 2 时, F(x)>F( -2) = 0 ,∴不等式 f( x)>x 2+ 2009 的解集为 (-∞ ,- 2) .9.已知 y =1x 3+ bx 2+ (b +2)x + 3 在 R 上不是单调增函数, 则 b 的取值范围为________ .3[答案 ] b<-1 或 b>2[解析 ]若 y ′= x 2+ 2bx +b + 2≥ 0恒成立,则= 4b 2- 4(b + 2) ≤ 0 ,∴- 1≤b ≤ 2,由题意 b <- 1 或 b > 2.10 .(2014 ·夏三市联考宁 )若函数 f(x) 的导函数f ′ (x) = x 2- 4x + 3,则 f(x+ 1) 的单调递减区间是 ________ .[答案 ] (0,2)[解析 ]由 f ′ (x) = x 2- 4x + 3<0 得 1<x<3 ,即得 f(x) 的单调递减区间是(1,3) ,所以由 1<x+ 1<3 得 f(x + 1) 的单调递减区间 (0,2) .11 .已知函数f(x)= x 3+ ax 2+ (2a -3)x - 1.(1) 若 f(x)的单调减区间为(-1,1) ,则 a 的取值集合为 ________ .(2) 若 f(x)在区间 ( -1,1) 内单调递减,则 a 的取值集合为 ________ .[答案 ](1){0}(2){ a|a<0}[解析 ]f ′ (x)= 3x 2+ 2ax + 2a - 3= (x + 1)(3x + 2a - 3).(1) ∵ f(x) 的单调减区间为 (-1,1),∴- 1 和 1 是方程 f ′(x) =0 的两根,3- 2a∴3 = 1,∴ a = 0,∴ a 的取值集合为{0} .(2) ∵ f(x) 在区间 (-1,1) 内单调递减,∴ f ′ (x)<0 在 (- 1,1) 内恒成立,3- 2a又二次函数 y = f ′ (x) 开口向上,一根为-1 ,∴必有>1 ,∴ a<0 ,3∴ a 的取值集合为 { a|a<0} .[点评 ]f( x)的单调减区间为 (m ,n) ,则必有 f ′ (m) =0, f ′ (n)= 0 或 x = m , x =n 是函数 f(x) 的不连续点,f(x) 在区间 (m , n) 上单调递减,则( m , n) 是 f(x) 的单调减区间的子集,f ′ (x) ≤ 0 在( m , n) 上恒成立.112 .求证:方程x - 2sinx = 0 只有一个根x =0.1[证明 ]设 f(x) = x - 2sinx , x ∈(- ∞,+ ∞ ),1则 f ′ (x) = 1- 2cosx > 0 ,∴ f(x) 在(- ∞,+ ∞ )上是单调递增函数.而当 x =0 时, f(x) = 0,1∴方程 x - 2sinx = 0 有唯一的根 x = 0.13 . (2013 ·国大纲文,全21) 已知函数 f(x)= x 3+ 3ax 2+ 3x + 1.(1) 当 a =- 2 时,讨论f(x) 的单调性;(2) 若 x ∈ [2 ,+∞ ) 时, f( x) ≥ 0,求 a 的取值范围.[解析 ](1) 当 a =- 2 时, f(x) = x 3- 3 2x 2+ 3x +1,f ′ (x) = 3x 2- 6 2x + 3.令 f ′ (x) = 0,得 x1= 2 -1, x2= 2 + 1.当 x∈(-∞, 2- 1) 时, f ′ (x)>0 , f(x) 在(-∞,2- 1) 上是增函数;当x∈ ( 2- 1, 2+1) 时, f ′ (x)<0 , f( x) 在 ( 2 - 1, 2+1) 上是减函数;当x∈ ( 2+ 1,+∞ )时, f ′ (x)>0 , f(x) 在 ( 2+ 1,+∞ )上是增函数.5(2) 由 f(2) ≥ 0 得 a≥ -4.5当 a≥-4, x∈(2 ,+∞ )时,2+2ax + 1) ≥ 3(x 2-51f ′ (x) = 3(x 2x + 1) = 3(x - 2)( x - 2)>0 , 所以 f(x) 在 (2 ,+ ∞ )上是增函数,于是当 x ∈[2 ,+ ∞)时, f(x) ≥ f(2) ≥ 0.5综上, a 的取值范围是[- 4,+ ∞ ).14 .曲线 y = x在点 (- 1,- 1)处的切线方程为 ()x + 2A . y = 2x + 1B . y = 2x -1C .y =- 2x - 3D . y =- 2x - 2[答案 ] A[解析 ]本小题主要考查导数的运算及其几何意义,直线的点斜式方程等基础知识.- 1 + x- - 1-1+ x + 2∵ f ′ (- 1) = lim→x 0x= lim- 1+ x + 1 + x2= lim → = 2,→1+ x xx 0x 01+ x∴曲线在 (- 1,- 1)处的切线方程为y - (- 1) = 2(x +1) ,即 y = 2x + 1.15 .过点 P( - 2,0) 作曲线 y = x 的切线,求切线方程.[解析 ]因为点 P 不在曲线 y = x 上,故设切点为 Q( x 0, x0 ),∵ y ′=1 ,2 x∴过点 Q 的切线斜率为:1 =x 0,∴ x 0= 2,2 x 0 x 0+ 2∴切线方程为: y- 2=1( x -2) ,22即: x- 2 2y+2=0.16 .函数 f(x) 的定义域为R,导函数 f ′ (x) 的图象如图所示,则函数f(x)()A.无极大值点、有四个极小值点B.有一个极大值点、两个极小值点C .有两个极大值点、两个极小值点D .有四个极大值点、无极小值点[答案 ]C[解析 ]设 f ′ (x) 与 x 轴的 4个交点,从左至右依次为x 、 x 、 x 、 x 4,1 2 3当 x<x 1 时, f ′ (x)>0 , f(x) 为增函数,当 x 1<x<x 2 时, f ′ (x)<0 , f(x) 为减函数,则 x = x 1 为极大值点,同理, x = x 3 为极大值点,x =x 2,x = x 4 为极小值点.[点评 ]有关给出图象研究函数性质的题目,要分清给的是 f(x) 的图象还是 f ′ (x) 的图象,若给的是 f( x) 的图象,应先找出 f(x) 的单调区间及极 (最 )值点,如果给的是f ′ (x) 的图象,应先找出 f ′ (x) 的正负区间及由正变负还是由负变正,然后结合题目特点分析求解.17 .(2014 ·溪一中期中屯) 设 f(x) = x 3 + ax 2+ bx + 1 的导数 f ′ (x) 满足 f ′ (1) = 2a ,f ′ (2)=- b ,其中常数a 、b ∈ R.(1) 求曲线 y = f(x) 在点 (1 , f(1)) 处的切线方程;- x(2) 设 g(x) =f ′( x)e ,求函数g(x) 的极值.[解析 ]∵ f(x) =x 3+ ax 2+ bx + 1,∴ f ′ ( x) = 3x 2+ 2ax + b ,∵ f ′ (1) = 2a ,∴ 3+ 2a + b = 2a ,∵ f ′ (2) =- b ,∴ 12 + 4a + b =- b ,∴ a =-32, b =- 3,33 22∴f(x) =x - 2 x- 3x + 1, f ′ (x)= 3x - 3x - 3,5∴f(1) =-2, f ′ (1) =- 3,5∴切线方程为y- (-2)=- 3(x - 1) ,即6x +2y- 1= 0.(2)∵ g(x)= (3x 2- 3x - 3)e -x,∴ g′ (x) = (6x - 3)e -x+ (3x2- 3x - 3) · (- e-x),∴ g′ (x) =- 3x(x - 3)e -x ,∴当 0<x<3 时, g′(x)>0 ,当 x>3 时, g′ (x)<0 ,当 x<0 时, g′ (x)<0 ,∴ g(x) 在 (-∞, 0) 上单调递减,在(0,3) 上单调递增,在(3 ,+∞ ) 上单调递减,所以 g 极小 (x) = g(0) =- 3, g 极大 (x) = g(3) = 15e -3 .18 . (2014 山·东省菏泽市期中)已知函数 f(x) = 1x 2+aln x.2(1) 若 a =- 1 ,求函数 f(x) 的极值,并指出是极大值还是极小值;(2) 若 a = 1 ,求证:在区间 [1 ,+∞ )上,函数 f(x) 的图象在函数2 3的图象的下方.g(x) = x3[解析 ] (1) 由于函数 f(x) 的定义域为 (0 ,+ ∞ ),当 a =- 1 时, f ′ (x) = x -1=x +1 x -1,xx令 f ′ (x) = 0 得 x =1 或 x =- 1( 舍去 ),当 x ∈ (0,1) 时, f ′ ( x)<0 ,因此函数f(x) 在 (0,1) 上单调递减,当 x ∈(1 ,+ ∞ )时, f ′ (x)>0 ,因此函数f(x) 在 (1 ,+ ∞ )上单调递增,则 x = 1 是 f(x) 的极小值点,1所以 f(x) 在 x = 1 处取得极小值为f(1) = 2. 1 2 23(2) 证明:设F(x) =f(x) - g(x) = 2x + lnx - 3x,-2x 3 +x 2+1则 F ′ (x)= x + 1- 2x 2=xx- x - 1 2x 2+ x + 1=,x当 x>1 时, F ′ ( x)<0 ,故 f(x) 在区间 [1 ,+ ∞) 上单调递减,1又F(1) =-6<0 ,∴在区间 [1 ,+∞ )上, F(x)<0 恒成立,即 f(x)< g(x) 恒成立.因此,当 a = 1 时,在区间[1 ,+∞ )上,函数f(x) 的图象在函数g(x) 图象的下方.19 . (2014 山·西省太原五中月考) 已知函数f(x) =xln x.(1)求函数 f(x) 的单调递减区间;(2) 若 f(x)≥- x 2+ ax - 6 在 (0 ,+∞ )上恒成立,求实数 a 的取值范围;-2,(3) 过点 A( - e0) 作函数y= f(x) 图象的切线,求切线方程.[解析 ] (1)∵f ′ (x) =ln x +1,∴由 f ′ (x)<0 得 lnx< -1, 11∴ 0<x< e,∴函数 f(x) 的单调递减区间是(0, e).(2)∵f(x) ≥ - x 2+ ax -6,∴a ≤ln x +x + 6,x设 g(x) = lnx + x +6x ,则x 2+ x - 6x +3 x - 2g ′ (x) = 2= 2,x x当 x ∈ (0,2) 时, g ′ (x)<0 ,函数 g(x) 单调递减;当 x ∈ (2 ,+ ∞ )时, g ′ (x)>0 ,函数 g(x) 单调递增.∴ g(x) 最小值为 g(2) = 5+ ln2 ,∴实数 a 的取值范围是( - ∞, 5+ ln2] .(3) 设切点 T(x 0 , y 0),则 k AT = f ′(x 0),x 0 lnx 0 2 ∴ 1 = lnx 0+ 1,即 e x 0+ lnx 0+ 1= 0,x 0 +2e设 h(x) = e 2x + lnx + 1 ,则 h ′ (x) = e2+ 1x ,当 x>0 时 h ′ (x)>0 ,∴ h(x) 是单调递增函数,∴ h(x)= 0 最多只有一个根,121 11又 h( 2× 220 = 2e )= ee + ln e +1= 0,∴x,e1e2= 0.由 f ′ (x0)=- 1得切线方程是x+ y+1 ,220 .在曲线 y= x (x ≥ 0) 上某一点 A 处作一切线使之与曲线以及x 轴所围成的面积为12试求:(1)切点 A 的坐标;(2)过切点 A 的切线方程.[解析 ]如图所示,设切点A( x 0,y0),由 y′= 2x 知过 A 点的切线方程为y - y 0= 2x 0(x- x0),2即y = 2x 0x- x0 .令 y = 0 得 x =x 0,即 Cx 0, 0 .22设由曲线和过A 点的切线及 x 轴所围成图形的面积为S ,21 3S = S 曲边△AOB - S △ABC , S 曲边△AOB = ∫ x 00 x dx = 3x 0 ,△1 1 - x 02 13 ABC =x 00=0,即 S =1x 03- 1x 03= 1 x 03= 1 .3 4 12 12所以 x 0= 1,从而切点A(1,1) ,切线方程为 y = 2x - 1.21. (2014 山·东省德州市期中 )统计表明某型号汽车在匀速行驶中每小时的耗油量y(升 )关于行驶速度x(千米 /小时 )的函数为y = 1 x 3- 3x + 8(0<x<120) .128000 80(1) 当 x = 64 千米 /小时时,行驶100千米耗油量多少升?(2) 若油箱有22.5 升油,则该型号汽车最多行驶多少千米?100 25[解析 ] (1)当 x = 64 千米 /小时时,要行驶100 千米需要 64 =16 小时,要耗油 (1 × 643- 3 × 64 + 8) ×25= 11.95( 升 ).1280008016(2) 设 22.5 升油能使该型号汽车行驶a 千米,由题意得,133 a(x-80x +8)× x = 22.5,128000∴ a =22.5,1x 2+ 8 - 3128000 x 801283x + -, 设 h(x) = 128000 x80则当 h(x) 最小时, a 取最大值,18 x 3-803x-2=2,h ′ (x) = 64000x 64000x令 h ′ (x) = 0? x = 80 ,当 x ∈ (0,80) 时, h ′ (x)<0 ,当 x ∈ (80,120) 时, h ′ (x)>0 ,故当 x ∈(0,80) 时,函数h(x) 为减函数,当 x ∈ (80,120) 时,函数 h( x) 为增函数,∴当 x = 80 时, h(x) 取得最小值,此时 a 取最大值为∴a=122.53=200.28-128000×80 +8080答:若油箱有22.5 升油,则该型号汽车最多行驶200 千米.。
第一章测试题一、选择题1. 已知函数f (x )=ax 2+c ,且(1)f '=2,则a 的值为 ( ) A.1B.2C.-1D. 02. 函数y =(2x +1)3在x =0处的导数是 ( ) A.0 B.1 C.3 D.6 3.函数)0,4(2cos π在点x y =处的切线方程是( )A .024=++πy xB .024=+-πy xC .024=--πy xD .024=-+πy x4.设函数()f x 是R 上以5为周期的可导偶函数,则曲线()y f x =在5x =处的切线的斜率为( ) A.15-B.0C.15D.55. 给出以下命题:⑴若()0b af x dx >⎰,则f (x )>0; ⑵20sin 4x dx =⎰π;⑶f (x )的原函数为F (x ),且F (x )是以T 为周期的函数,则()()a a T Tf x dx f x dx +=⎰⎰;其中正确命题的个数为 ( )A. 1B. 2C. 3D. 06.函数313y x x =+- 有 ( ) A.极小值-1,极大值1 B. 极小值-2,极大值3 C. 极小值-1,极大值3 D. 极小值-2,极大值2 7.若函数f(x)=x 3-3b 2x +3b 在(0,1)内有极小值,则 ( )A.0<b<2B.b<2C.b>0D.0<b<218、由曲线1xy =,直线,3y x y ==所围成的平面图形的面积为( )A .329B .2ln3-C .4ln3-D .4ln3+9. 已知自由下落物体的速度为V=gt ,则物体从t=0到t 0所走过的路程为( ) A .2012gt B .20gt C . 2013gt D .2014gt 10.设函数()f x 的导函数为()f x ',且()()221f x x x f '=+⋅,则()0f '等于 ( )A 、0B 、-4C 、-2D 、211Oyx11.已知函数(1)()y x f x'=-的图象如图所示,其中()f x'为函数()f x的导函数,则()y f x=的大致图象是( )12.设0<a<b,且f (x)=xx++11,则下列大小关系式成立的是( ).A.f (a)< f (2ba+)<f (ab) B. f (2ba+)<f (b)< f (ab)C. f (ab)< f (2ba+)<f (a) D. f (b)< f (2ba+)<f (ab)二、填空题(共4小题,每小题5分,共20分)13.一物体在力⎩⎨⎧>+≤≤=)2(,43)20(,10)(xxxxF(单位:N)的作用下沿与力F相同的方向,从0=x处运动到4=x(单位:m)处,则力)(xF做的功为焦。
目录:数学选修2-2第一章 导数及其应用 [基础训练A 组] 第一章 导数及其应用 [综合训练B 组] 第一章 导数及其应用 [提高训练C 组] 第二章 推理与证明 [基础训练A 组] 第二章 推理与证明 [综合训练B 组]第二章 推理与证明 [提高训练C 组] 第三章 复数 [基础训练A 组] 第三章 复数 [综合训练B 组]第三章 复数 [提高训练C 组](数学选修2-2)第一章 导数及其应用[基础训练A 组]一、选择题1.若函数()y f x =在区间(,)a b 内可导,且0(,)x a b ∈则000()()limh f x h f x h h→+--的值为( )A .'0()f xB .'02()f xC .'02()f x - D .02.一个物体的运动方程为21t t s +-=其中s 的单位是米,t 的单位是秒, 那么物体在3秒末的瞬时速度是( ) A .7米/秒 B .6米/秒 C .5米/秒 D .8米/秒 3.函数3yx x 的递增区间是( )A .),0(+∞B .)1,(-∞C .),(+∞-∞D .),1(+∞4.32()32f x ax x =++,若'(1)4f -=,则a 的值等于( )A .319 B .316C .313 D .310 5.函数)(x f y =在一点的导数值为0是函数)(x f y =在这点取极值的( )A .充分条件B .必要条件C .充要条件D .必要非充分条件6.函数344+-=x x y 在区间[]2,3-上的最小值为( )A .72B .36C .12D .0二、填空题1.若3'0(),()3f x x f x ==,则0x 的值为_________________;2.曲线x x y 43-=在点(1,3)- 处的切线倾斜角为__________; 3.函数sin xy x=的导数为_________________; 4.曲线x y ln =在点(,1)M e 处的切线的斜率是_________,切线的方程为_______________; 5.函数5523--+=x x x y 的单调递增区间是___________________________。
一、选择题1.某快递公司的四个快递点,,,A B C D 呈环形分布(如图所示),每个快递点均已配备快递车辆10辆.因业务发展需要,需将,,,A B C D 四个快递点的快递车辆分别调整为5,7,14,14辆,要求调整只能在相邻的两个快递点间进行,且每次只能调整1辆快递车辆,则A .最少需要8次调整,相应的可行方案有1种B .最少需要8次调整,相应的可行方案有2种C .最少需要9次调整,相应的可行方案有1种D .最少需要9次调整,相应的可行方案有2种2.古希腊著名的毕达哥拉斯学派把1、3、6、10…这样的数称为“三角形数”,而把1、4、9、16…这样的数称为“正方形数”.从下图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是 ( )A .B .C .D .3.某地铁换乘站设有编号为A ,B ,C ,D ,E 的五个安全出口.若同时开放其中的两个安全出口,疏散1000名乘客所需的时间如下: 安全出口编号 A ,BB ,CC ,DD ,EA ,E疏散乘客时间(s )186125160175145则疏散乘客最快的一个安全出口的编号是( ) A .AB .BC .CD .D4.德国数学家科拉茨1937年提出了一个著名的猜想:任给一个正整数n ,如果n 是偶数,就将它减半(即2n);如果n 是奇数,则将它乘3加1(即3n+1),不断重复这样的运算,经过有限步后,一定可以得到1. 对于科拉茨猜想,目前谁也不能证明,也不能否定,现在请你研究:如果对正整数n (首项)按照上述规则施行变换后的第8项为1(注:l 可以多次出现),则n 的所有不同值的个数为 A .4B .6C .8D .325.设实数a,b,c 满足a+b+c=1,则a,b,c 中至少有一个数不小于 ( ) A .0B .13C .12D .16.利用数学归纳法证明不等式()()1111++++,2,232n f n n n N +<≥∈的过程中,由n k =变成1n k =+时,左边增加了( )A .1项B .k 项C .12k -项D .2k 项7.“杨辉三角”又称“贾宪三角”,是因为贾宪约在公元1050年首先使用“贾宪三角”进行高次开方运算,而杨辉在公元1261年所著的《详解九章算法》一书中,记录了贾宪三角形数表,并称之为“开方作法本源”图.下列数表的构造思路就源于“杨辉三角”.该表由若干行数字组成,从第二行起,每一行中的数字均等于其“肩上”两数之和,表中最后一行仅有一个数,则这个数是( )A .201620172⨯B .201501822⨯C .201520172⨯D .201601822⨯8.用数学归纳法证明“11112321n++++- ”时,由(1)n k k =>不等式成立,推证1n k =+时,左边应增加的项数是( )A .12k -B .21k -C .2kD .21k +9.一次猜奖游戏中,1,2,3,4四扇门里摆放了a ,b ,c ,d 四件奖品(每扇门里仅放一件).甲同学说:1号门里是b ,3号门里是c ;乙同学说:2号门里是b ,3号门里是d ;丙同学说:4号门里是b ,2号门里是c ;丁同学说:4号门里是a ,3号门里是c .如果他们每人都猜对了一半,那么4号门里是( ) A .aB .bC .cD .d10.如果把一个多边形的所有便中的任意一条边向两方无限延长称为一直线时,其他个边都在此直线的同旁,那么这个多边形就叫凸多边形.平行内凸四边形由2条对角线,凸五边形有5条对角线,以此类推,凸16变形的对角线条为( ) A .65B .96C .104D .11211.已知0x >,不等式12x x +≥,243x x +≥,3274x x+≥,…,可推广为1n ax n x+≥+ ,则a 的值为( ) A .2nB .n nC .2nD .222n -12.已知 222233+=,333388+=,44441515+=,m m m mt t+=()*,2m t N m ∈≥且,若不等式30m t λ--<恒成立,则实数λ的取值范围为( ) A .)22,⎡+∞⎣B .(),22-∞C .(),3-∞D .[1,3]二、填空题13.观察如图等式,照此规律,第n 个等式为______.11234934567254567891049=++=++++=++++++=14.36的所有正约数之和可按如下方法得到:因为223623=⨯,所以36的所有正约数之和为22(133)(22323)++++⨯+⨯22222(22323)(122)++⨯+⨯=++2(133)91++=,参照上述方法,可得100的所有正约数之和为__________.15.平面上画n 条直线,且满足任何2条直线都相交,任何3条直线不共点,则这n 条直线将平面分成__________个部分. 16.利用数学归纳法证明不等式“()*11112,23212n n n n N +++⋯+>≥∈-”的过程中,由“n k =”变到“1n k =+”时,左边增加了_____项.17.将正整数对作如下分组,第1组为()(){}1,2,2,1,第2组为()(){}1,3,3,1,第3组为()()()(){}1,4,2,3,3,2,4,1,第4组为()()()(){}1,5,2,44,25,1⋅⋅⋅⋅⋅⋅则第30组第16个数对为__________.18.甲、乙、丙、丁四人分别从一个装有编号为1,2,3,4,的四个完全相同的小球的袋中依次取出一个小球.现知道:①甲取出的小球编号为偶数;②乙取出的小球编号比甲大;③乙、丙取出的小球编号差的绝对值比甲大.则丁取出的小球编号是________. 19.观察下面的数阵,则第40行最左边的数是__________.20.观察下列式子:,,,,…,根据以上规律,第个不等式是_________.三、解答题21.若数列{}n a 的前n 项和为n S ,且13a =,()211324222n n S S n n n -=+-+≥. (1)求2a ,3a ,4a ;(2)猜想数列{}n a 的通项公式,并用数学归纳法加以证明. 22.若10a >,11a ≠,121+=+nn na a a (n =1,2,…). (1)求证:1+≠n n a a ; (2)令112a =,写出2a ,3a ,4a ,5a 的值,观察并归纳出这个数列的通项公式n a ,并用数学归纳法证明.23.已知数列11111,,,,,12233445(1)n n ⨯⨯⨯⨯⨯+,…的前n 项和为n S .(1)计算1234,,,S S S S 的值,根据计算结果,猜想n S 的表达式; (2)用数学归纳法证明(1)中猜想的n S 表达式.24.某少数民族的刺绣有着悠久的历史,图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都由小正方形构成,小正方形数越多刺绣越漂亮,现按同样的规律刺绣(小正方形的摆放规律相同),设第n 个图形包含()f n 个小正方形.(Ⅰ)求出()5f ;(Ⅱ)利用合情推理的“归纳推理思想”归纳出()1f n +与()f n 的关系式,并根据你得到的关系式求()f n 的表达式. 25.依次计算数列114⎛⎫-⎪⎝⎭,111149⎛⎫⎛⎫--⎪⎪⎝⎭⎝⎭,1111114916⎛⎫⎛⎫⎛⎫--- ⎪⎪⎪⎝⎭⎝⎭⎝⎭,11111111491625⎛⎫⎛⎫⎛⎫⎛⎫---- ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭,的前4项的值,由此猜想21111111111491625(1)n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫----- ⎪⎪⎪⎪⎢⎥+⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦(n *∈N )的结果,并用数学归纳法加以证明.26.设a ,b 均为正数,且ab .证明:(1)664224a b a b a b +>+(2)a b a b b a+>+【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】先阅读题意,再结合简单的合情推理即可得解. 【详解】(1)A→D 调5辆,D→C 调1辆,B→C 调3辆,共调整:5+1+3=9次, (2)A→D 调4辆,A→B 调1辆,B→C 调4辆,共调整:4+1+4=9次, 故选D【点睛】本题考查了阅读能力及简单的合情推理,属中档题.2.C解析:C 【分析】 结合题意可知,代入数据,即可.【详解】A 选项,13不满足某个数的平方,故错误;B 选项,,故错误;C 选项,故正确;D 选项,,故错误.故选C. 【点睛】本道题考查了归纳推理,关键抓住利用边长点数计算总点数,难度中等.3.C解析:C 【解析】分析:根据疏散1000名乘客所需的时间,两两对比,即可求出结果. 详解:同时开放其中的两个安全出口,疏散1000名乘客,所需时间对比:开方AB 、出口时间为186s ,开方BC 、出口时间为125s ,得C 比A 快; 开方CD 、出口时间为160s ,开方DE 、出口时间为175s ,得C 比E 快;开方AB 、出口时间为186s ,开方A E 、出口时间为145s ,得E 比B 快; 开方BC 、出口时间为125s ,开方CD 、出口时间为160s ,得B 比D 快; 综上,疏散乘客最快的安全出口的编号是C. 故选C.点睛:本题考查简单的合情推理,考查学生推理论证能力.4.B解析:B 【解析】分析:利用第八项为1出发,按照规则,逆向逐项即可求解n 的所有可能的取值. 详解:如果正整数n 按照上述规则施行变换后第八项为1, 则变换中的第7项一定为2, 变换中的第6项一定为4,变换中的第5项可能为1,也可能是8, 变换中的第4项可能是2,也可能是16,变换中的第4项为2时,变换中的第3项是4,变换中的第2项是1或8,变换中的第1项是2或6,变换中的第4项为16时,变换中的第3项是32或5,变换中的第2项是64或108,变换中的第1项是128或21或20,或3,则n 的所有可能的取值为2,3,16,20,21,128,共6个,故选B.点睛:本题主要考查了归纳推理的应用,其中解答中正确理解题意,利用变换规则,进行逆向逐项推理、验证是解答的关键,着重考查了推理与论证能力,试题有一定的难度,属于中档试题.5.B解析:B 【解析】∵三个数a ,b ,c 的和为1,其平均数为13∴三个数中至少有一个大于或等于13假设a ,b ,c 都小于13,则1a b c ++<∴a ,b ,c 中至少有一个数不小于13故选B.6.D解析:D 【分析】分别写出n k =、1n k =+时,不等式左边的式子,从而可得结果. 【详解】当n k =时,不等式左边为1111232k++++,当1n k =+时,不等式左边为1111111232212k k k +++++++++,则增加了112(21)1222k k k k k ++-++=-=项,故选D. 【点睛】项数的变化规律,是利用数学归纳法解答问题的基础,也是易错点,要使问题顺利得到解决,关键是注意两点:一是首尾两项的变化规律;二是相邻两项之间的变化规律.7.B解析:B 【详解】由题意,数表的每一行从右往左都是等差数列,且第一行公差为1,第二行公差为2,第三行公差为4,…,第2015行公差为20142, 故第1行的从右往左第一个数为:122-⨯, 第2行的从右往左第一个数为:032⨯, 第3行的从右往左第一个数为:142⨯, …第n 行的从右往左第一个数为:2(1)2n n -+⨯ , 表中最后一行仅有一个数,则这个数是201501822⨯.8.C解析:C 【解析】左边的特点:分母逐渐增加1,末项为121n -; 由n=k ,末项为121k-到n=k+1,末项为11121212k k k+=--+, ∴应增加的项数为2k . 故选C .9.A解析:A【解析】由题意得,甲同学说:1号门里是b ,3号门里是c ,乙同学说:2号门里是b ,3号门里是d ;丙同学说:4号门里是b ,2号门里是c ;丁同学说:4号门里是a ,3号门里是cc ,若他们每人猜对了一半,则可判断甲同学中1号门中是b 是正确的;乙同学说的2号门中有d 是正确的;并同学说的3号门中有c 是正确的;丁同学说的4号门中有a 是正确的,则可判断在1,2,3,4四扇门中,分别存有,,,b d c a ,所以4号门里是a ,故选A. 点睛:本题主要考查了归纳推理问题,通过具体事例,根据各位同学的说法给出判断,其中正确理解题意,合理作出推理是解答此类问题的关键,同时注意仔细审题,认真梳理.10.C解析:C 【解析】可以通过列表归纳分析得到;16边形有2+3+4+…+14=2=104条对角线. 故选C .11.B解析:B 【分析】由题意归纳推理得到a 的值即可. 【详解】由题意,当分母的指数为1时,分子为111=; 当分母的指数为2时,分子为224=; 当分母的指数为3时,分子为3327=; 据此归纳可得:1n ax n x+≥+中,a 的值为n n . 本题选择B 选项. 【点睛】归纳推理是由部分到整体、由特殊到一般的推理,由归纳推理所得的结论不一定正确,通常归纳的个体数目越多,越具有代表性,那么推广的一般性命题也会越可靠,它是一种发现一般性规律的重要方法.12.C解析:C 【解析】分析:由等式归纳得出m 和t 的关系,从而得出关于m 的恒等式,利用函数单调性得出最小值即可得出λ的范围.=21t m =-, 30m t λ--<恒成立,即220m m λ--<恒成立,m N *∈且2m ≥,222m m m mλ+∴<=+.令()2f m m m =+,()221f m m ='-,2m ≥,()0f m ∴'>,()f m ∴单调递增,∴当2m =时,()f m 取得最小值()23f =,3λ∴<.故选:C.点睛:若f (x )≥a 或g (x )≤a 恒成立,只需满足f (x )min ≥a 或g (x )max ≤a 即可,利用导数方法求出f (x )的最小值或g (x )的最大值,从而问题得解.二、填空题13.【解析】分析:由题意结合所给等式的规律归纳出第个等式即可详解:首先观察等式左侧的特点:第1个等式开头为1第2个等式开头为2第3个等式开头为3第4个等式开头为4则第n 个等式开头为n 第1个等式左侧有1个解析:2(1)(32)(21)n n n n ++++-=-.【解析】分析:由题意结合所给等式的规律归纳出第n 个等式即可. 详解:首先观察等式左侧的特点: 第1个等式开头为1,第2个等式开头为2, 第3个等式开头为3,第4个等式开头为4, 则第n 个等式开头为n ,第1个等式左侧有1个数,第2个等式左侧有3个数, 第3个等式左侧有5个数,第4个等式左侧有7个数, 则第n 个等式左侧有2n -1个数, 据此可知第n 个等式左侧为:()()132n n n ++++-,第1个等式右侧为1,第2个等式右侧为9, 第3个等式右侧为25,第4个等式右侧为49, 则第n 个等式右侧为()221n -, 据此可得第n 个等式为()()()213221n n n n ++++-=-.点睛:归纳推理是由部分到整体、由特殊到一般的推理,由归纳推理所得的结论不一定正确,通常归纳的个体数目越多,越具有代表性,那么推广的一般性命题也会越可靠,它是一种发现一般性规律的重要方法.14.217【分析】根据题意类比36的所有正约数之和的方法分析100的所有正约数之和为(1+2+221+5+52)计算可得答案【详解】根据题意由36的所有正约数之和的方法:100的所有正约数之和可按如下方解析:217 【分析】根据题意,类比36的所有正约数之和的方法,分析100的所有正约数之和为(1+2+22)(1+5+52),计算可得答案. 【详解】根据题意,由36的所有正约数之和的方法:100的所有正约数之和可按如下方法得到:因为100=22×52, 所以100的所有正约数之和为(1+2+22)(1+5+52)=217. 可求得100的所有正约数之和为217; 故答案为:217. 【点睛】本题考查简单的合情推理应用,关键是认真分析36的所有正约数之和的求法,并应用到100的正约数之和的计算.15.【解析】分析:根据几何图形列出前面几项根据归纳推理和数列中的累加法即可得到结果详解:1条直线将平面分成2个部分即2条直线将平面分成4个部分即3条直线将平面分为7个部分即4条直线将平面分为11个部分即解析:(1)12n n ++ 【解析】分析:根据几何图形,列出前面几项,根据归纳推理和数列中的累加法即可得到结果。
选修2-2第一章单元测试(一)时间:120分钟总分:150分一、选择题(每小题5分,共60分) 1 .函数f(x)= x sinx 的导数为( A. f ‘ (x) = 2 x sinx + . x cosx2. 若曲线y = x 2 + ax + b 在点(0, b)处的切线方程是x — y +1 = 0, 则()A . a = 1, b = 1B . a =— 1, b = 1C . a = 1, b =— 1D . a =— 1, b =— 13.设 f(x) = xlnx ,若 f ‘(x o )= 2,则 x 0 =() In2 A . e 2B . eC^^D . ln24. 已知 f(x) = x 2 + 2xf ‘ (1),贝S f ‘ (0)等于( )B . f ‘ (x) = 2 x sinx — x cosx, sinx 厂C . f (x)= 2 x + x cosxD . f ‘sinx 厂(x)= 2 x — x cosx-3 -316. 如图是函数y= f(x)的导函数的图象,给出下面四个判断:①f(x)在区间[—2,—1]上是增函数;②x=—1是f(x)的极小值点;③f(x)在区间[—1,2]上是增函数,在区间[2,4]上是减函数;④x= 2是f(x)的极小值点.其中,所有正确判断的序号是()A .①②B .②③C.③④ D .①②③④7. 对任意的x€ R,函数f(x) = x3+ ax2+ 7ax不存在极值点的充要条件是()A. O w a w 21B. a= 0 或a = 7C. a<0 或a>21D. a= 0 或a= 218某商场从生产厂家以每件20元的价格购进一批商品,若该商品零售价定为P元,销售量为Q,则销量Q(单位:件)与零售价P(单位:元)有如下关系:Q= 8 300—170P—P2,则最大毛利润为(毛利润 =销售收入—进货支出)()A . 30 元B. 60 元C. 28 000元D. 23 000 元x9. 函数f(x) = —g(a<b<1),则()A. f(a) = f(b) B . f(a)<f(b)C. f(a)>f(b)D. f(a), f(b)大小关系不能确定10. 函数f(x)=-x3+x2+ x —2的零点个数及分布情况为()1A .一个零点,在一X,—3内1B. 二个零点,分别在—x,—3 , (0,+x)内1 1c.三个零点,分别在一x,—3 , 一3,0, (1,+*)内1D. 三个零点,分别在—X,—3,(0,1), (1,+工)内11. 对于R上可导的任意函数f(x),若满足(x—1)f‘ (x) >0,则必有()A . f(0) + f(2)<2f(1) B. f(0) + f(2)< 2f(1)C. f(0) + f(2) >2f(1) D . f(0) + f(2)>2f(1)12. 设f(x)是定义在R上的可导函数,且满足f‘ (x)>f(x),对任意的正数a,下面不等式恒成立的是()A. f(a)<e a f(0)B. f(a)>e a f(0)C. f(a)v号D.")>罟二、填空题侮小题5分,共20分)113. 过点(2,0)且与曲线y=-相切的直线的方程为/输入(结束〕116. 已知函数f(x) = qmx2+ Inx—2x在定义域内是增函数,则实数m的取值范围为________ .三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17. (10 分)设函数f(x) = —x3—2mx2—m2x + 1 —m(其中m> —2)的图象在x = 2处的切线与直线y= —5x+ 12平行.(1) 求m的值;(2) 求函数f(x)在区间[0,1]上的最小值.18. (12 分)已知函数f(x) = kx3—3(k + 1)x2—k2+ 1(k>0),若f(x)的单调递减区间是(0,4),1(1)求k的值;(2)当k<x时,求证:2 x>3—-x19. (12分)已知函数f(x)= kx3—3x2+ 1(k> 0).(1)求函数f(x)的单调区间;⑵若函数f(x)的极小值大于0,求k的取值范围.20. (12分)湖北宜昌“三峡人家”风景区为提高经济效益,现对某一景点进行改造升级,从而扩大内需,提高旅游增加值,经过市场调101 查,旅游增加值y万元与投入x(x> 10)万元之间满足:y= f(x) = ax2+而x—bl口希,a, b 为常数,当x= 10 时,y= 19.2;当x= 20 时,y= 357(参考数据:ln2 = 0.7, In3 = 1.1, ln5 = 1.6)(1)求f(x)的解析式;⑵求该景点改造升级后旅游利润T(x)的最大值.(利润=旅游收入—投入)1 121. (12 分)已知函数f(x) = 3X3—2X2+ cx+ d 有极值.(1)求c的取值范围;1 一⑵若f(x)在x= 2处取得极值,且当x<0时,f(x)<6d2+ 2d恒成立, 求d的取值范围.22. (12分)(2015银川一中月考)设a为实数,函数f(x) = e x—2x+ 2a, x€ R.(1)求f(x)的单调区间与极值;⑵求证:当a>ln2 — 1 且x>0 时,e x>x2—2ax + 1.答案2 A •/y'= 2x+ a,•••曲线y = x2+ax+ b在(0, b)处的切线方程的斜率为a, 切线方程为y —b= ax,即ax—y+ b= 0;・a= 1, b= 1.3. B f ‘(x) = (xlnx) '= lnx + 1,「• f ‘ (x o ) = lnx o + 1 = 2,「. x o = e.4. B f (x) =2x + 2f ‘ (1),A f (1)= 2 + 2f ‘ (1),即 f ‘ (1)=- 2,二 f (x) = 2x -4,A f (0)=- 4.5. D 由定积分的几何意义可知,函数y = f(x)的图象与x 轴围成 的阴影部分的面积为1 — 3f(x)dx — 3f(x)dx.故选D.i6. B 由函数y =f(x)的导函数的图象可知:(1) f(x)在区间[—2, — 1]上是减函数,在[—1,2]上是增函数,在[2,4] 上是减函数;(2) f(x)在x =— 1处取得极小值,在x = 2处取得极大值.故②③正 确. 7. A f (x) = 3x 2 + 2ax + 7a ,当 △= 4a 2 — 84a <0,即卩 0W a <21 时,f ‘ (x) >0恒成立,函数不存在极值点.故选 A.& D 设毛利润为L(P),由题意知 L(P)= PQ — 20Q = Q(P — 20) =(8 300— 170P — P 2)(P — 20) =—P 3 — 150P 2 + 11 700P — 166 000, 所以 L ‘ (P) = — 3P 2— 300P + 11 700, 令 L ' (P)= 0,解得 P = 30 或 P =— 130(舍 去). 此时,L(30)= 23 000.根据实际问题的意义知,L(30)是最大值,即零售价定为每件 30元时,最大毛利润为23 000元.e x — xe x x — 11. C F (x) = ( x) 选C.sinx + x (sinx)'=^x sinx +G cosx ,故9. C F(x)=—否 2 = e x,当x<1时,f‘ (x)<0,即f(x)在区间(一汽1)上单调递减,又•: a<b<1,二f(a)>f(b).110. A 利用导数法易得函数f(x)在一 = ,—3内单调递减,在1 1 59—3, 1内单调递增,在(1, +x)内单调递减,而f — 3 = —27<o,f(1)=—1<0,故函数f(x)的图象与x轴仅有一个交点,且交点横坐标在1— X,—3内,故选A.11. C 当1<x< 2 时,f‘(x)》0,贝y f(2)>f(1); 而当0W x< 1 时,f‘(x)<0,贝S f(1)<f(0),从而f(0) + f(2)> 2f(1).f x f' x 一f x12. B 构造函数g(x)=孑,贝S g' (x)= e x >0,故函数f x fa f 0g(x) = *在R 上单调递增,所以g(a)>g(0),即f er>f-^,即f(a)>e a f(0). DD D13. x+ y —2= 0解析:设所求切线与曲线的切点为P(x o, y o),1 1T y'= —p,二y' |x=x o= —鬲所求切线的方程为1y—y o= —x0(x一X o).T点(2,0)在切线上,= y 「・x2y o= 2—X.①由①②解得X o =1, y o•••所i4.n解析: 1 1 jn jn jnM = 1 1— x 2dx = 4 nX 12 = 4, N =/2o cosxdx = sinx 刖=1,冗 M<N ,不满足条件 M>N ,贝S S = M = 4.15.16. [1,+乂)1解析:根据题意,知f ‘ (x)= mx + --2>0对一切x>0恒成立,x1 2121 1二 m >- - 2 + _,令 g(x) =-- 2 + _=_ -- 1 2+ 1,则当_ = 1 时,函 X x x x x x数g(x)取得最大值1,故m 》1.17.解:(1)因为 f ‘ (x)=- 3x 2-4mx - m 2, 所以 f ‘ (2) = - 12-8m -m 2=- 5,解得m =- 1或m =- 7(舍去),即m =- 1. (2)令 f ‘ (x)=- 3x 2+ 4x — 1= 0,1解得 X 1 = 1 , x 2 = §.当X 变化时,f ‘ (x), f(x)的变化情况如下表:解析:f ‘(x)= mX m 1 + a =2x +1,得 m = 2,a = 1. 则 f(x) = x 2 + x , 丄—1 _ 11f n n n + 1 n n +1, 11 1 1其和为彳―2 + 1—§ +—4 +…+1-七=1-丄=亠 nn + 1 n + 1 n + 1F (x) 一+f(x)2\ 150 2721 50所以函数f(x)在区间[0,1]上的最小值为f3 = 50.18.解:(1)f ‘ (x) = 3kX — 6(k + 1)x ,2k + 2由 f ‘ (x)<0 得 0<x<一 ,T f(x)的递减区间是(0,4),(2)当k = 0时,函数f(x)不存在极小值, 2 8 12 当k>0时,依题意f =迄—迄+1>0, 即k 2>4,所以k 的取值范围为(2,+乂 ).2k + 2 ‘=4,k = 1.1 11 (2)证明:设 g(x) =2 x + x ,g‘(x)= x —x 2.••• g ‘ (x)>0,「. g(x)在 x € [1,+乂)上单调递增.1••• x>1 时,g(x)>g(1), 即卩 2 x + ->3,zv二 2 x>3 — £zv19. 解:(1)当 k = 0 时,f(x) = — 3x 2 + 1,• f(x)的单调增区间为(一乂,0],单调减区间[0,+乂 ).2当 k>0 时,f ‘(x)= 3kx 2— 6x = 3kxx —k , ••• f(x)的单调增区间为 ,单调减区间为0 当x>1时, o20.解:(1)由条件得1解得a =—而,b =1,X 101 x 则 f(x)= — 100+ 50 x — ln^0(x > 10).(2)由题意知x 2 51 xT (x) = f(x) — x =—而+50x — ln^0(x > 10),令「(x)= 0,贝S x = 1(舍去)或 x = 50.当 x € (10,50)时,T ‘ (x)>0, T(x)在(10,50)上是增函数; 当 x € (50, +乂)时,T (x)<0, T(x)在(50, +乂)上是减函数, 二x = 50为T(x)的极大值点,又T(50) = 244故该景点改造升级后旅游利润 T(x)的最大值为24.4万元.1 121.解: (1) v f(x) = §x 3—*2+cx + d ,二f ‘ (x) = x 2 — x +c,要使 f(x)有极值,则方程 f ‘ (x) = x 2— x + c = 0, 1 有两个实数解,从而 △= 1 —4c>0,二c<4.(2) v f(x)在x = 2处取得极值, ••• f (2) = 4 — 2+ c = 0, • c =-1 1-2. •- f(x) = 3X 3 — ^x 2 — 2x + d.a x 102+ x 10— blnl 19.2 a x 202 + 101而 x 20— bln2= 35.7—x 51 1+ ——- 50 + 50 x x — 1 x — 5050xV f (x) = x 2 — x — 2= (x — 2)(x + 1),•••当 x € ( — s,— 1)时,F (x)>0,函数单调递增,当 x € (— 1,2] 时,f ‘ (x)<0,函数单调递减.• x<0时,f(x)在x =— 1处取得最大值右+ d ,1 一V x<0 时,f(x)v§d 2 + 2d 恒成立,••• d<— 7 或 d>1,即d 的取值范围是(— s,— 7)U (1,+乂). 22.解:(1)f ‘ (x) = e — 2, x € R.令 f (x) = 0,得 x = ln2.于是,当x 变化时,f (x)和 f(x)的变化情况如下表:故f(x)的单调递减区间是(一s, |n2),单调递增区间是(In2,+s ), f(x)在x = In2处取得极小值,极小值为f(ln2) = 2— 2ln2 + 2a.(2)证明:设 g(x) = e 一x 2 + 2ax — 1, x € R , 于是 g ‘ (x) = 3— 2x + 2a , x € R.由(1)及 a>ln2 — 1 知,对任意 x € R ,都有 g ‘ (x)>g ‘ (In2) = 2— 2ln2 + 2a>0,所以g(x)在R 内单调递增.于是,当a>l n2 — 1时,对任意x € (0,+s ),都有g(x)>g(0),而 g(0)=0, 从而对任意x € (0,+s ),都有g(x)>0, 即 e x — x 2 + 2ax —1>0, 故 e x >x 2 — 2ax + 1.Vd + 7- 6即(d + 7)(d —14. 已知M = * 1d1 —x2dx, N= n cosxdx,则程序框0 图输出的S= . 15. 设函数f(x) = x m+ ax 的导数为f‘ (x)= 2x+ 1,1则数列fn(n€ N+)的前n项和是 __________ .。
第一章 推理与证明练习题1.“蛇、鳄鱼、海龟、蜥蜴等爬行动物是用肺呼吸的,所以所有的爬行动物都是用肺呼吸的.”此推理方法是: ;2.在数列1,2,2,3,3,3,4,4,4,4,…中,第25项为: ;3.证明n +22<1+12+13+14+…+12n<n +1(n >1),当n =2时,中间式等于: ;4.否定结论“至多有两个解”的说法是: ;5.三角形的面积为S =12(a +b +c )r ,a ,b ,c 为三角形的边长,r 为三角形内切圆的半径,利用类比推理可以得出四面体的体积为: ;6.某人在上楼梯时,一步上一个台阶或两个台阶,设他从平地上到第一级台阶时有f (1)种走法,从平地上到第二级台阶时有f (2)种走法……则他从平地上到第n 级(n ≥3)台阶时的走法f (n )等于: ;7.已知f (x )=x 3+x ,a ,b ,c ∈R ,且a +b >0,a +c >0,b +c >0,则f (a )+f (b )+f (c )的值一定: ;8.数列{a n }满足a 1=12,a n +1=1-1a n,则a 2 013等于: ;9.一个数列{a n }的前n 项为35,12,511,37,717,….则猜想它的一个通项公式为a n =________.10.观察下列的图形中小正方形的个数,则第6个图中有________个小正方形,第n 个图中有________个小正方形.图111.用反证法证明命题“若x 2-(a +b )x +ab ≠0,则x ≠a 且x ≠b ”时,应假设为________.12.已知等差数列{a n }中,有a 11+a 12+…+a 2010=a 1+a 2+…+a 3030,则在等比数列{b n }中,会有类似的结论:________________.13.已知a +b +c =0,比较ab +bc +ca 的大值与0的大小;14.观察下列等式:13+23=32,13+23+33=62,13+23+33+43=102,….根据上述规律,第五个等式为________________________.15.(本小题满分12分)若a 1>0,a 1≠1,a n +1=2a n1+a n(n =1,2,…).(1)求证:a n +1≠a n ;(2)令a 1=12,写出a 2,a 3,a 4,a 5的值,观察并归纳出这个数列的通项公式a n .16.(2014·银川模拟)用数学归纳法证明“当n 为正奇数时,x n +y n能被x +y 整除”的第二步是( )A .假设n =2k +1时正确,再推n =2k +3时正确(k ∈N +)B .假设n =2k -1时正确,再推n =2k +1时正确(k ∈N +)C .假设n =k 时正确,再推n =k +1时正确(k ∈N +)D .假设n ≤k (k ≥1)时正确,再推n =k +2时正确(k ∈N +)17.f (n )=1+12+13+…+1n (n ∈N *),经计算得f (2)=32,f (4)>2,f (8)>52,f (16)>3,f (32)>72.推测:当n ≥2时,有____________.18.(2014·陕西文,14)已知f (x )=x1+x,x ≥0,若f 1(x )=f (x ),f n +1(x )=f (f n (x )),n ∈N +, 则f 2014(x )的表达式为________.19.(本小题满分12分)某少数民族的刺绣有着悠久的历史,图2为她们刺绣中最简单的四个图案,这些图案都是由小正方形构成,小正方形数越多刺绣越漂亮.现按同样的规律刺绣(小正方形的摆放规律相同),设第n 个图形包含f (n )个小正方形.图2(1)求出f (5)的值;(2)利用合情推理的“归纳推理思想”归纳出f (n +1)与f (n )之间的关系式,并根据你得到的关系式求出f (n )的表达式;(3)求1f +1f -1+1f -1+…+1f n -1的值.20.(本小题满分14分)函数列{f n (x )}满足f 1(x )=x1+x2(x >0),f n +1(x )=f 1[f n (x )].(1)求f 2(x ),f 3(x );(2)猜想f n (x )的表达式,并证明.21.已知数列{a n },a 1=5且S n -1=a n (n ≥2,n ∈N +). (1)求a 2,a 3,a 4,并由此猜想a n 的表达式; (2)用数学归纳法证明{a n }的通项公式.22.(山东高考)等比数列{a n }的前n 项和为S n ,已知对任意的n ∈N +,点(n ,S n )均在函数y =b x+r (b >0且b ≠1,b ,r 均为常数)的图像上.(1)求r 的值;(2)当b =2时,记b n =2(log 2a n +1)(n ∈N +),证明:对任意的n ∈N +,不等式b 1+1b 1·b 2+1b 2·…·b n +1b n>n +1成立.[解析] (1)解:因为对任意n ∈N +,点(n ,S n )均在函数y =b x+r (b >0且b ≠1,b ,r均为常数)的图像上,所以S n =b n+r .当n =1时,a 1=S 1=b +r ,当n ≥2时,a n =S n -S n -1=b n +r -(b n -1+r )=b n -b n -1=(b -1)b n -1,又因为{a n }为等比数列,所以r =-1,公比为b ,a n =(b -1)b n -1.(2)证明:当b =2时,a n =(b -1)b n -1=2n -1, b n =2(log 2a n +1)=2(log 22n -1+1)=2n , 则b n +1b n =2n +12n ,所以b 1+1b 1·b 2+1b 2·…·b n +1b n =32·54·76·…·2n +12n.下面用数学归纳法证明不等式:32·54·76…·2n +12n>n +1.①当n =1时,左边=32,右边=2,因为32>2,所以不等式成立.②假设当n =k (k ∈N +)时,不等式成立, 即32·54·76·…·2k +12k>k +1.则当n =k +1时, 左边=32·54·76·…·2k +12k ·2k +32k +2>k +1·2k +32k +2=k +2k +=k +2+k ++1k +=k ++1+1k +>k ++1, 所以当n =k +1时,不等式也成立.由①②可得,不等式对任何n ∈N +都成立, 即b 1+1b 1·b 2+1b 2·…·b n +1b n >n +1恒成立.【解】 (1)f (5)=41.(2)因为f (2)-f (1)=4=4×1, f (3)-f (2)=8=4×2, f (4)-f (3)=12=4×3, f (5)-f (4)=16=4×4,…由以上规律,可得出f (n +1)-f (n )=4n ,因为f (n +1)-f (n )=4n ,所以f (n +1)=f (n )+4n ,所以f (n )=f (n -1)+4(n -1)=f (n -2)+4(n -1)+4(n -2)=f (n -3)+4(n -1)+4(n -2)+4(n -3)=…=f [n -(n -1)]+4(n -1)+4(n -2)+4(n -3)+…+4[n -(n -1)]=2n 2-2n +1.(3)当n ≥2时,1f n -1=12n n -=12(1n -1-1n),所以1f +1f -1+1f -1+…+1f n -1=1+12(1-12+12-13+13-14+…+1n -1-1n )=1+12(1-1n )=32-12n.18.(本小题满分14分)函数列{f n (x )}满足f 1(x )=x1+x2(x >0),f n +1(x )=f 1[f n (x )].(1)求f 2(x ),f 3(x );(2)猜想f n (x )的表达式,并证明. 解:(1)f 1(x )=x1+x2(x >0),f 2(x )=x1+x21+x 21+x 2=x1+2x 2,f 3(x )=x1+2x 21+x 21+2x2=x 1+2x 2+x 2=x1+3x 2. (2)猜想f n (x )=x1+nx2,下面用数学归纳法证明: ①当n =1时,命题显然成立.②假设当n =k 时,f k (x )=x1+kx2,那么f k +1(x )=x1+kx 21+x21+kx2=x1+kx 2+x2=x 1+k +x 2.这就是说,当n =k +1时命题成立.由①②,可知f n (x )=x1+nx2对所有n ∈N +均成立.20.已知数列{a n },a 1=5且S n -1=a n (n ≥2,n ∈N +). (1)求a 2,a 3,a 4,并由此猜想a n 的表达式; (2)用数学归纳法证明{a n }的通项公式.[分析] 利用不完全归纳法猜想归纳出a n ,然后用数学归纳法证明.解题的关键是根据已知条件和假设寻找a k 与a k +1和S k 与S k +1之间的关系.[解析] (1)由已知,得a 2=S 1=a 1=5,a 3=S 2=a 1+a 2=10,a 4=S 3=a 1+a 2+a3=5+5+10=20,a n =⎩⎪⎨⎪⎧n =5×2n -2n .(2)①当n =2时,a 2=5×22-2=5,表达式成立.当n =1时显然成立,下面用数学归纳法证明n ≥2时结硫化亦成立.②假设n =k (k ≥2,k ∈N +)时表达式成立,即a k =5×2k -2, 则当n =k +1时,由已知条件和假设有 a k +1=S k =a 1+a 2+…+a k=5+5+10+…+5×2k -2=5+-2k -11-2=5×2k -1=5×2(k +1)-2.故当n =k +1时,表达式也成立.由①②可知,对一切n (n ≥2,n ∈N +)都有a n =5×2n -2.[点评] 本题先用不完全归纳法猜想出通项,然后用数学归纳法证明,考查了由特殊到一般的数学思想,也考查了数列知识,在高考中这类题往往是压轴题.解决方法是观察与分析法,也就是说解决这类题要注意观察数列中各项与其序号的变化关系,归纳出构成数列的规律,同时还要注意第一项与其他各项的差异,从而发现其中的规律.21.(山东高考)等比数列{a n }的前n 项和为S n ,已知对任意的n ∈N +,点(n ,S n )均在函数y =b x+r (b >0且b ≠1,b ,r 均为常数)的图像上.(1)求r 的值;(2)当b =2时,记b n =2(log 2a n +1)(n ∈N +),证明:对任意的n ∈N +,不等式b 1+1b 1·b 2+1b 2·…·b n +1b n>n +1成立.[解析] (1)解:因为对任意n ∈N +,点(n ,S n )均在函数y =b x+r (b >0且b ≠1,b ,r均为常数)的图像上,所以S n =b n+r .当n =1时,a 1=S 1=b +r ,当n ≥2时,a n =S n -S n -1=b n +r -(b n -1+r )=b n -b n -1=(b -1)b n -1,又因为{a n }为等比数列,所以r =-1,公比为b ,a n =(b -1)b n -1.(2)证明:当b =2时,a n =(b -1)b n -1=2n -1, b n =2(log 2a n +1)=2(log 22n -1+1)=2n , 则b n +1b n =2n +12n ,所以b 1+1b 1·b 2+1b 2·…·b n +1b n =32·54·76·…·2n +12n.下面用数学归纳法证明不等式:32·54·76…·2n +12n>n +1.①当n =1时,左边=32,右边=2,因为32>2,所以不等式成立.②假设当n =k (k ∈N +)时,不等式成立, 即32·54·76·…·2k +12k>k +1.则当n =k +1时, 左边=32·54·76·…·2k +12k ·2k +32k +2>k +1·2k +32k +2=k +2k +=k +2+k ++1k +=k ++1+1k +>k ++1, 所以当n =k +1时,不等式也成立.由①②可得,不等式对任何n ∈N +都成立, 即b 1+1b 1·b 2+1b 2·…·b n +1b n>n +1恒成立.第一章 推理与证明 (时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.“蛇、鳄鱼、海龟、蜥蜴等爬行动物是用肺呼吸的,所以所有的爬行动物都是用肺呼吸的.”此推理方法是( )A .演绎推理B .归纳推理C .类比推理D .以上都不对【解析】 由部分推断全体,是归纳推理. 【答案】 B2.在数列1,2,2,3,3,3,4,4,4,4,…中,第25项为( ) A .25 B .6 C .7 D .8【解析】 将数列分组得(1),(2,2),(3,3,3),(4,4,4,4),…,这样每一组的个数为1,2,3,4,…;其和为n n +2,令n =6,则有6×72=21,所以第25项在第7组,因此第25项是7.【答案】 C3.证明n +22<1+12+13+14+…+12n<n +1(n >1),当n =2时,中间式等于( )A .1B .1+12C .1+12+13D .1+12+13+14【解析】 中间的式子共有2n 项,故n =2时,中间的式子等于1+12+13+14.【答案】 D4.否定结论“至多有两个解”的说法中,正确的是( ) A .有一个解 B .有两个解C .至少有三个解D .至少有两个解【解析】 “至多有两个解”包含有两解,仅有一解,和无解,故其否定为至少有三个解.【答案】 C5.已知c >1,a =c +1-c ,b =c -c -1,则正确的结论是( ) A .a >b B .a <bC .a =bD .a ,b 大小不定【解析】 a =1c +1+c ,b =1c +c -1,显然a <b .【答案】 B6.三角形的面积为S =12(a +b +c )r ,a ,b ,c 为三角形的边长,r 为三角形内切圆的半径,利用类比推理可以得出四面体的体积为( )A .V =13abcB .V =13ShC .V =13(S 1+S 2+S 3+S 4)r (S 1,S 2,S 3,S 4为四个面的面积,r 为内切球的半径)D .V =13(ab +bc +ac )h (h 为四面体的高)【解析】 设△ABC 的内心为O ,连接OA ,OB ,OC ,将△ABC 分割为三个小三角形,这三个小三角形的高都是r ,底边长分别为a ,b ,c ;类比:设四面体A -BCD 的内切球的球心为O ,连接OA ,OB ,OC ,OD ,将四面体分割为四个以O 为顶点,以原来面为底面的四面体,高都为r ,所以有V =13(S 1+S 2+S 3+S 4)r .【答案】 C 7.某人在上楼梯时,一步上一个台阶或两个台阶,设他从平地上到第一级台阶时有f (1)种走法,从平地上到第二级台阶时有f (2)种走法……则他从平地上到第n 级(n ≥3)台阶时的走法f (n )等于( )A .f (n -1)+1B .f (n -2)+2C .f (n -2)+1D .f (n -1)+f (n -2)【解析】 要到达第n 级台阶有两种走法:(1)在第n -2级的基础上到达;(2)在第n -1级的基础上到达.【答案】 D8.已知f (x )=x 3+x ,a ,b ,c ∈R ,且a +b >0,a +c >0,b +c >0,则f (a )+f (b )+f (c )的值一定( )A .大于零B .等于零C .小于零D .正负都可能【解析】 f (x )=x 3+x 是奇函数且在R 上是增函数,由a +b >0,得a >-b ,故f (a )>f (-b ),可得f (a )+f (b )>0.同理f (a )+f (c )>0,f (b )+f (c )>0.所以f (a )+f (b )+f (c )>0.【答案】 A9.(2012·江西高考)观察下列各式:a +b =1,a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10=( )A .28B .76C .123D .199【解析】 记a n +b n=f (n ),则f (3)=f (1)+f (2)=1+3=4;f (4)=f (2)+f (3)=3+4=7;f (5)=f (3)+f (4)=11.通过观察不难发现f (n )=f (n -1)+f (n -2)(n ∈N *,n ≥3),则f (6)=f (4)+f (5)=18;f (7)=f (5)+f (6)=29;f (8)=f (6)+f (7)=47;f (9)=f (7)+f (8)=76;f (10)=f (8)+f (9)=123.所以a 10+b 10=123.【答案】 C10.数列{a n }满足a 1=12,a n +1=1-1a n,则a 2 013等于( )A.12B .-1C .2D .3【解析】 ∵a 1=12,a n +1=1-1a n,∴a 2=1-1a 1=-1,a 3=1-1a 2=2,a 4=1-1a 3=12,a 5=1-1a 4=-1,a 6=1-1a 5=2,∴a n +3k =a n (n ∈N *,k ∈N *)∴a 2 013=a 3+3×670=a 3=2. 【答案】 C二、填空题(本大题共4小题,每小题5分,共20分,把答案填在横线上)11.一个数列{a n }的前n 项为35,12,511,37,717,….则猜想它的一个通项公式为a n =________.【解析】 数列可写成35,48,511,614,717,….猜想通项公式a n =n +23n +2.【答案】 n +23n +212.观察下列的图形中小正方形的个数,则第6个图中有________个小正方形,第n 个图中有________个小正方形.图1【解析】根据规律和第6个图形中有1+2+3+4+5+6+7=28.第n 个图形中有1+2+…+(n +1)=n +n +2.【答案】 28 n +n +213.用反证法证明命题“若x 2-(a +b )x +ab ≠0,则x ≠a 且x ≠b ”时,应假设为________.【解析】 就x 是否等于a ,b 而言有四种情形:①x =a ,x ≠b ;②x ≠a ,x =b ;③x =a ,x =b ;④x ≠a ,x ≠b .故应假设x =a 或x =b . 【答案】 x =a 或x =b14.已知等差数列{a n }中,有a 11+a 12+…+a 2010=a 1+a 2+…+a 3030,则在等比数列{b n }中,会有类似的结论:________________.【解析】 根据等差、等比数列中运算的性质知: 在等比数列{b n }中会有10a 11·a 12·…·a 20=30a 1·a 2·…·a 30.【答案】 10a 11·a 12·…·a 20=30a 1·a 2·…·a 30三、解答题(本大题共4小题,共50分.解答应写出文字说明、证明过程或演算步骤)15.(本小题满分12分)用反证法证明:如果x >12,那么x 2+2x -1≠0.【证明】 假设x 2+2x -1=0, 则解得x 1=2-1,x 2=-2-1.又x 1<12,x 2<12,这与已知x >12矛盾.故假设不成立,x 2+2x -1≠0成立.16.(本小题满分12分)试比较2n 与n 2(n ∈N *)的大小关系,并用数学归纳法证明.【证明】 当n =1时,21>12,即2n >n 2,当n =2时,22=22,即2n =n 2,当n =3时,23<32,即2n <n 2,当n =4时,24=42,即2n =n 2,当n =5时,25>52,即2n >n 2,当n =6时,26>62,即2n >n 2, …猜测,当n ≥5时,2n >n 2.下面用数学归纳法证明猜测成立. ①当n =5时,由上可知猜测成立.②设n =k (k ≥5)时,命题成立,即2k >k 2. ∴2k +1=2·2k >2k 2=k 2+k 2>k 2+(2k +1)=(k +1)2,即n =k +1时命题也成立.由①和②可得,n ≥5时,2n >n 2(n ∈N *).17.(本小题满分12分)某少数民族的刺绣有着悠久的历史,图2为她们刺绣中最简单的四个图案,这些图案都是由小正方形构成,小正方形数越多刺绣越漂亮.现按同样的规律刺绣(小正方形的摆放规律相同),设第n 个图形包含f (n )个小正方形.图2(1)求出f (5)的值;(2)利用合情推理的“归纳推理思想”归纳出f (n +1)与f (n )之间的关系式,并根据你得到的关系式求出f (n )的表达式;(3)求1f +1f -1+1f -1+…+1f n -1的值.【解】 (1)f (5)=41.(2)因为f (2)-f (1)=4=4×1, f (3)-f (2)=8=4×2, f (4)-f (3)=12=4×3, f (5)-f (4)=16=4×4, …由以上规律,可得出f (n +1)-f (n )=4n ,因为f (n +1)-f (n )=4n ,所以f (n +1)=f (n )+4n ,所以f (n )=f (n -1)+4(n -1)=f (n -2)+4(n -1)+4(n -2)=f (n -3)+4(n -1)+4(n -2)+4(n -3)=…=f [n -(n -1)]+4(n -1)+4(n -2)+4(n -3)+…+4[n -(n -1)]=2n 2-2n +1.(3)当n ≥2时,1f n -1=12n n -=12(1n -1-1n),所以1f +1f -1+1f -1+…+1f n -1=1+12(1-12+12-13+13-14+…+1n-1-1n)=1+12(1-1n)=32-12n.18.(本小题满分14分)已知a、b、c>0,求证:a3+b3+c3≥13(a2+b2+c2)(a+b+c).【证明】∵a、b、c>0,∴a2+b2≥2ab,∴(a2+b2)(a+b)≥2ab(a+b),∴a3+b3+a2b+ab2≥2ab(a+b)=2a2b+2ab2,∴a3+b3≥a2b+ab2.同理,b3+c3≥b2c+bc2,a3+c3≥a2c+ac2,将三式相加得,2(a3+b3+c3)≥a2b+ab2+b2c+bc2+a2c+ac2.∴3(a3+b3+c3)≥(a3+a2b+a2c)+(b3+b2a+b2c)+(c3+c2a+c2b)=(a2+b2+c2)(a+b+c).∴a3+b3+c3≥13(a2+b2+c2)(a+b+c).。
数学选修2-2第一章试题
(全卷满分150分,考试时间120分钟)
班级:姓名:座号:评分:一.选择题答题栏
二.填空题答题栏
11. 12。
13。
14。
一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有
一项是符合题目要求的.
1.若f(x)=sinα-cos x,则f′(α)等于()
A.sinα
B.cosα
C.sinα+cosα
D.2sinα
y x x的递增区间是()
2.函数3
A.)
-∞ D.)
,1(+∞
(+∞
,0(+∞ B.)1,
(-∞ C.)
,
3.函数)(x f y =在一点的导数值为0是函数)(x f y =在这点取极值的( )
A.充分不必要条件
B.不能判断
C.充要条件
D.必要不充分条件
4.函数1ln 1ln x
y
x
的导数为( )
A.()
2
ln 12
x y +-
=' B.()
2
ln 12x x y +=
'
C.()
2
ln 11
x x y +-
=' D.()
2
ln 12x x y +-
='
5.已知函数f(x)=2x+5,当x 从2变化到4时,函数的平均变化率是( )
A.2
B.4
C.-4
D.-2 6.曲线3
()2f x x x
在0p 处的切线平行于直线41y
x ,则0p 点的坐标为
( )
A.( 1 , 0 )
B.( 2 , 8 )
C.( 1 , 0 )或(-1, -4)
D.( 2 , 8 )和或(-1, -4)
7.函数32
3922y
x x x x 有( )
A.极大值5,极小值-27
B.极大值5,极小值-11
C.极大值5,无极小值
D.极小值-27,无极大值
8.f (x )=ax 3+3x 2+2,若f ′(-1)=4,则a 的值等于( )
A.
319 B.316 C.313 D.3
10 9.f (x )与g(x )是定义在R 上的两个可导函数,若f (x ),g(x )满足
f ′(x )=
g ′(x ),则f (x )与g (x )满足( )
A.f (x )=g (x )
B.f (x )-g (x )为常数函数
C.f (x )=g (x )=0
D.f (x )+g (x )为常数函数
10.若)(x f y =与)(x g y =是[]b a ,上的两条光滑曲线的方程,则由这两条曲线及直线
a
x =,b x =所围成的平面图形的面积为
( )
A. ⎰-b
a
dx x g x f )]()([ B. ⎰-b
a
dx x f x g )]()([
C. ⎰-b
a
dx x g x f )()( D.
⎰
-b
a
dx x g x f )()(
二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上
11.函数
32
55
y
x x x 的单调区间
是 ;
12.曲线x y ln =在点M(e,1)处的切线的斜率是 ,切线的方程
为 ; 13.dx x ⎰
--2
224 = .
14.⎰-=+-a
a
dx x x x )2sin 5cos ( .
三、解答题:本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.
15.(12分)求函数155345+++=x x x y 在区间[]4,1-上的最大值与最小值。
16.(12分)已知函数23bx ax y +=,当x=1时,有极大值3。
(1) 求a ,b 的值;(2)求函数y 的极小值。
班级:姓名:座号:评分:17.(14分)在甲、乙两个工厂,甲厂位于一直线河岸的岸边A处,乙厂与甲厂在河的同侧,乙厂位于离河岸40 km的B处,乙厂到河岸的垂足D与A相距50 km,两厂要在此岸边合建一个供水站C,从供水站到甲厂和乙厂的水管费用分别为每千米3a元和5a元,问供水站C建在岸边何处才能使水管费用最省?
18.(14分)求抛物线2x y =与直线2=+y x 所围成的图形的面积.
19.(14分)已知c bx ax x f ++=24)(的图象经过点(0,1),且在x=1处的切线方程是
y=x -2。
(1)求)(x f y =的解析式;(2)求)(x f y =的单调递增区间。
20.(14分)如图,抛物线24x y -=与直线x y 3=的二个交点为A、B.点P在抛物线的弧上从A向B运动。
(1)求使PAB ∆的面积为最大时P点的坐标()b a ,;
(2)证明由抛物线与线段AB围成的图形,被直线a x =分为面积相等的两部分。
参考答案
一.择题题
1-5:ACDDA 6-10:CCDBC
二.填空题
11.增区间: 5(,)(1,)3-∞-+∞和 减区间:)1,35(- 12.e 1,x e
y 1= 13.π2
14.a 4
三.解答题
15.解:)1)(3(515205)(2234++=++='x x x x x x x f ,当0)(='x f 得x=0或x=-1或x=-3;∵0∈[-1,4],-1∈[-1,4],-3∉[-1,4],又f(0)=1,f(-
1)=0;右端点处f(4)=1024+1280+320+1=2625;∴函数155345+++=x x x y 在区间[-1,4]上的最大值为2625,最小值为0。
16. 解:(1)则题意0)1(='f ,3)1(=f ;∵bx ax x f 23)(2+=',∴023)1(=+='b a f ,又3)1(=+=b a f ,解得9,6=-=b a ;(2)由上题得2396)(x x x f +-=,)1(181818)(2--=+-='x x x x x f ;当0)(='x f 得x=0或x=1,当0)(>'x f 得0<x<1当0)(<'x f 得x<0或x>1;∴函数2396)(x x x f +-=有极小值0)0(=f .
17.解:根据题意知,只有点C 在线段AD 上某一适当位置,才能使总运费最省,
设C 点距D 点x km,则
∵BD=40,AC=50-x, ∴BC=222240+=+x CD BD
又设总的水管费用为y 元,依题意有:y=30(5a -x)+5a 2240+x (0<x <50) y ′=-3a+22405+x ax
,令y ′=0,解得x=30在(0,50)上,y 只有一个极值点,根
据实际问题的意义,函数在x=30(km)处取得最小值,此时AC=50-x=20(km) ∴供水站建在A 、D 之间距甲厂20 km 处,可使水管费用最省. 18.
2
9
19. 解:(1)由题1)1(,1)0(='=f f ,得c=1①;又∵bx ax x f 24)(3+='∴124)1(=+='b a f ②;∵x=1处的切线方程为y=x -2有y=1-2=-1,切点坐标为(1,-1),∴1)1(-=++=c b a f ③;由①②③得1,29,25=-==
c b a ;∴12
925)(24+-=x x x f 。
(2)∵)910(910)(23-=-='x x x x x f ;当0)(>'x f 时有
10
103010103><<-x x 或∴)(x f y =的增区间为((,)1010-+∞和 20. 解:(1)解方程组⎩⎨⎧=-=.
3,42x y x y
得.4,121-==x x
所以抛物线24x y -=与直线x y 3=的两交点坐标为()().12,4,3,1--B A P 点的x 坐标的范围是:.14<<-a
点()b a p ,到直线x y 3=的距离为.31322+-=b
a d
因为P点在抛物线上,所以24a b -= 在,0)32(10
1)34(1012=--='--='a a a d a a 得.23-=a 即当23-=a 时,d 为最大,这时4
7494=-=b . 所以P点坐标为⎪⎭
⎫ ⎝⎛-47,23时,PAB ∆的面积最大。
(2)设上述抛物线与直线所围成的面积为S ,位于2
3-=x 的右侧的面积为1S . ()
,6125341
42⎰-=--=dx x x S ()121253412321=--=⎰-dx x x S . 12S S =∴, 即直线2
3-=x 平分.S。