简谐振动的合成
- 格式:ppt
- 大小:1.68 MB
- 文档页数:26
相互垂直的简谐振动的合成简谐振动是一种重要的物理现象,在许多领域都有广泛的应用,如机械、光学、电磁等领域。
在某些情况下,需要对两个或更多相互垂直的简谐振动进行合成,以产生一个新的复合振动。
本文将介绍相互垂直的简谐振动的合成,并阐述其原理和应用。
简谐振动的定义简谐振动是指一个对象以一个周期性的方式在其平衡位置周围运动的物理现象。
这种振动是由于弹性力的作用而产生的,例如弹簧、摆线、声波等。
一个简谐振动的特点是在相同的时间内,运动具有相同的加速度和速度。
简谐振动的运动方程可以用以下公式表示:x = A sin(ωt)其中,x代表位移,A代表振幅,ω代表角速度,t代表时间。
由于简谐振动的周期(T)与角速度有关系,因此可以用以下公式表示:T = 2π/ω当存在两个或更多个以不同的频率振动的物体时,它们的振动将会互相影响。
考虑一个垂直向上运动的弹簧振子和一个水平运动的弹簧振子。
如果它们同时振动,将会出现一个垂直方向上的复合振动。
其中,y1代表第一个弹簧振子的位移,y2代表第二个弹簧振子的位移。
为了合成垂直方向的复合振动,需要执行以下步骤:1. 确定两个振动的振幅和角频率。
2. 计算两个振动的周期。
3. 将两个振幅和周期代入以下公式中:y = A1 sin(ω1t) + A2 sin(ω2t)其中,y代表合成振动的位移。
4. 对于每个时刻t,计算出合成振动的振幅y。
合成垂直方向振动的物理意义当两个垂直方向上的简谐振动相互作用时,它们的复合振动将形成一个网格图形,每个节点表示一个特定的振幅和相位差。
相位差表示两个振动之间的时间差,其中一个振动的周期相对于另一个振动周期的时间差。
合成振动的频率与原始简谐振动的差异通常很小,因此可以将它们看作共振现象。
在许多现实情况下,相互垂直的简谐振动产生的复合振动是非常有用的,例如在音乐和声学领域。
应用和例子1. 双摆双摆是指两个以不同长度的摆绳悬挂并以不同频率振动的摆。
当它们相互作用时,将产生一个复合振动,其中一个摆的振动会影响另一个摆的振动,并且它们最终会形成一个规律的图案。
第三十二讲 §8.2 简谐振动的合成一、两个同方向同频率简谐振动的合成1、合振动仍然为简谐振动简谐振动1:()111cos ϕω+=t A x 简谐振动2:()222cos ϕω+=t A x合振动:()()()ϕωϕωϕω+=+++=+=t A t A t A x x x cos cos cos 2211212、合振动的振幅:()()22211222112sin sin cos cos A ϕϕϕϕA A A A +++=()1212212221sin sin cos cos 2ϕϕϕϕ+++=A A A A ()12212221cos 2ϕϕ-++=A A A A 3、合振动的初相位:22112211cos cos sin sin tan ϕϕϕϕϕA A A A ++==邻边对边 4、合振动的最大值,相长的条件:两分振动相位相同,相位差:() 3,2,1,0212=±=-=∆k k πϕϕϕ⇒()1cos 12=-ϕϕ ⇒ 212122212A A A A A A A +=++=5、合振动的最小值,相消的条件:两分振动相位相反,相位差:() 3,2,1,01212=+±=-=∆k k πϕϕϕ)( ⇒()1cos 12-=-ϕϕ ⇒ 212122212A A A A A A A -=-+= 其他值:2121A A A A A +-练习题1. 一物体同时参与两个同方向的简谐振动:)212c o s (04.01π+π=t x (SI), )2cos(03.02π+π=t x (SI) 求此物体的振动方程.解:设合成运动(简谐振动)的振动方程为 )cos(φω+=t A x则 )c o s(2122122212φφ-++=A A A A A ①以 A 1 = 4 cm ,A 2 = 3 cm ,π=π-π=-212112φφ代入①式,得5cm 3422=+=A cm 2分又 22112211c o s c o s s i n s i n a r c t gφφφφφA A A A ++= ② ≈127°≈2.22 rad 2分 ∴)22.22cos(05.0+π=t x (SI) 1分练习题2. 两个同方向简谐振动的振动方程分别为 )4310cos(10521π+⨯=-t x (SI), )4110cos(10622π+⨯=-t x (SI) 求合振动方程.解:依合振动的振幅及初相公式可得φ∆++=c o s 2212221A A A A A 22210)4143cos(65265-⨯π-π⨯⨯⨯++= m 21081.7-⨯= m 2分)4/c o s (6)4/3c o s (5)4/s i n (6)4/3s i n (5a r c t gπ+ππ+π=φ = 84.8°=1.48 rad 2分则所求的合成振动方程为 )48.110cos(1081.72+⨯=-t x (SI)1分练习题3. 两个同方向的简谐振动的振动方程分别为x 1 = 4×10-2cos2π)81(+t (SI), x 2 = 3×10-2cos2π)41(+t (SI) 求合振动方程.解:由题意 x 1 = 4×10-2cos)42(π+πt (SI)x 2 =3×10-2cos)22(π+πt (SI) 按合成振动公式代入已知量,可得合振幅及初相为22210)4/2/cos(2434-⨯π-π++=A m= 6.48×10-2 m 2分)2/cos(3)4/cos(4)2/sin(3)4/sin(4arctgπ+ππ+π=φ=1.12 rad 2分 合振动方程为 x = 6.48×10-2 cos(2πt +1.12) (SI) 1分练习题4. 一质点同时参与两个同方向的简谐振动,其振动方程分别为 x 1 =5×10-2cos(4t + π/3) (SI) , x 2 =3×10-2sin(4t - π/6) (SI) 画出两振动的旋转矢量图,并求合振动的振动方程.解: x 2 = 3×10-2 sin(4t - π/6)= 3×10-2cos(4t - π/6- π/2)= 3×10-2cos(4t - 2π/3).作两振动的旋转矢量图,如图所示. 图2分由图得:合振动的振幅和初相分别为A = (5-3)cm = 2 cm ,φ = π/3. 2分合振动方程为 x = 2×10-2cos(4t + π/3) (SI)1分小结:简谐振动的合成,与旋转矢量的解法作业:P33 8—16;8—17;预习:§8—2二、两个同方向不同频率简谐振动的合成 拍频三、相互垂直的简谐振动的合成1、同频率的相互垂直的简谐振动的合成2、不同频率的相互垂直的简谐振动的合成第三十二讲 §8.2 简谐振动的合成 8-16 解:设两质点的振动表达式分别为:)cos()cos(2211ϕωϕω+=+=t A x t A x 由图题可知,一质点在21A x =处时对应的相位为: 32/arccos 1πϕω==+A A t 同理:另一质点在相遇处时,对应的相位为:352/arccos2πϕω==+A A t 故相位差)()(12ϕωϕωϕ∆+-+=t t πππϕϕ3433512=-=-= 若21υυ与的方向与上述情况相反,故用同样的方法,可得:πππϕϕϕ∆32)3(312=--=-= 8-17 解:由图题8-17(图在课本上P 200)所示曲线可以看出,两个简谐振动的振幅相同,即m 05.021==A A ,周期均匀s 1.0=T ,因而圆频率为:ππω202==T 由x -t 曲线可知,简谐振动1在t=0时,,010=x 且010>υ,故可求得振动1的初位相πϕ2310=. 同样,简谐振动2在t=0时,πϕυ==-=202020,0,05.0可知m x 故简谐振动1、2的振动表达式分别为: mt x t x )20cos(05.0)2320cos(05.021ππππ+=+=因此,合振动的振幅和初相位分别为:m A A A A A 210202122211025)cos(2-⨯=-++=ϕϕ 2021012021010cos cos sin sin arctan ϕϕϕϕϕA A A A ++= ππ4541a r c t a n 或== 但由x-t 曲线知,t=0时,πϕ45,05.021应取因此-=+=x x x . 故合振动的振动表达式:m t x )4520cos(10252ππ+⨯=-习题8-16图。