等差数列综合应
- 格式:doc
- 大小:295.50 KB
- 文档页数:5
第六节数列的综合应用【核心考点·分类突破】考点一等差、等比数列的综合问题(规范答题)[例1](12分)(2023·新高考Ⅰ卷)设等差数列{a n}的公差为d,且d>1,令b n=2+,记S n,T n分别为数列{a n},{b n}的前n项和.(1)若3a2=3a1+a3,S3+T3=21,求{a n}的通项公式;(2)若{b n}为等差数列,且S99-T99=99,求d.审题导思破题点·柳暗花明(1)思路:根据等差数列的定义,灵活运用给定的条件,即可得到所求等差数列的通项公式;同时帮助学生理解题设条件,以顺利进入第(2)问的情境.(2)思路:所给题设条件“{b n}为等差数列”要求学生能够灵活转化为求解数列{a n}中公差与首项的关系,可以采用通性通法来解答.规范答题微敲点·水到渠成【解析】(1)因为3a2=3a1+a3,所以3d=a1+2d,解得a1=d,[1分]关键点根据已知条件,列方程求出首项a1和公差d的关系.所以S3=3a2=3(a1+d)=6d,又T3=b1+b2+b3=2+3+4=9,所以S3+T3=6d+9=21,即2d2-7d+3=0,解得d=3或d=12(舍去),[3分]所以a n=a1+(n-1)d=3n,所以的通项公式为a n=3n.[4分]阅卷现场(1)没有过程,只有a n=3n得1分;(2)结果正确时漏写a1=d不扣分;(3)d=12漏舍只得1分.(2)因为b n=2+,且为等差数列,所以2b2=b1+b3,即122=21+123,[6分]所以61+-11=61+2,所以12-3a1d+2d2=0,解得a1=d或a1=2d.[8分]传技巧取的前3项,利用等差中项2b2=b1+b3,得到首项a1和公差d之间的关系.解法一:①当a1=d时,a n=nd,所以b n=2+=2+B=r1,S99=99(r99)=99×50d,T99=99×51.因为S99-T99=99,所以99×50d-99×51=99,关键点利用S99-T99=99,列出关于d的方程,结果注意d>1.即50d2-d-51=0,解得d=5150或d=-1(舍去).[10分]②当a1=2d时,a n=(n+1)d,所以b n=2+=2+(r1)=,避易错讨论另一种情况,不可遗漏.S99=99(2r100)=99×51d,T99=99×50.因为S99-T99=99,所以99×51d-99×50=99,即51d2-d-50=0,解得d=-5051(舍去)或d=1(舍去).[11分]综上,d=5150.[12分]解法二:因为S99-T99=99,由等差数列的性质知,且99a50-99b50=99,即a50-b50=1,传技巧利用等差数列的性质,可以简化运算过程.列方程求出a50,注意由d>1可知a n>0.所以a50-255050=1,即a502-a50-2550=0,解得a50=51或a50=-50(舍去).[10分]①当a1=d时,a50=a1+49d=50d=51,解得d=5150.②当a1=2d时,a50=a1+49d=51d=51,解得d=1,与d>1矛盾,应舍去.[11分]综上,d=5150.[12分]解法三:因为,都是等差数列,且a nb n=n(n+1),=B=1(+1).[8分]所以可设=1(+1)=B或敲黑板构造新数列要考虑全面,少写一组不得分.(i)当a n=1(n+1),b n=kn时,S99-T99=1(2+3+…+100)-k(1+2+…+99)=99,即50k2+k-51=0,解得k=-5150或k=1,因为d=k>1,所以均不合题意.[10分](ii)当a n=kn,b n=1(n+1)时,S99-T99=k(1+2+…+99)-1(2+3+…+100)=99,即50k2-k-51=0,解得k=5150或k=-1.因为d=k>1,所以k=5150,所以d=5150.[12分]拓思维高考命题强调“多思考,少运算”的理念,试题面向全体学生,为考生搭建展示数学能力的平台.本解法根据给出的条件,巧妙的构造新的数列,突破常规解法,灵活运用数列知识,解题方法“高人一招”,解题速度“快人一步”.【解题技法】等差、等比数列综合问题的求解策略1.基本方法:求解等差、等比数列组成的综合问题,首先要根据数列的特征设出基本量,然后根据题目特征使用通项公式、求和公式、数列的性质等建立方程(组),确定基本量;2.基本思路:注意按照顺序使用基本公式、等差中项、等比中项以及证明数列为等差、等比数列的方法确定解题思路.【对点训练】(2022·全国甲卷)记S n为数列{a n}的前n项和.已知2+n=2a n+1.(1)证明:{a n}是等差数列;(2)若a4,a7,a9成等比数列,求S n的最小值.【解析】(1)由2+n=2a n+1,得2S n+n2=2a n n+n①,所以2S n+1+(n+1)2=2a n+1(n+1)+(n+1)②,②-①,得2a n+1+2n+1=2a n+1(n+1)-2a n n+1,化简得a n+1-a n=1,所以数列{a n}是公差为1的等差数列.(2)由(1)知数列{a n}的公差为1.由a4,a7,a9成等比数列,得72=a4a9,即(a1+6)2=(a1+3)(a1+8),解得a1=-12,所以S n=-12n+(-1)2=2-252=12(n-252)2-6258,所以,当n=12或n=13时,(S n)min=-78.考点二数列与函数、向量的综合[例2](1)(2023·龙岩模拟)已知函数f(x)=13x3+4x,记等差数列{a n}的前n项和为S n,若f(a1+2)=100,f(a2022+2)=-100,则S2022等于()A.-4044B.-2022C.2022D.4044【解析】选A.因为f(-x)=-13x3-4x=-f(x),所以f(x)是奇函数,因为f(a1+2)=100,f(a2022+2)=-100,所以f(a1+2)=-f(a2022+2),所以a1+2+a2022+2=0,所以a1+a2022=-4,所以S2022=2022(1+2022)2=-4044.(2)数列满足a1=1,a2=5,若m=1,r1+1,n=+r2,-2,m·n=0,则数列的通项公式为________.【解析】由已知m·n=0,得1×+r2-2r1+1=0,即r2-r1-r1-=2,则r1-是首项为a2-a1,公差为2的等差数列,则a n+1-a n=2-1+-1×2=2+1,于是a n=--1+-1--2+…+2-1+a1=2n+2-1+…+2×2+1=2+-1+…+2+1=n2+n-1.答案:a n=n2+n-1【解题技法】数列与函数、向量的综合问题的求解策略(1)已知函数条件,解决数列问题,此类问题一般是利用函数的性质、图象研究数列问题;(2)已知数列条件,解决函数问题,解决此类问题一般要充分利用数列的范围、公式、求和方法对式子化简变形;(3)涉及数列与三角函数有关的问题,常利用三角函数的周期性等特征,寻找规律后求解;(4)涉及数列与向量有关的综合问题,应根据条件将向量式转化为与数列有关的代数式求解.【对点训练】1.已知数列{a n}满足a n+2-a n+1=a n+1-a n,n∈N*,且a5=π2,若函数f(x)=sin2x+2cos22,记y n=f(a n),则数列{y n}的前9项和为()A.0B.-9C.9D.1【解析】选C.由题意知数列{a n}是等差数列.因为a5=π2,所以a1+a9=a2+a8=a3+a7=a4+a6=2a5=π.f(x)=sin2x+2cos22,所以f(x)=sin2x+cos x+1,所以f(a1)+f(a9)=sin2a1+cos a1+1+sin2a9+cos a9+1=2.同理f(a2)+f(a8)=f(a3)+f(a7)=f(a4)+f(a6)=2.因为f(a5)=1,所以数列{y n}的前9项和为9.2.数列{a n}是等差数列,a1=1,公差d∈[1,2],且a4+λa10+a16=15,则实数λ的最大值为________.【解析】因为a4+λa10+a16=15,所以a1+3d+λ(a1+9d)+a1+15d=15,令λ=f(d)=151+9-2,因为d∈[1,2],所以令t=1+9d,t∈[10,19],因此λ=f(t)=15-2.当t∈[10,19]时,函数λ=f(t)是减函数,故当t=10时,实数λ有最大值,最大值为f(10)=-12.答案:-12考点三数列与不等式的综合【考情提示】数列不等式作为考查数列综合知识的载体,因其全面考查数列的性质、递推公式、求和等知识而成为高考命题的热点,重点考查不等式的证明、参数范围、最值等.角度1数列中的最值[例3]公比为2的等比数列{a n}中存在两项a m,a n满足a m a n=1612,则1+4的最小值为()A.32B.53C.43D.1310【解析】选A.由等比数列的通项公式知a m=a1×2m-1,a n=a1×2n-1,由a m a n=1612,可得12×2m+n-2=1612,易知a1≠0,故2m+n-2=16,解得m+n=6,则1+4=16(m+n)·(1+4)=16(1+4++4)≥16(5+2)=32(当且仅当m=2,n=4时取等号).角度2数列中的不等式证明[例4](2023·宁德模拟)已知数列,满足b n=a n+n2,a1+b1=3,a2+b2=8,且数列是等差数列.(1)求数列的通项公式;(2)n项和为S n,求证:12≤S n<1.【解析】(1)由b n=a n+n2得b1=a1+1,b2=a2+4,代入a1+b1=3,a2+b2=8得2a1+1=3,2a2+4=8,解得a1=1,a2=2.又因为数列为等差数列,故公差为d=a2-a1=1,因此a n=n,b n=n+n2.(2)由(1)可得b n=n+n2,所以1=1r2=1-1r1,所以S n=11+12+13+…+1=(1-12)+(12-13)+(13-14)+…+(1-1r1)=1-1r1,又因为n∈N*,所以0<1r1≤12(n=1时等号成立),所以12≤1-1r1<1,即12≤S n<1.角度3数列中的不等式恒成立[例5]已知数列{a n}的通项公式为a n=5-n,其前n项和为S n,将数列{a n}的前4项抽去其中一项后,剩下三项按原来顺序恰为等比数列{b n}的前3项,记{b n}的前n项和为T n.若存在m∈N*,使对任意n∈N*,S n≤T m+λ恒成立,则实数λ的取值范围是()A.[2,+∞)B.(3,+∞)C.[3,+∞)D.(2,+∞)【解析】选D.依题意得S n=(4+5-)2=(9-)2,根据二次函数的性质知,当n=4,5时,S n 取得最大值为10.另外,根据通项公式得数列{a n}的前4项为a1=4,a2=3,a3=2,a4=1,观察易知抽掉第二项后,余下的三项可组成等比数列,所以数列{b n}中,b1=4,公比q=12,所以T n=4(1-12)1-12=8(1-12),所以4≤T n<8.因为存在m∈N*,对任意n∈N*,S n≤T m+λ恒成立,所以10<8+λ,所以λ>2.【解题技法】数列与不等式交汇问题的解题策略(1)判断数列问题的一些不等关系,可以利用数列的单调性比较大小或借助数列对应的函数的单调性比较大小.(2)考查与数列有关的不等式证明问题,此类问题一般采用放缩法进行证明,有时也可通过构造函数进行证明.(3)数列中有关项或前n 项和的恒成立问题,常转化为数列的最值问题;求项或前n 项和的不等关系可以利用不等式的性质或基本不等式求解.【对点训练】1.(2023·重庆模拟)设a >0,b >0,若3是3a 与9b 的等比中项,则1+2的最小值为()A .92B .3C .32+2D .4【解析】选A .因为3是3a 与9b 的等比中项,所以32=3a ·9b =3a +2b ,所以a +2b =2,所以1+2=12·(1+2)·(a +2b )=12(5+2+2)≥12·(5+2)=92,当且仅当a =b =23时取等号.2.数列{a n }满足a 1=14,a n +1=14-4,若不等式21+32+…+r2r1<n +λ对任何正整数n 恒成立,则实数λ的最小值为()A .74B .34C .78D .38【解析】选A .因为数列{a n }满足a 1=14,a n +1=14-4,所以反复代入计算可得a 2=26,a 3=38,a 4=410,a 5=512,…,由此可归纳出通项公式a n =2(r1),经验证,成立,所以r1=1+1(r2)=1+12(1-1r2),所以21+32+…+r2r1=n +1+12(1+12-1r2-1r3)=n +74-12(1r2+1r3).因为要求21+32+…+r2r1<n +λ对任何正整数n 恒成立,所以λ≥74.3.(2023·南京模拟)已知数列的前n 项和为S n ,a 1=2,(n -2)S n +1+2a n +1=nS n ,n ∈N *.(1)求数列的通项公式;(2)求证:112+122+…+12<716.【解析】(1)(n -2)S n +1+2a n +1=nS n ,则(n -2)S n +1+2(S n +1-S n )=nS n ,整理得到nS n +1=(n +2)S n ,故r1(r1)(r2)=(r1),,故(r1)=11×2=1,即S n=n(n+1).当n≥2时,a n=S n-S n-1=n(n+1)-n(n-1)=2n,验证当n=1时满足,故a n=2n,n∈N*.(2)12=142<142-1=12(12-1-12r1),故112+122+…+12<14+12(13-15+15-17+…+12-1-12r1)=14+12(13-12r1)<14+12×13=512<716.考点四数列在实际问题中的综合应用[例6](1)(2022·新高考Ⅱ卷)图1是中国古代建筑中的举架结构,AA',BB',CC',DD'是桁,相邻桁的水平距离称为步,垂直距离称为举,图2是某古代建筑屋顶截面的示意图,其中DD1,CC1,BB1,AA1是举,OD1,DC1,CB1,BA1是相等的步,相邻桁的举步之比分别为B1B1=0.5,B1B1=k1,B1B1=k2,B1B1=k3.已知k1,k2,k3成公差为0.1的等差数列,且直线OA的斜率为0.725,则k3=()A.0.75B.0.8C.0.85D.0.9【解析】选D.设OD1=DC1=CB1=BA1=1,则CC1=k1,BB1=k2,AA1=k3,依题意,有k3-0.2=k1,k3-0.1=k2,且B1+B1+B1+B1B1+B1+B1+B1=0.725,所以0.5+33-0.34=0.725,故k3=0.9.(2)据统计测量,已知某养鱼场,第一年鱼的质量增长率为200%,以后每年的增长率为前一年的一半.若饲养5年后,鱼的质量预计为原来的t倍.下列选项中,与t值最接近的是()A.11B.13C.15D.17【解析】选B.设鱼原来的质量为a,饲养n年后鱼的质量为a n,q=200%=2,则a1=a(1+q),a2=a1(1+2)=a(1+q)(1+2),…,a5=a(1+2)×(1+1)×(1+12)×(1+122)×(1+123)=40532a≈12.7a,即5年后,鱼的质量预计为原来的13倍.【解题技法】数列在实际应用中的常见模型等差模型如果增加(或减少)的量是一个固定的数,则该模型是等差模型,这个固定的数就是公差等比模型如果后一个量与前一个量的比是一个固定的非零常数,则该模型是等比模型,这个固定的数就是公比递推数列模型如果题目中给出的前后两项之间的关系不固定,随项的变化而变化,则应考虑考查的是第n项a n与第(n+1)项a n+1(或者相邻三项等)之间的递推关系还是前n项和S n 与前(n+1)项和S n+1之间的递推关系【对点训练】1.(2023·武汉模拟)南宋数学家杨辉为我国古代数学研究作出了杰出贡献,他的著名研究成果“杨辉三角”记录于其重要著作《详解九章算法》,该著作中的“垛积术”问题介绍了高阶等差数列.以高阶等差数列中的二阶等差数列为例,其特点是从数列中的第二项开始,每一项与前一项的差构成等差数列.若某个二阶等差数列的前4项为2,3,6,11,则该数列的第15项为()A.196B.197C.198D.199【解析】选C.设该数列为,则a1=2,a2=3,a3=6,a4=11.由二阶等差数列的定义可知,a2-a1=1,a3-a2=3,a4-a3=5,…所以数列r1-是以a2-a1=1为首项,公差d=2的等差数列,即a n+1-a n=2n-1,所以a2-a1=1,a3-a2=3,a4-a3=5,…,a n+1-a n=2n-1.将所有上式累加可得a n+1=a1+n2=n2+2,所以a15=142+2=198,即该数列的第15项为198.2.(2023·深圳模拟)将一个顶角为120°的等腰三角形(含边界和内部)的底边三等分,挖去由两个等分点和上顶点构成的等边三角形,得到与原三角形相似的两个全等三角形,再对余下的所有三角形重复这一操作.如果这个操作过程无限继续下去,最后挖剩下的就是一条“雪花”状的Koch曲线,如图所示.已知最初等腰三角形的面积为1,则经过4次操作之后所得图形的面积是()A.1681B.2081C.827D.1027【解析】选A.根据题意可知,每次挖去的三角形面积是被挖三角形面积的13,所以每一次操作之后所得图形的面积是上一次三角形面积的23,由此可得,第n次操作之后所得图形的面积是,即经过4次操作之后所得图形的面积是=1681.。
数列与等差数列的综合运用(四)数列和等差数列是数学中常见的概念,其在不同领域中的运用广泛而深入。
本文将介绍数列与等差数列在金融、物理、计算机科学和生物学中的应用,通过这些实际问题的探讨,我们可以更好地理解和应用数列与等差数列的知识。
一、金融领域的应用在金融领域中,数列与等差数列经常被用于计算利息、投资回报以及指数增长等问题。
一个常见的例子是贷款利息的计算。
假设某人向银行借了一笔钱,银行规定每月按照固定的利率计算利息。
此时,借款人每月的还款金额可以看作是一个等差数列,等差为本金加上利息。
通过计算等差数列的和,我们可以得到借款人在还完所有款项之前需要支付的总利息。
另外,等差数列还可以用于计算投资回报。
假设某人每年向某基金公司投资一定金额,并且该基金有一个固定的年回报率。
如果我们用等差数列来表示每年的投资额,并根据年回报率得到等差数列的公差,那么通过计算数列的和,我们可以得到多年后投资的总回报。
二、物理领域的应用在物理学中,等差数列用于描述运动的速度、距离和时间之间的关系。
例如,当一个物体做匀速直线运动时,其速度是恒定的,可以用等差数列来表示。
等差数列的项数即为运动所经过的时间,公差表示单位时间内所运动的距离。
通过计算等差数列的和,我们可以得到物体在特定时间内所运动的总距离。
类似地,如果我们已知物体在一段时间内的总距离和总时间,可以应用等差数列公式来推算出物体的平均速度。
三、计算机科学领域的应用在计算机科学中,数列与等差数列的运用几乎无处不在。
比如,在编写代码时,我们常常需要利用等差数列和数列的知识来解决问题。
例如,假设我们需要编写一个程序,计算从1到n的所有整数的和。
我们可以使用等差数列的和公式来快速计算这个和,避免使用循环结构逐个相加的方法。
此外,在算法设计中,我们经常需要对数据进行排序。
其中一种常见的排序算法是冒泡排序,如果我们将排序的过程中的中间结果作为数列,那么这个数列就是一个等差数列。
通过分析等差数列的特点,我们可以更好地理解和优化排序算法。
2.3.2 等差数列的综合应用一、选择题1.数列-1( )AC 2.已知数列{a n }的前n 项和n s 满足:n m n m s s s +=+,且1a =1.那么10a =( )A .1B .9C .10D .553.数列1,2,2,3,3,3,4,4,4,4,5,5,5,5,5,6,…的第1000项的值是( )A .42B .45C .48D .514.数列{n a }中,()n a nn 1-=,则=++1021a a a ( ). A . 10 B .﹣10 C .5 D .﹣55.数列{a n }(*N n ∈),若前n 项的和10=n S ,则项数n 为( )A .10B .11C .120D .1216.在数列a 1,a 2,…,a n ,…的每相邻两项中插入3个数,使它们与原数构成一个新数列,则新数列的第69项 ( )(A) 是原数列的第18项 (B) 是原数列的第13项(C) 是原数列的第19项 (D) 不是原数列中的项7.将棱长相等的正方体按如右图所示的形状摆放, 从上往下依次为第1层, 第2层, 第3层……. 则第2005层正方体的个数是(A) 4011 (B) 4009 (C) 2011015 (D) 20090108.已知数列{}n a 满足12n n a a n +-=()n N +∈,13a =,则(A )0 (B (C (D )3 二、填空题9.设f (n )=1n ∈N *),则f (k +1)-f (k )=________. 10.数列{}n a 的通项公式为2n a n n λ=+,对于任意自然数(1)n n ≥都是递增数列, 则实数λ的取值范围为 .11.已知数列{}n a 的前n 项和是21n S n n =++,则数列的通项n a = 。
12.数列}{n a 中,11=a 为 。
三、解答题13.等差数列{}n a 的前n 项和记为n S .已知50,302010==a a ,(1)求通项n a ;(2)若242=n S ,求n ;14. 某长江抗洪指挥部接到预报,24小时后有一洪峰到达.为确保安全,指挥部决定在洪峰来临前筑一道堤坝作为第二道防线.经计算,除现有的部队指战员和当地干部群众连续奋战外,还需用20台同型号的翻斗车,平均每辆车要工作24小时才能完成任务.但目前只有一辆车投入施工,其余的需从附近高速公路上抽调,每隔20分能有一辆车到达,且指挥部最多还可调集24辆车,那么在24时内能否构筑成第二道防线?15、在等差数列{}n a 中,50,302010==a a ,求数列n 项和.。
习题课 等差数列的性质的综合问题答案一、等差数列的实际应用例1 《周髀算经》是中国最古老的天文学和数学著作,书中提到:从冬至之日起,小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气的日影子长依次成等差数列,若冬至、立春、春分的日影子长的和是37.5尺,芒种的日影子长为4.5尺,则立夏的日影子长为( )A .15.5尺B .12.5尺C .9.5尺D .6.5尺答案 D解析 设该等差数列为{a n },冬至、小寒、大寒、…芒种的日影子长分别记为a 1,a 2,a 3,…,a 12,公差为d ,由题意可得,a 1+a 4+a 7=37.5,即a 4=12.5,又a 12=4.5,所以d =a 12-a 412-4=-1. 所以立夏的日影子长为a 10=a 4+6d =12.5-6=6.5(尺).反思感悟 解决等差数列实际应用问题的步骤及注意点(1)解答数列实际应用问题的基本步骤:①审题,即仔细阅读材料,认真理解题意;②建模,即将已知条件翻译成数学(数列)语言,将实际问题转化成数学问题;③判型,即判断该数列是否为等差数列;④求解,即求出该问题的数学解;⑤还原,即将所求结果还原到实际问题中.(2)在利用数列方法解决实际问题时,一定要弄清首项、项数等关键问题.跟踪训练1 假设某市2020年新建住房400万平方米,预计在今后的若干年内,该市每年新建住房面积均比上一年增加50万平方米.那么该市在________年新建住房的面积开始大于820万平方米. 答案 2029解析 设n 年后该市新建住房的面积为a n 万平方米.由题意,得{a n }是等差数列,首项a 1=450,公差d=50,所以a n =a 1+(n -1)d =400+50n .令400+50n >820,解得n >425.由于n ∈N *,则n ≥9.所以该市在2029年新建住房的面积开始大于820万平方米.二、等差数列中项的设法例2 (1)三个数成等差数列,其和为9,前两项之积为后一项的6倍,求这三个数;(2)四个数成递增等差数列,中间两项的和为2,首末两项的积为-8,求这四个数.解 (1)设这三个数依次为a -d ,a ,a +d ,则⎩⎪⎨⎪⎧ (a -d )+a +(a +d )=9,(a -d )a =6(a +d ), 解得⎩⎪⎨⎪⎧a =3,d =-1, 所以这三个数为4,3,2.(2)设这四个数为a -3d ,a -d ,a +d ,a +3d (公差为2d ),依题意得2a =2且(a -3d )(a +3d )=-8,即a =1,a 2-9d 2=-8,所以d 2=1,所以d =1或d =-1.又四个数成递增等差数列,所以d >0,所以d =1,故所求的四个数为-2,0,2,4.反思感悟 等差数列的设项方法和技巧(1)当已知条件中出现与首项、公差有关的内容时,可直接设首项为a 1,公差为d ,利用已知条件建立方程(组)求出a 1和d ,即可确定此等差数列的通项公式.(2)当已知数列有3项时,可设为a -d ,a ,a +d ,此时公差为d .若有5项、7项、…时,可同理设出.(3)当已知数列有4项时,可设为a -3d ,a -d ,a +d ,a +3d ,此时公差为2d .若有6项、8项、…时,可同理设出.跟踪训练2 已知五个数成等差数列,它们的和为5,平方和为859,求这5个数. 解 设第三个数为a ,公差为d ,则这5个数分别为a -2d ,a -d ,a ,a +d ,a +2d .由已知有⎩⎪⎨⎪⎧ (a -2d )+(a -d )+a +(a +d )+(a +2d )=5,(a -2d )2+(a -d )2+a 2+(a +d )2+(a +2d )2=859, 整理得⎩⎪⎨⎪⎧ 5a =5,5a 2+10d 2=859. 解得⎩⎪⎨⎪⎧a =1,d =±23. 当d =23时,这5个数分别是-13,13,1,53,73; 当d =-23时,这5个数分别是73,53,1,13,-13. 综上,这5个数分别是-13,13,1,53,73或73,53,1,13,-13. 三、等差数列的综合应用例3 若关于x 的方程x 2-x +m =0和x 2-x +n =0(m ,n ∈R ,且m ≠n )的四个根组成首项为14的等差数列,则数列的公差d =________,m +n 的值为________.答案 16 3172解析 设x 2-x +m =0,x 2-x +n =0的根分别为x 1,x 2,x 3,x 4,则x 1+x 2=x 3+x 4=1(且1-4m >0,1-4n >0).设数列的首项为x 1,则根据等差数列的性质,数列的第4项为x 2.由题意知x 1=14, ∴x 2=34,数列的公差d =34-144-1=16, ∴数列的中间两项分别为14+16=512,512+16=712. ∴x 1·x 2=m =316,x 3·x 4=n =512×712=35144. ∴m +n =316+35144=3172. 反思感悟 解决数列综合问题的方法策略(1)结合等差数列的性质或利用等差中项.(2)利用通项公式,得到一个以首项a 1和公差d 为未知数的方程或不等式.(3)利用函数或不等式的有关方法解决.跟踪训练3 已知等差数列{a n }中,a 1+a 4+a 7=39,a 2+a 5+a 8=33,则a 3+a 6+a 9=________. 答案 27解析 方法一 由性质可知,数列a 1+a 4+a 7,a 2+a 5+a 8,a 3+a 6+a 9是等差数列,所以2(a 2+a 5+a 8)=(a 1+a 4+a 7)+(a 3+a 6+a 9),则a 3+a 6+a 9=2×33-39=27.方法二 设等差数列{a n }的公差为d ,则(a 2+a 5+a 8)-(a 1+a 4+a 7)=(a 2-a 1)+(a 5-a 4)+(a 8-a 7)=3d =-6, 解得d =-2,所以a 3+a 6+a 9=a 2+d +a 5+d +a 8+d =27.1.知识清单:(1)等差数列的实际应用.(2)等差数列中项的设法.(3)等差数列的综合应用.2.方法归纳:解方程组法.3.常见误区:对等差数列的性质不理解而致错.1.已知等差数列1,a 1,a 2,9,则a 2-a 1的值为( )A .8B .-8C .±8 D.83答案 D解析 根据等差数列1,a 1,a 2,9知,1和9是该数列的第一项和第四项,所以a 2-a 1=9-14-1=83. 2.在等差数列{a n }中,a 2+a 5=10,a 3+a 6=14,则a 5+a 8等于( )A .12B .22C .24D .34答案 B解析 设数列{a n }的公差为d ,则d =a 3+a 6-()a 2+a 52=14-102=2, 故a 5+a 8=a 5+a 2+6d =10+6×2=22.3.由公差d ≠0的等差数列a 1,a 2,…,a n 组成一个新的数列a 1+a 3,a 2+a 4,a 3+a 5,…,下列说法正确的是( )A .新数列不是等差数列B .新数列是公差为d 的等差数列C .新数列是公差为2d 的等差数列D .新数列是公差为3d 的等差数列答案 C解析 因为(a n +1+a n +3)-(a n +a n +2)=(a n +1-a n )+(a n +3-a n +2)=2d ,所以数列a 1+a 3,a 2+a 4,a 3+a 5,…是公差为2d 的等差数列.4.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,乙所得为________钱.答案 76解析 由题意,设这五人所得钱分别为a +2d ,a +d ,a ,a -d ,a -2d ,则a +2d +a +d =a +a -d +a -2d ,且5a =5,所以a =1,d =16, 所以乙所得为a +d =76(钱).1.已知各项不为0的等差数列{a n }满足a 6-a 27+a 8=0,则a 7等于( )A .1B .8C .4D .2答案 D解析 因为各项不为0的等差数列{a n }满足a 6-a 27+a 8=0, 所以2a 7-a 27=0,解得a 7=2或a 7=0(舍去).2.已知数列{a n },{b n }都是等差数列,且a 1=25,b 1=75,a 2+b 2=100,那么数列{a n +b n }的第37项为( )A .0B .37C .100D .-37答案 C解析 设等差数列{a n },{b n }的公差分别为d 1,d 2,则(a n +1+b n +1)-(a n +b n )=(a n +1-a n )+(b n +1-b n )=d 1+d 2,所以数列{a n +b n }仍然是等差数列.又d 1+d 2=(a 2+b 2)-(a 1+b 1)=100-(25+75)=0,所以a 37+b 37=a 1+b 1=100.3.已知等差数列{a n }的首项是2,公差为d (d ∈Z ),且{a n }中有一项是14,则d 的取值的个数为( )A .3B .4C .6D .7答案 C解析 等差数列{a n }的首项是2,公差为d (d ∈Z ),有一项是14,∴设第n 项为14,有a n =a 1+(n -1)d =2+(n -1)d =14,即(n -1)d =12,由n ∈N *知,n -1>0,n -1∈N *,而12=1×12=2×6=3×4,∴d 的取值有1,2,3,4,6,12.4.若三个数成等差数列,它们的和为12,积为-36,则这三个数的平方和为( )A .98B .88C .78D .68答案 A解析 设这三个数为a -d ,a ,a +d ,则⎩⎪⎨⎪⎧ a -d +a +a +d =12,(a -d )a (a +d )=-36,解得⎩⎪⎨⎪⎧ a =4,d =5或⎩⎪⎨⎪⎧ a =4,d =-5.∴这三个数为-1,4,9或9,4,-1.∴它们的平方和为98.5.已知等差数列{a n }中,a 2+a 5+a 8=9,那么关于x 的方程x 2+(a 4+a 6)x +10=0( )A .无实根B .有两个相等的实根C .有两个不等的实根D .不能确定有无实根答案 A解析 因为a 4+a 6=a 2+a 8=2a 5,a 2+a 5+a 8=3a 5=9,所以a 5=3,则方程为x 2+6x +10=0,因为Δ=62-4×10=-4<0,所以方程无实根.6.(多选)已知等差数列{a n }中,a 1=3,公差为d (d ∈N *),若2 021是该数列的一项,则公差d 不可能是( )A .2B .3C .4D .5答案 BCD解析 由2 021是该数列的一项,得2 021=3+(n -1)d ,所以n =2 018d+1,因为d ∈N *,所以d 是2 018的约数,故d 不可能是3,4和5.7.若三个数成等差数列,它们的和为9,平方和为59,则这三个数的积为________.答案 -21解析 设这三个数为a -d ,a ,a +d ,则⎩⎪⎨⎪⎧ a -d +a +a +d =9,(a -d )2+a 2+(a +d )2=59. 解得⎩⎪⎨⎪⎧ a =3,d =4或⎩⎪⎨⎪⎧a =3,d =-4. ∴这三个数为-1,3,7或7,3,-1.∴它们的积为-21.8.若a ,b ,c 成等差数列,则二次函数y =ax 2-2bx +c 的图象与x 轴的交点的个数为________. 答案 1或2解析 ∵a ,b ,c 成等差数列,∴2b =a +c ,∴Δ=4b 2-4ac =(a +c )2-4ac =(a -c )2≥0.∴二次函数y =ax 2-2bx +c 的图象与x 轴的交点个数为1或2.9.四个数成递减等差数列,四个数之和为26,第二个数与第三个数之积为40.求这四个数.解 设这四个数为a -3d ,a -d ,a +d ,a +3d (公差为2d ),依题意,得⎩⎪⎨⎪⎧4a =26,a 2-d 2=40, 解得⎩⎨⎧ a =132,d =32或⎩⎨⎧ a =132,d =-32. 又四个数成递减等差数列,所以d <0, 所以d =-32, 故所求的四个数为11,8,5,2.10.已知数列{a n }满足a n +1=1+a n 3-a n(n ∈N *),且a 1=0. (1)求a 2,a 3;(2)是否存在一个实数λ,使得数列⎩⎨⎧⎭⎬⎫1a n -λ为等差数列,请说明理由. 解 (1)因为a 1=0,a n +1=1+a n 3-a n(n ∈N *), 所以a 2=1+a 13-a 1=13,a 3=1+a 23-a 2=12. (2)假设存在一个实数λ,使得数列⎩⎨⎧⎭⎬⎫1a n -λ为等差数列,所以2a 2-λ=1a 1-λ+1a 3-λ,即213-λ=10-λ+112-λ,解得λ=1.因为1a n +1-1-1a n -1=11+a n 3-a n-1-1a n -1 =3-a n 2(a n -1)-1a n -1=1-a n 2(a n -1)=-12, 又1a 1-1=-1,所以存在一个实数λ=1,使得数列⎩⎨⎧⎭⎬⎫1a n -λ是首项为-1,公差为-12的等差数列.11.设等差数列的公差为d ,若数列{}12n a a 为递减数列,则( ) A .d >0B .d <0C .a 1d >0D .a 1d <0 答案 D解析 由数列{}12n a a 为递减数列,得11122n n a a a a <-,再由指数函数性质得a 1a n -1>a 1a n ,由等差数列的公差为d 知,a n -a n -1=d ,所以a 1a n -1>a 1a n ⇒a 1a n -a 1a n -1<0⇒a 1(a n -a n -1)<0⇒a 1d <0.12.已知在数列{a n }中,a 2=32,a 5=98,且⎩⎨⎧⎭⎬⎫1a n -1是等差数列,则a 7等于( ) A.109 B.1011 C.1211 D.1312答案 D解析 设b n =1a n -1,则{b n }为等差数列, 因为a 2=32,a 5=98,所以b 2=2,b 5=8, 所以数列{b n }的公差d =b 5-b 23=2, 所以b 7=b 5+2d =8+4=12,即1a 7-1=12, 所以a 7=1312. 13.《莱因德纸草书》是世界上最古老的数学著作之一,书中有一道这样的题目:把100个面包分给五个人,使每人所得成等差数列,且使较大的三份之和的17等于较小的两份之和,则最小的一份为( ) A.53B.103C.56D.116 答案 A解析 设五个人所分得的面包个数为a -2d ,a -d ,a ,a +d ,a +2d ,其中d >0,则(a -2d )+(a -d )+a +(a +d )+(a +2d )=5a =100,∴a =20.由17(a +a +d +a +2d )=a -2d +a -d , 得3a +3d =7(2a -3d ),∴24d =11a ,∴d =556, ∴最小的一份为a -2d =20-1106=53. 14.在等差数列{a n }中,a 2=3,若从第5项开始为负数,则公差d 的取值范围是________.答案 ⎣⎡⎭⎫-32,-1 解析 ∵等差数列{a n }从第5项开始为负数,∴⎩⎪⎨⎪⎧ a 5<0,a 4≥0,即⎩⎪⎨⎪⎧ a 2+3d <0,a 2+2d ≥0,∴⎩⎪⎨⎪⎧3+3d <0,3+2d ≥0, 解得-32≤d <-1.15.一个三角形的三个内角A ,B ,C 成等差数列,其三边a ,b ,c 也成等差数列,则该三角形的形状为________. 答案 等边三角形解析 由三边成等差数列,得2b =a +c ,三角形的三个内角A ,B ,C 成等差数列,则2B =A +C 且A +B +C =π,得B =π3. 由余弦定理得b 2=a 2+c 2-2ac cos 60°,即⎝⎛⎭⎫a +c 22=a 2+c 2-ac .即(a +c )2=4a 2+4c 2-4ac ,整理得a 2+c 2-2ac =0,即(a -c )2=0,所以a =c .所以在三角形中A =C ,B =π3,则A =C =B =π3. 所以该三角形为等边三角形.16.有一批电视机原销售价为每台800元,在甲、乙两家家电商场均有销售.甲商场用如下方法促销:买一台单价为780元,买两台单价为760元,以此类推,每多买一台则所购买各台的单价均减少20元,但每台最少不低于440元;乙商场一律按原价的75%销售.某单位需购买一批此类电视机,则去哪一家商场购买花费较少?解 设某单位需购买电视机n 台.在甲商场购买时,所买电视机的售价构成等差数列{a n },a n =780+(n -1)×(-20)=-20n +800,由a n =-20n +800≥440,得n ≤18,即购买台数不超过18台时,每台售价(800-20n )元;购买台数超过18台时,每台售价440元.到乙商场购买时,每台售价为800×75%=600(元).比较在甲、乙两家家电商场的费用(800-20n )n -600n =20n (10-n ).当n <10时,(800-20n )n >600n ,到乙商场购买花费较少;当n =10时,(800-20n )n =600n ,到甲、乙商场购买花费相同;当10<n ≤18时,(800-20n )n <600n ,到甲商场购买花费较少;当n >18时,440n <600n ,到甲商场购买花费较少.因此,当购买电视机台数少于10台时,到乙商场购买花费较少;当购买电视机10台时,到两家商场购买花费相同;当购买电视机台数多于10台时,到甲商场购买花费较少.。
等差数列与等比数列的综合应用题下面是2000字的文章,涉及到等差数列和等比数列的综合应用题。
等差数列和等比数列的综合应用题数列是数学中一个重要的概念,有着广泛的应用。
其中等差数列和等比数列是最常见的两种数列,它们在实际问题中有着丰富的应用。
本文将探讨其中一些有趣的综合应用题。
一、等差数列的综合应用1. 现有一连续数列,首项为a,公差为d,共有n项。
若已知该等差数列的和为Sn,则求出该数列的最后一项。
解析:根据等差数列的性质,我们知道等差数列的前n项和可以表示为Sn = (2a + (n-1)d) * n / 2。
将该式子中的Sn替换为已知的值,整理后得到一个关于未知数的一元二次方程,通过解方程,我们可以求得该数列的最后一项。
2. 小明上学迟到了,他每天比前一天迟到10分钟,第一天迟到15分钟,到第九天小明迟到多久?解析:这是一个等差数列的应用题,题目中已经给出了首项和公差,我们需要求出第九项。
根据等差数列的性质,我们知道第九项可以表示为a9 = a1 + (9-1)d。
将已知的值代入公式,计算得到小明第九天迟到了85分钟。
二、等比数列的综合应用1. 小明通过研究发现,他所在的城市每年的垃圾总量是前一年的1.5倍。
今年城市的垃圾总量为2000吨,请计算出5年后的城市垃圾总量是多少吨。
解析:这是一个等比数列的应用题,题目中已经给出了首项和公比,我们需要求出第五项。
根据等比数列的性质,我们知道第五项可以表示为an = a1 * r^(n-1),其中a1为首项,r为公比。
将已知的值代入公式,计算得到5年后的城市垃圾总量为3750吨。
2. 一颗植物的高度是前一天的2倍,已知第一天植物的高度为10厘米,请计算出第五天的植物高度。
解析:这是一个等比数列的应用题,题目中已经给出了首项和公比,我们需要求出第五项。
根据等比数列的性质,我们知道第五项可以表示为an = a1 * r^(n-1),其中a1为首项,r为公比。
“一题多问、一题多变”有效教学模式的课例探究——等差、等比数列的综合应用作者:何淑娟来源:《新课程·上旬》 2014年第5期文/何淑娟有效教学坚持以学生发展为本的教学目标,不仅关注学生的考试分数,更关注学生体魄的健壮、情感的丰富和社会适应性的提升,从知识与技能、过程与方法、情感态度与价值观三个维度去促进学生个体的全方位发展,使学生获得知识与基本技能的同时成为学会学习和形成正确价值观的过程。
与低效、无效教学不同,有效教学特别注重教学目标和学生发展的全面性、整体性和协调性。
“三维目标”是一个完整、协调、互相联系的整体。
同时,“三维目标”不是三个独立的目标,而是一个问题的三个方面。
在课堂教学中,不能完成了一维目标再落实另一维目标,而是要注重“三维目标”的整体性和协调性。
因此,有效教学主张教师树立教学目标的整体结构观念,全面实现“三维目标”,使教学目标价值的实现统一于同一教学过程中,从而充分实现教学的基本价值,促进学生全面和谐的发展。
在推进数学教学改革的实践中,我校提出课例研究主题为“开展有效课堂教学”。
目的是通过有效课堂教学,使复习更有效,更有利于学生的高考,同时又能减轻学生的负担。
在课堂教学中又能培养学生参与意识、合作意识、创新素质,一步一个脚印地面向全体学生,使每个学生有所发展,获得有价值的数学。
使他们在数学学习中摆脱枯燥乏味,而是能真正地了解数学、体会数学,甚至爱上数学。
本次的课例研究也是围绕这个主题开展的。
我选择的是高三的一节数学课作为课例研究的载体,课题为《等差、等比数列的通项及其求和》,教学课时为高考二轮专题复习课。
第一次授课:一、创设情境,引入新课教师:我们已经熟练掌握了等差、等比数列的通项公式及其前n项和公式,也能根据等差、等比数列的基本性质求出等差、等比数列的通项,运用公式求前n项和。
下面请同学们动手做一下浙江2012年样卷中的数列大题。
例1.(浙江2012年样卷)设等差数列{an}的前n项和为Sn,数列{bn}为等比数列,已知a1=b1=1,a2+b2=a3,S3=3(a3+b3)。
《数列综合应用举例》教案一、教学目标:1. 让学生掌握数列的基本概念和性质,包括等差数列、等比数列等。
2. 培养学生运用数列知识解决实际问题的能力,提高学生的数学应用意识。
3. 通过对数列的综合应用举例,使学生理解数列在数学和自然科学领域中的重要性。
二、教学内容:1. 等差数列的应用举例:例如计算工资、利息等问题。
2. 等比数列的应用举例:例如计算复利、人口增长等问题。
3. 数列的求和公式及应用:例如求等差数列、等比数列的前n项和等问题。
4. 数列的通项公式的应用:例如求等差数列、等比数列的第n项等问题。
5. 数列在函数中的应用:例如数列与函数的关系、数列的函数性质等问题。
三、教学重点与难点:1. 教学重点:数列的基本概念、性质和求和公式。
2. 教学难点:数列的通项公式的理解和应用。
四、教学方法:1. 采用问题驱动的教学方法,引导学生通过解决实际问题来学习数列知识。
2. 利用多媒体课件,直观展示数列的应用实例,提高学生的学习兴趣。
3. 组织小组讨论,培养学生的合作能力和思维能力。
五、教学安排:1. 第一课时:等差数列的应用举例。
2. 第二课时:等比数列的应用举例。
3. 第三课时:数列的求和公式及应用。
4. 第四课时:数列的通项公式的应用。
5. 第五课时:数列在函数中的应用。
6. 剩余课时:进行课堂练习和课后作业的辅导。
六、教学目标:1. 深化学生对数列求和公式的理解,能够熟练运用求和公式解决复杂数列问题。
2. 培养学生运用数列知识进行数据分析的能力,提高学生的数学素养。
3. 通过对数列图像的观察,使学生理解数列与函数之间的关系。
七、教学内容:1. 数列图像的绘制与分析:学习如何绘制数列图像,并通过图像观察数列的特点。
2. 数列与函数的联系:探讨数列与函数之间的关系,理解数列可以看作是函数的特殊形式。
3. 数列在数据分析中的应用:例如,利用数列分析数据的变化趋势,预测未来的数据。
八、教学重点与难点:1. 教学重点:数列图像的绘制方法,数列与函数的关系,数列在数据分析中的应用。
等差数列题目100道一、基础概念类题目1. 已知数列{a_n}满足a_{n + 1}-a_n = 3,a_1 = 2,求数列{a_n}的通项公式。
- 解析:因为a_{n + 1}-a_n = d = 3(d为公差),a_1 = 2。
根据等差数列通项公式a_n=a_1+(n - 1)d,可得a_n=2+(n - 1)×3=3n - 1。
2. 在等差数列{a_n}中,a_3 = 7,a_5 = 11,求a_{10}。
- 解析:首先求公差d,d=frac{a_{5}-a_{3}}{5 - 3}=(11 - 7)/(2)=2。
由a_3=a_1+(3 - 1)d,即7=a_1 + 2×2,解得a_1 = 3。
那么a_{10}=a_1+(10 -1)d=3+9×2 = 21。
3. 若数列{a_n}为等差数列,且a_2=5,a_6 = 17,求其公差d。
- 解析:根据等差数列通项公式a_n=a_m+(n - m)d,则a_6=a_2+(6 - 2)d,即17 = 5+4d,解得d = 3。
4. 已知等差数列{a_n}的首项a_1=-1,公差d = 2,求该数列的前n项和S_n的公式。
- 解析:根据等差数列前n项和公式S_n=na_1+(n(n - 1))/(2)d,将a_1=-1,d = 2代入可得S_n=-n+(n(n - 1))/(2)×2=n^2 - 2n。
5. 在等差数列{a_n}中,a_1 = 1,a_{10}=19,求S_{10}。
- 解析:根据等差数列前n项和公式S_n=(n(a_1 + a_n))/(2),这里n = 10,a_1 = 1,a_{10}=19,则S_{10}=(10×(1 + 19))/(2)=100。
二、性质应用类题目6. 在等差数列{a_n}中,若a_3+a_8+a_{13}=12,求a_8的值。
- 解析:因为在等差数列中,若m,n,p,q∈ N^+,m + n=p+q,则a_m + a_n=a_p + a_q。
数列的综合应用数列是数学中重要的概念之一,它在各个领域中都有着广泛的应用。
数列的综合是数列中各个数值的求和运算,可以帮助我们解决很多实际问题。
本文将探讨数列的综合应用,从数学角度分析其在现实生活中的具体应用。
一、数列的定义和性质在介绍数列的综合应用之前,我们首先需要了解数列的基本定义和性质。
数列是按照一定规律排列的一组数,其中每个数称为数列的项。
根据数列的性质,我们可以将数列分为等差数列和等比数列两种常见类型。
1. 等差数列:等差数列中的任意两个相邻项之差都相等,这个固定的差值称为公差。
等差数列的一般形式为an = a1 + (n-1)d,其中an表示第n项,a1表示首项,d表示公差。
2. 等比数列:等比数列中的任意两个相邻项之比都相等,这个固定的比值称为公比。
等比数列的一般形式为an = a1 * r^(n-1),其中an表示第n项,a1表示首项,r表示公比。
二、数列的综合应用数列的综合应用广泛存在于日常生活和各个学科领域中,下面将从几个具体问题场景中介绍数列的应用。
1. 汽车里程计算假设一辆汽车从起点出发,每小时行驶的里程数分别是12公里、15公里、18公里、21公里...... 如果想知道5个小时内总共行驶了多少公里,我们可以使用等差数列的综合公式来计算。
首先确定首项a1=12,公差d=3(每小时增加3公里),然后带入数列综合公式Sn =(n/2)[2a1+(n-1)d],代入n=5进行计算得出结果为75公里。
因此,这辆汽车在5个小时内共行驶了75公里。
2. 学生成绩评估假设某学生在数学考试中的成绩分别是80分、85分、90分、95分......,如果想知道前10次考试的总分,我们可以使用等差数列的综合公式进行计算。
首先确定首项a1=80,公差d=5(每次考试分数增加5分),然后带入数列综合公式Sn = (n/2)[2a1+(n-1)d],代入n=10进行计算得出结果为875分。
因此,这名学生前10次数学考试的总分为875分。
第六课时 等差数列综合应用
【知识与技能】进一步熟练掌握等差数列的通项公式和前n 项和公式;了解等差数列的一些性质,并会用它们解决一些相关问题,会利用等差数列通项公式和前n 项和公式研究S n 的最值,初步体验函数思想在解决数列问题中的应用;掌握裂项相消法求数列的和. 【重点难点】
重点:等差数列前n 项和公式的掌握与应用,裂项相消法求数列的和. 难点:灵活运用求和公式解决问题. 【教学过程】 一、要点梳理
1.等差数列通项公式:
*11(1)()n a a n d dn a d n N =+-=+-∈,首项:1a ,公差:d ,末项:n a
变形公式:d m n a a m n )(-+=;m
n a a d m
n --=;
2.等差数列的前n 项和公式:
1()2n n n a a S +=
1(1)2n n na d -=+211
()22
d n a d n =+-2An Bn =+ (其中A B 、是常数,当0d ≠时,n S 是二次项系数为d
2
,图象过原点的二次函数.)
3.等差数列的性质
(1)等差数列的通项公式11(1)n a a n d dn a d =+-=+-是关于n 的一次函数,且斜率为公差d ;
(2)若公差0d >,则为递增等差数列,若公差0d <,则为递减等差数列,若公差0d =,则为常数列;
(3)当m n p q +=+时,则有q p n m a a a a +=+,特别地,当2m n p +=时,则有
2m n p a a a +=;
(4)等差数列{a n }中,其前n 项和为S n ,则{a n }中连续的n 项和构成的数列S n ,S 2n -S n ,S 3n -S 2n ,S 4n -S 3n ,…构成等差..
数列; (5)设数列{}n a 是等差数列,d 为公差,奇S 是奇数项的和,偶S 是偶数项项的和,n S 是前n 项的和.
若当项数为偶数n 2时,
()11=n n n n S S na na n a a nd ++-=-=-偶奇,11
n n n n S na a S na a ++==奇偶 若当项数为奇数12+n 时,
21(21)(1)1n S S S n a S n a S n S S a S na S n +⎧=+=+=+⎧+⎪⎪⇒⇒=⎨
⎨-==⎪⎪⎩⎩
n+1n+1
奇偶奇奇n+1n+1奇偶偶偶 (其中a n+1是项数为21n +的等差数列的中间项);
(6){}n a 、{}n b 的前n 和分别为n A 、n B ,且()n n A f n B =,则()2121
=21n n n n a A
f n b B --=-;
(7)若m S n =()n S m m p =≠,则m n S += ;
(8)若(),m p m p S S m p S +=≠=则 . 4.求n S 的最值
法一:因等差数列前n 项和是关于n 的二次函数,故可转化为求二次函数的最值,但要注意数列的特殊性*
n N ∈。
法二:(1)“首正”的递减等差数列中,前n 项和的最大值是所有非负项之和。
即当
,,001<>d a 由⎩⎨⎧≤≥+0
01n n a a 可得n S 达到最大值时的n 值.(2)“首负”的递增等差数列中,
前n 项和的最小值是所有非正项之和。
即 当,,001><d a 由⎩⎨⎧≥≤+0
1n n a a 可得n S 达到最小
值时的n 值.或求{}n a 中正负分界项。
法三:直接利用二次函数的对称性:由于等差数列前n 项和的图像是过原点的二次函数,故n 取离二次函数对称轴最近的整数时,n S 取最大值(或最小值)。
若p q S S = 则其对称轴为
2
p q
n +=。
5.等差数列的判定方法
(1)定义法:若d a a n n =--1或d a a n n =-+1(常数*
∈N n )⇔ {}n a 是等差数列.
(2)等差中项:数列{}n a 是等差数)2(211-≥+=⇔+n a a a n n n 212+++=⇔n n n a a a . (3)数列{}n a 是等差数列⇔b kn a n +=(其中b k ,是常数)。
(4)数列{}n a 是等差数列⇔2
n S An Bn =+,(其中A 、B 是常数)。
二、合作探究
类型1 等差数列前n 项和的性质
【例1】(1)在等差数列{a n }中,若S 4=1,S 8=4,则a 17+a 18+a 19+a 20=________. (2)有一个共有100项的等差数列,其奇数项与偶数项之和分别为100和200,则公差d =________.
【练习1】等差数列{a n }的前m 项和为30,前2m 项和为100,求它的前3m 项的和.
【练习2】若n S 表示等差数列的前n 项和,481
3S S =,则816
S S = .
【练习3】在等差数列{}n a 中,10100100,10,S S ==则110S = .
【练习4】在等差数列{}n a 中,10100,S S =则110S = .
【练习5】已知两个等差数列{}n a 和{}n b 的前n 项和分别为,n n A B ,且
745
3
n n A n B n +=+,则
使得n
n
a b 为整数的正整数n 的个数为 .
【练习6】设n S 是等差数列{}n a 的前n 项和,若5359a a =,则95
S
S = . 类型2 等差数列前n 项和的最值问题 【例2】数列{a n }是等差数列,a 1=50,d =-0.6. (1)从第几项开始有a n <0; (2)求此数列的前n 项和的最大值.
【练习】等差数列{a n }中,a 1<0,S 9=S 12,该数列前多少项和最小?
类型3 裂项相消法求数列的和
【例3】等差数列{a n }中,a 1=3,公差d =2,S n 为前n 项和,求1S 1+1S 2+…+1
S n .
小结:1.若数列{a n }是等差数列,公差为d (d ≠0),则和式T n =1a 1a 2+1a 2a 3+1a 3a 4+…+
1
a n -1a n 可用裂项法求和,具体过程如下:∵1a n -1·a n =1d (1a n -1-1a n ),∴T n =1d [(1a 1-1a 2)+(1a 2-1
a 3)+…+
(1a n -1-1a n )]=1d (1a 1-1a n )=n -1a 1a n ;2.常用到的裂项公式有如下形式:(1)1n (n +k )=1k (1n -1
n +k );
(2)
1n +k +n
=1k
(n +k -n ).
【练习】本例中若把条件改为“a 1=1,d =1”,其他都不变,试求解之.
类型4 等差数列的综合应用
【例4】在数列{a n }中,a 1=2,a n =2a n -1+2n +
1(n ≥2,n ∈N *). (1)若b n =a n
2
n ,求证:{b n }是等差数列;
(2)在(1)的条件下,设C n =1
b n b n +1,求{C n }的前n 项和T n .
三、课时小结与作业
1.一个有11项的等差数列,奇数项之和为30,则它的中间项为( )
A .8
B .7
C .6
D .5
2.(2013·西安高二检测)已知等差数列{a n }中,S n 是它的前n 项和,若S 16>0,S 17<0,则当S n 最大时n 的值为( )
A .8
B .9
C .10
D .16 3.(2013·郑州高二检测)已知等差数列{a n }中,|a 5|=|a 9|,公差d >0,则使得前n 项和S n 取得最小值时的正整数n 的值是( )
A .4和5
B .5和6
C .6和7
D .7和 8 4.已知数列{a n }是通项a n 和公差都不为零的等差数列,设S n =1a 1a 2+1
a 2a 3+…+
1
a n a n +1
,则S n 等于( ) A.n a 1a n +1 B.n
a 1a n C.n -1a 1a n D.n -1a 1a n +15.已知一个等差数列{a n }的前12项的和为354,前12项中偶数项的和S 偶与前12项中奇数项的和S 奇之比为32
27,求此数列的公差d . 6.已知等差数列{a n }中,a 1=9,a 4+a 7=0. (1)求数列{a n }的通项公式;
(2)当n 为何值时,数列{a n }的前n 项和取得最大值? 7.设数列{a n }满足a 1=0,且11-a n +1-1
1-a n
=1.
(1)求{a n }的通项公式;
(2)设b n =
1-a n +1
n
,记S n =b 1+b 2+b 3+…+b n . 证明:S n <1.。