第十三讲 3.2坐标变换和动态数学数学模型的简化
- 格式:ppt
- 大小:682.00 KB
- 文档页数:49
坐标系变换的概念和方法嘿,朋友们!今天咱来聊聊坐标系变换这个神奇的玩意儿。
你说坐标系变换像不像孙悟空的七十二变呐!它能把一个东西在不同的“世界”里变来变去,可有意思啦!比如说,咱在一个坐标系里看一个图形,普普通通的,没啥特别。
但要是给它来个坐标系变换,哇塞,一下子就变得不一样了,就好像突然给它施了魔法一样。
想象一下,你在一个平面上画了个正方形,这就是它在原本坐标系里的样子。
可要是咱把这个坐标系歪一歪,或者挪一挪,那这个正方形不就变样了嘛!它的位置、形状可能都会发生变化,多神奇呀!这就好像你原本在家里,然后你换了个房间,周围的一切看起来都不一样了。
坐标系变换在很多地方都大有用处呢!比如在物理学里,研究物体的运动。
物体在不同的参考系下运动状态可不一样哦!就像你坐在火车上,看窗外的树是往后跑,但在地面上的人看,树可没动呀。
这不就是坐标系变换在起作用嘛!在数学里那就更不用说啦,解决各种问题都可能用到它。
它能让复杂的问题变得简单,让我们能更清楚地看到问题的本质。
好比是给我们配上了一副神奇的眼镜,能看到别人看不到的东西。
咱再打个比方,坐标系变换就像是给一个故事换个角度来讲。
原本你从主角的视角看故事,觉得平平无奇。
但要是换个配角的视角,或者从反派的视角来看,哇,故事一下子就精彩起来了,有好多之前没注意到的细节都冒出来了。
你说这坐标系变换是不是特别厉害?它能让我们看到同一个事物的不同面,能让我们对世界的理解更加丰富。
它就像一把钥匙,能打开好多扇我们以前没发现的门。
所以啊,可别小看了这坐标系变换。
它不是那种高高在上、遥不可及的东西,而是就在我们身边,随时都能派上用场的好帮手。
我们要学会运用它,就像掌握了一门神奇的武功秘籍一样,能在知识的江湖里闯荡出一番天地来。
不管是解决难题,还是探索新的领域,坐标系变换都能给我们带来意想不到的惊喜呢!这不就是我们追求知识的乐趣所在嘛!。
坐标系的平移、旋转变换——超详细在数学和物理学中,坐标系的平移和旋转变换是非常重要的概念。
它们被广泛应用于几何学、物理学、工程学等领域,用于描述物体在空间中的位置和方向。
本文将深入探讨坐标系的平移和旋转变换,包括其基本概念、数学表示、应用示例等内容,以便读者能够全面了解这一重要的数学概念。
1. 坐标系的基本概念。
坐标系是用来描述空间中点的工具。
在二维空间中,我们通常用笛卡尔坐标系来描述点的位置,它由两个相互垂直的坐标轴组成。
在三维空间中,我们通常使用三维笛卡尔坐标系,它由三个相互垂直的坐标轴组成。
坐标系的原点是坐标轴的交点,用来表示零点位置。
2. 平移变换。
平移变换是指将坐标系中的点沿着某个方向移动一定的距离。
在二维空间中,平移变换可以表示为:x' = x + a.y' = y + b.其中(x, y)是原始点的坐标,(x', y')是平移后点的坐标,(a, b)是平移的距离。
在三维空间中,平移变换可以表示为:x' = x + a.y' = y + b.z' = z + c.其中(x, y, z)是原始点的坐标,(x', y', z')是平移后点的坐标,(a, b, c)是平移的距离。
3. 旋转变换。
旋转变换是指将坐标系中的点绕着原点或其他中心点旋转一定的角度。
在二维空间中,旋转变换可以表示为:x' = xcosθ ysinθ。
y' = xsinθ + ycosθ。
其中(x, y)是原始点的坐标,(x', y')是旋转后点的坐标,θ是旋转的角度。
在三维空间中,旋转变换可以表示为旋转矩阵的形式,这里不做详细展开。
4. 应用示例。
坐标系的平移和旋转变换在计算机图形学、机器人学、航天航空等领域有着广泛的应用。
比如,在计算机图形学中,我们可以通过平移和旋转变换来实现物体的移动和旋转;在机器人学中,坐标系的变换可以用来描述机器人末端执行器的运动轨迹;在航天航空领域,我们可以通过坐标系的变换来描述飞行器的姿态变化。
第1节 坐标系与参数方程第1课时 坐标系最新考纲 1.了解坐标系的作用,了解在平面直角坐标系伸缩变换作用下平面图形的变化情况;2.了解极坐标的基本概念,会在极坐标系中用极坐标刻画点的位置,能进行极坐标和直角坐标的互化;3.能在极坐标系中给出简单图形表示的极坐标方程.知 识 梳 理1.平面直角坐标系中的伸缩变换设点P (x ,y )是平面直角坐标系中的任意一点,在变换φ:⎩⎨⎧x ′=λ·x (λ>0),y ′=μ·y (μ>0)的作用下,点P (x ,y )对应到点P ′(x ′,y ′),称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换. 2.极坐标系(1)极坐标与极坐标系的概念在平面内取一个定点O ,自点O 引一条射线Ox ,同时确定一个长度单位和计算角度的正方向(通常取逆时针方向),这样就建立了一个极坐标系.点O 称为极点,射线Ox 称为极轴.平面内任一点M 的位置可以由线段OM 的长度ρ和从射线Ox 到射线OM 的角度θ来刻画(如图所示).这两个数组成的有序数对(ρ,θ)称为点M 的极坐标.ρ称为点M 的极径,θ称为点M 的极角.一般认为ρ≥0.当极角θ的取值范围是[0,2π)时,平面上的点(除去极点)就与极坐标(ρ,θ)(ρ≠0)建立一一对应的关系.我们设定,极点的极坐标中,极径ρ=0,极角θ可取任意角.(2)极坐标与直角坐标的互化设M 为平面上的一点,它的直角坐标为(x ,y ),极坐标为(ρ,θ).由图可知下面的关系式成立:⎩⎨⎧x =ρcos θ,y =ρsin θ或⎩⎪⎨⎪⎧ρ2=x 2+y 2,tan θ=yx (x ≠0), 这就是极坐标与直角坐标的互化公式. 3.常见曲线的极坐标方程[微点提醒] 关于极坐标系1.极坐标系的四要素:①极点;②极轴;③长度单位;④角度单位和它的正方向,四者缺一不可.2.由极径的意义知ρ≥0,当极角θ的取值范围是[0,2π)时,平面上的点(除去极点)与极坐标(ρ,θ)(ρ≠0)建立一一对应关系,约定极点的极坐标是极径ρ=0,极角可取任意角.3.极坐标与直角坐标的重要区别:多值性.基 础 自 测1.判断下列结论正误(在括号内打“√”或“×”)(1)平面直角坐标系内的点与坐标能建立一一对应关系,在极坐标系中点与坐标也是一一对应关系.( )(2)若点P 的直角坐标为(1,-3),则点P 的一个极坐标是⎝ ⎛⎭⎪⎫2,-π3.( ) (3)在极坐标系中,曲线的极坐标方程不是唯一的.( ) (4)极坐标方程θ=π(ρ≥0)表示的曲线是一条直线.( )解析 (1)一般认为ρ≥0,当θ∈[0,2π)时,平面上的点(除去极点)才与极坐标建立一一对应关系;(4)极坐标θ=π(ρ≥0)表示的曲线是一条射线. 答案 (1)× (2)√ (3)√ (4)×2.(选修4-4P15习题T3改编)若以直角坐标系的原点为极点,x 轴的非负半轴为极轴建立极坐标系,则线段y =1-x (0≤x ≤1)的极坐标方程为( ) A.ρ=1cos θ+sin θ,0≤θ≤π2B.ρ=1cos θ+sin θ,0≤θ≤π4C.ρ=cos θ+sin θ,0≤θ≤π2D.ρ=cos θ+sin θ,0≤θ≤π4 解析 ∵y =1-x (0≤x ≤1), ∴ρsin θ=1-ρcos θ(0≤ρcos θ≤1); ∴ρ=1sin θ+cos θ⎝⎛⎭⎪⎫0≤θ≤π2.答案 A3.(选修4-4P15T4改编)在极坐标系中,圆ρ=-2sin θ的圆心的极坐标是( ) A.⎝ ⎛⎭⎪⎫1,π2B.⎝ ⎛⎭⎪⎫1,-π2C.(1,0)D.(1,π)解析 法一 由ρ=-2sin θ得ρ2=-2ρsin θ,化成直角坐标方程为x 2+y 2=-2y ,即x 2+(y +1)2=1,圆心坐标为(0,-1),其对应的极坐标为⎝ ⎛⎭⎪⎫1,-π2.法二 由ρ=-2sin θ=2cos ⎝ ⎛⎭⎪⎫θ+π2,知圆心的极坐标为⎝ ⎛⎭⎪⎫1,-π2,故选B. 答案 B4.(2015·湖南卷)在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.若曲线C 的极坐标方程为ρ=2sin θ,则曲线C 的直角坐标方程为________.解析 由ρ=2sin θ,得ρ2=2ρsin θ,所以曲线C 的直角坐标方程为x 2+y 2-2y =0,即x 2+(y -1)2=1. 答案 x 2+(y -1)2=15.(2014·广东卷)在极坐标系中,曲线C 1与C 2的方程分别为2ρcos 2θ=sin θ与ρcos θ=1.以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线C 1与C 2交点的直角坐标为________.解析 将2ρcos 2 θ=sin θ两边同乘以ρ,得2(ρcos θ)2=ρsin θ,化为直角坐标方程为2x 2=y ①,C 2:ρcos θ=1化为直角坐标方程为x =1②,联立①②可解得⎩⎨⎧x =1,y =2,所以曲线C 1与C 2交点的直角坐标为(1,2). 答案 (1,2)6.(2014·陕西卷)在极坐标系中,点⎝⎛⎭⎪⎫2,π6到直线ρsin(θ-π6)=1的距离是________. 解析 将极坐标⎝ ⎛⎭⎪⎫2,π6转化为直角坐标为(3,1).极坐标方程ρsin ⎝ ⎛⎭⎪⎫θ-π6=1转化为直角坐标方程为x -3y +2=0,则点(3,1)到直线x -3y +2=0的距离d =|3-3×1+2|1+(-3)2=1.答案 1考点一 平面直角坐标系中的伸缩变换易错警示【例1】 在平面直角坐标系中,求下列方程所对应的图形经过伸缩变换⎩⎪⎨⎪⎧x ′=12x ,y ′=13y 后的图形.(1)5x +2y =0;(2)x 2+y 2=1. 解 伸缩变换⎩⎪⎨⎪⎧x ′=12x ,y ′=13y则⎩⎨⎧x =2x ′,y =3y ′.(1)若5x +2y =0,则5(2x ′)+2(3y ′)=0,所以5x +2y =0经过伸缩变换后的方程为5x ′+3y ′=0,为一条直线. (2)若x 2+y 2=1,则(2x ′)2+(3y ′)2=1,则x 2+y 2=1经过伸缩变换后的方程为4x ′2+9y ′2=1,为椭圆. 规律方法 伸缩变换后方程的求法平面上的曲线y =f (x )在变换φ:⎩⎨⎧x ′=λx (λ>0),y ′=μy (μ>0)的作用下的变换方程的求法是将⎩⎪⎨⎪⎧x =x ′λ,y =y ′μ代入y =f (x ),得y ′μ=f ⎝ ⎛⎭⎪⎫x ′λ,整理之后得到y ′=h (x ′),即为所求变换之后的方程.易错警示 应用伸缩变换时,要分清变换前的点坐标(x ,y )与变换后的点坐标(x ′,y ′).【训练1】 在同一坐标系中,求将曲线y =12sin 3x 变为曲线y =sin x 的伸缩变换公式.解 将曲线y =12sin 3x ①经过伸缩变换变为y =sin x ,即y ′=sin x ′②, 设伸缩变换公式是⎩⎨⎧x ′=λx ,y ′=μy(λ>0,μ>0),把伸缩变换关系式代入②式得:μy =sin λx 与①式的系数对应相等得到⎩⎨⎧μ=2,λ=3,所以,变换公式为⎩⎨⎧x ′=3x ,y ′=2y .考点二 极坐标与直角坐标的互化【例2】 (2019·德阳诊断)已知极坐标系的极点为平面直角坐标系xOy 的原点,极轴为x 轴的正半轴,两种坐标系中的长度单位相同,曲线C 的参数方程为⎩⎨⎧x =-1+2cos α,y =1+2sin α(α为参数),直线l 过点(-1,0),且斜率为12,射线OM 的极坐标方程为θ=3π4.(1)求曲线C 和直线l 的极坐标方程;(2)已知射线OM 与曲线C 的交点为O ,P ,与直线l 的交点为Q ,则线段PQ 的长.解 (1)∵曲线C 的参数方程为⎩⎨⎧x =-1+2cos α,y =1+2sin α(α为参数),∴曲线C 的普通方程为(x +1)2+(y -1)2=2,将x =ρcos θ,y =ρsin θ代入整理得ρ+2cos θ-2sin θ=0, 即曲线C 的极坐标方程为ρ=22sin ⎝ ⎛⎭⎪⎫θ-π4.∵直线l 过点(-1,0),且斜率为12,∴直线l 的方程为y =12(x +1),∴直线l 的极坐标方程为ρcos θ-2ρsin θ+1=0. (2)当θ=3π4时,|OP |=22sin ⎝ ⎛⎭⎪⎫3π4-π4=22,|OQ |=12×22+22=23, 故线段PQ 的长为22-23=523.规律方法 1.进行极坐标方程与直角坐标方程互化的关键是抓住互化公式;x =ρcos θ,y =ρsin θ,ρ2=x 2+y 2,tan θ=yx (x ≠0).2.进行极坐标方程与直角坐标方程互化时,要注意ρ,θ的取值范围及其影响;要善于对方程进行合理变形,并重视公式的逆向与变形使用;要灵活运用代入法和平方法等技巧.【训练2】 (1)在平面直角坐标系中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.已知点A 的极坐标为⎝ ⎛⎭⎪⎫2,π4,直线的极坐标方程为ρcos ⎝ ⎛⎭⎪⎫θ-π4=a ,且点A 在直线上,求a 的值及直线的直角坐标方程. (2)把曲线C 1:x 2+y 2-8x -10y +16=0化为极坐标方程. 解 (1)∵点A ⎝ ⎛⎭⎪⎫2,π4在直线ρcos ⎝ ⎛⎭⎪⎫θ-π4=a 上,∴a =2cos ⎝ ⎛⎭⎪⎫π4-π4=2,所以直线的方程可化为ρcos θ+ρsin θ=2, 从而直线的直角坐标方程为x +y -2=0. (2)将⎩⎨⎧x =ρcos θ,y =ρsin θ代入x 2+y 2-8x -10y +16=0,得ρ2-8ρcos θ-10ρsin θ+16=0,所以C 1的极坐标方程为ρ2-8ρcos θ-10ρsin θ+16=0. 考点三 曲线极坐标方程的应用【例3-1】 (2019·太原二模)点P 是曲线C 1:(x -2)2+y 2=4上的动点,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,以极点O 为中点,将点P 逆时针旋转90°得到点Q ,设点Q 的轨迹为曲线C 2. (1)求曲线C 1,C 2的极坐标方程;(2)射线θ=π3(ρ>0)与曲线C 1,C 2分别交于A ,B 两点,定点M (2,0),求△MAB 的面积.解 (1)由曲线C 1的直角坐标方程(x -2)2+y 2=4可得曲线C 1的极坐标方程为ρ=4cos θ.设Q (ρ,θ),则P ⎝ ⎛⎭⎪⎫ρ,θ-π2,则有ρ=4cos ⎝ ⎛⎭⎪⎫θ-π2=4sin θ.所以曲线C 2的极坐标方程为ρ=4sin θ. (2)M 到射线θ=π3(ρ>0)的距离d =2sin π3=3,|AB |=ρB -ρA =4⎝ ⎛⎭⎪⎫sin π3-cos π3=2(3-1),所以S △MAB =12|AB |×d =12×2(3-1)×3=3- 3.【例3-2】 (2017·全国Ⅱ卷)在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 1的极坐标方程为ρcos θ=4.(1)设点M 为曲线C 1上的动点,点P 在线段OM 上,且|OM |·|OP |=16,求点P 的轨迹C 2的直角坐标方程;(2)设点A 的极坐标为⎝ ⎛⎭⎪⎫2,π3,点B 在曲线C 2上,求△OAB 面积的最大值.解 (1)设点P 的极坐标为(ρ,θ)(ρ>0),M 的极坐标为(ρ1,θ)(ρ1>0). 由题设知|OP |=ρ,|OM |=ρ1=4cos θ.由|OM |·|OP |=16得C 2的极坐标方程为ρ=4cos θ(ρ>0). 因此C 2的直角坐标方程为(x -2)2+y 2=4(x ≠0). (2)设点B 的极坐标为(ρB ,α)(ρB >0). 由题设知|OA |=2,ρB =4cos α, 于是△OAB 的面积S =12|OA |·ρB ·sin ∠AOB =4cos α·⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫α-π3=2⎪⎪⎪⎪⎪⎪sin ⎝⎛⎭⎪⎫2α-π3-32≤2+ 3. 当α=-π12时,S 取得最大值2+ 3. 所以△OAB 面积的最大值为2+ 3.规律方法 求线段的长度有两种方法.方法一,先将极坐标系下点的坐标、曲线方程转化为平面直角坐标系下的点的坐标、曲线方程,然后求线段的长度.方法二,直接在极坐标系下求解,设A (ρ1,θ1),B (ρ2,θ2),则|AB |=ρ21+ρ22-2ρ1ρ2cos (θ2-θ1);如果直线过极点且与另一曲线相交,求交点之间的距离时,求出曲线的极坐标方程和直线的极坐标方程及交点的极坐标,则|ρ1-ρ2|即为所求.【训练3】 (1)在极坐标系中,求直线ρsin ⎝ ⎛⎭⎪⎫θ+π4=2被圆ρ=4截得的弦长.(2)(2019·衡阳二模)在直角坐标系xOy 中,曲线C 的参数方程为⎩⎨⎧x =2cos φ,y =sin φ(φ为参数).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,A ,B 为C 上两点,且OA ⊥OB ,设射线OA :θ=α,其中0<α<π2. (ⅰ)求曲线C 的极坐标方程; (ⅱ)求|OA |·|OB |的最小值.解 (1)由ρsin ⎝ ⎛⎭⎪⎫θ+π4=2,得22(ρsin θ+ρcos θ)=2,可化为x +y -22=0.圆ρ=4可化为x 2+y 2=16,圆心(0,0)到直线x +y -22=0的距离d =|22|2=2, 由圆中的弦长公式,得弦长 l =2r 2-d 2=242-22=4 3. 故所求弦长为4 3.(2)(ⅰ)将曲线C 的参数方程⎩⎨⎧x =2cos φ,y =sin φ(φ为参数)化为普通坐标方程为x 22+y2=1.因为x =ρcos θ,y =ρsin θ,所以曲线C 的极坐标方程为ρ2=21+sin 2 θ.(ⅱ)根据题意:射线OB 的极坐标方程为θ=α+π2或θ=α-π2, 所以|OA |=21+sin 2 α,|OB |=21+sin 2⎝ ⎛⎭⎪⎫α±π2=21+cos 2 α,所以|OA |·|OB |=21+sin 2 α·21+cos 2 α=4(1+sin 2α)(1+cos 2 α)≥21+sin 2 α+1+cos 2 α2=43. 当且仅当sin 2 α=cos 2 α,即α=π4时,|OA |·|OB |取得最小值为43.[思维升华]1.曲线的极坐标方程化成直角坐标方程:对于简单的我们可以直接代入公式ρcos θ=x ,ρsin θ=y ,ρ2=x 2+y 2,但有时需要作适当的变化,如将式子的两边同时平方,两边同时乘以ρ等.2.直角坐标(x ,y )化为极坐标(ρ,θ)的步骤: (1)运用ρ=x 2+y 2,tan θ=yx (x ≠0);(2)在[0,2π)内由tan θ=yx (x ≠0)求θ时,由直角坐标的符号特征判断点所在的象限(即θ的终边位置). [易错防范]1.确定极坐标方程,极点、极轴、长度单位、角度单位及其正方向,四者缺一不可.2.平面上点的直角坐标的表示形式是唯一的,但点的极坐标的表示形式不唯一.当规定ρ≥0,0≤θ<2π,使得平面上的点与它的极坐标之间是一一对应的,但仍然不包括极点.3.进行极坐标方程与直角坐标方程互化时,应注意两点: (1)注意ρ,θ的取值范围及其影响.(2)重视方程的变形及公式的正用、逆用、变形使用.基础巩固题组 (建议用时:60分钟)1.求双曲线C :x 2-y 264=1经过φ:⎩⎨⎧x ′=3x ,2y ′=y变换后所得曲线C ′的焦点坐标.解 设曲线C ′上任意一点P ′(x ′,y ′), 由上述可知,得⎩⎪⎨⎪⎧x =13x ′,y =2y ′代入x 2-y 264=1,得x ′29-4y ′264=1,化简得x ′29-y ′216=1,即x 29-y 216=1为曲线C ′的方程,可见仍是双曲线,则焦点F 1(-5,0),F 2(5,0)为所求.2.(2018·武汉模拟)在极坐标系下,已知圆O :ρ=cos θ+sin θ和直线l :ρsin ⎝ ⎛⎭⎪⎫θ-π4=22.(1)求圆O 和直线l 的直角坐标方程;(2)当θ∈(0,π)时,求直线l 与圆O 公共点的一个极坐标. 解 (1)圆O :ρ=cos θ+sin θ,即ρ2=ρcos θ+ρsin θ, 圆O 的直角坐标方程为:x 2+y 2=x +y , 即x 2+y 2-x -y =0, 直线l :ρsin ⎝ ⎛⎭⎪⎫θ-π4=22,即ρsin θ-ρcos θ=1,则直线l 的直角坐标方程为:y -x =1,即x -y +1=0.(2)由⎩⎨⎧x 2+y 2-x -y =0,x -y +1=0,得⎩⎨⎧x =0,y =1,故直线l 与圆O 公共点的一个极坐标为⎝ ⎛⎭⎪⎫1,π2.3.以直角坐标系中的原点O 为极点,x 轴正半轴为极轴的极坐标系中,已知曲线的极坐标方程为ρ=21-sin θ.(1)将曲线的极坐标方程化为直角坐标方程;(2)过极点O 作直线l 交曲线于点P ,Q ,若|OP |=3|OQ |,求直线l 的极坐标方程. 解 (1)∵ρ=x 2+y 2,ρsin θ=y , ∴ρ=21-sin θ化为ρ-ρsin θ=2,得ρ2=(2+ρsin θ)2,∴曲线的直角坐标方程为x 2=4y +4. (2)设直线l 的极坐标方程为θ=θ0(ρ∈R ), 根据题意21-sin θ0=3·21-sin(θ0+π),解得θ0=π6或θ0=5π6,直线l 的极坐标方程θ=π6(ρ∈R )或θ=5π6(ρ∈R ).4.(2019·安阳二模)在平面直角坐标系xOy 中,已知直线l :x +3y =53,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,圆C 的极坐标方程为ρ=4sin θ. (1)求直线l 的极坐标方程和圆C 的直角坐标方程;(2)射线OP :θ=π6与圆C 的交点为O ,A ,与直线l 的交点为B ,求线段AB 的长. 解 (1)因为x =ρcos θ,y =ρsin θ,直线l :x +3y =53, 所以直线l 的极坐标方程为ρcos θ+3ρsin θ=53, 化简得2ρsin ⎝ ⎛⎭⎪⎫θ+π6=53,即为直线l 的极坐标方程.由ρ=4sin θ,得ρ2=4ρsin θ, 所以x 2+y 2=4y ,即x 2+(y -2)2=4, 即为圆C 的直角坐标方程. (2)由题意得ρA =4sin π6=2, ρB =532sin ⎝ ⎛⎭⎪⎫π6+π6=5,所以|AB |=|ρA -ρB |=3.5.(2019·福州四校期末联考)在平面直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =2+cos α,y =2+sin α(α为参数),直线C 2的方程为y =3x .以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系. (1)求曲线C 1和曲线C 2的极坐标方程;(2)若直线C 2与曲线C 1交于A ,B 两点,求1|OA |+1|OB |.解 (1)由曲线C 1的参数方程为⎩⎨⎧x =2+cos α,y =2+sin α(α为参数),得曲线C 1的普通方程为(x -2)2+(y -2)2=1,则C 1的极坐标方程为ρ2-4ρcos θ-4ρsin θ+7=0,由于直线C 2过原点,且倾斜角为π3,故其极坐标方程为θ=π3(ρ∈R ).(2)由⎩⎪⎨⎪⎧ρ2-4ρcos θ-4ρsin θ+7=0,θ=π3得ρ2-(23+2)ρ+7=0,设A ,B 对应的极径分别为ρ1,ρ2,则ρ1+ρ2=23+2,ρ1ρ2=7,∴1|OA |+1|OB |=|OA |+|OB ||OA |·|OB |=ρ1+ρ2ρ1ρ2=23+27.6.在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =2cos φ,y =sin φ(其中φ为参数),曲线C 2:x 2+y 2-2y =0.以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,射线l :θ=α(ρ≥0)与曲线C 1,C 2分别交于点A ,B (均异于原点O ). (1)求曲线C 1,C 2的极坐标方程;(2)当0<α<π2时,求|OA |2+|OB |2的取值范围.解 (1)∵⎩⎨⎧x =2cos φ,y =sin φ,∴x 22+y 2=1,由⎩⎨⎧x =ρcos θ,y =ρsin θ,得曲线C 1的极坐标方程为ρ2=21+sin 2 θ;∵x 2+y 2-2y =0,∴曲线C 2的极坐标方程为ρ=2sin θ.(2)设A ,B 对应的极径分别为ρ1,ρ2,则由(1)得|OA |2=ρ21=21+sin 2α,|OB |2=ρ22=4sin 2α, ∴|OA |2+|OB |2=21+sin 2α+4sin 2 α=21+sin 2 α+4(1+sin 2α)-4, ∵0<α<π2,∴1<1+sin 2α<2,∴6<21+sin 2α+4(1+sin 2α)<9, ∴|OA |2+|OB |2的取值范围为(2,5).能力提升题组 (建议用时:20分钟)7.在直角坐标系xOy 中,曲线C 的参数方程为⎩⎨⎧x =3+2cos α,y =1+2sin α(α为参数).以平面直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系. (1)求曲线C 的极坐标方程;(2)过原点O 的直线l 1,l 2分别与曲线C 交于除原点外的A ,B 两点,若∠AOB =π3,求△AOB 的面积的最大值.解 (1)曲线C 的普通方程为(x -3)2+(y -1)2=4, 即x 2+y 2-23x -2y =0,所以,曲线C 的极坐标方程为ρ2-23ρcos θ-2ρsin θ=0,即ρ=4sin ⎝ ⎛⎭⎪⎫θ+π3.(2)不妨设A (ρ1,θ),B ⎝ ⎛⎭⎪⎫ρ2,θ+π3,θ∈⎝ ⎛⎭⎪⎫-π2,π2. 则ρ1=4sin ⎝ ⎛⎭⎪⎫θ+π3,ρ2=4sin ⎝ ⎛⎭⎪⎫θ+2π3,△AOB 的面积S =12|OA |·|OB |sin π3 =12ρ1ρ2sin π3=43sin ⎝ ⎛⎭⎪⎫θ+π3sin ⎝ ⎛⎭⎪⎫θ+2π3=23cos 2θ+3≤3 3.所以,当θ=0时,△AOB 的面积取最大值3 3.8.(2018·厦门外国语中学模拟)在平面直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =1+cos α,y =sin α(α为参数);在以原点O 为极点,x 轴的正半轴为极轴的极坐标系中,曲线C 2的极坐标方程为ρcos 2 θ=sin θ.(1)求曲线C 1的极坐标方程和曲线C 2的直角坐标方程;(2)若射线l :y =kx (x ≥0)与曲线C 1,C 2的交点分别为A ,B (A ,B 异于原点),当斜率k ∈(1,3]时,求|OA |·|OB |的取值范围.解 (1)曲线C 1的直角坐标方程为(x -1)2+y 2=1,即x 2-2x +y 2=0,将⎩⎨⎧x =ρcos θ,y =ρsin θ代入并化简得曲线C 1的极坐标方程为ρ=2cos θ. 由ρcos 2θ=sin θ两边同时乘ρ,得ρ2cos 2θ=ρsin θ,结合⎩⎨⎧x =ρcos θ,y =ρsin θ得曲线C 2的直角坐标方程为x 2=y .(2)设射线l :y =kx (x ≥0)的倾斜角为φ,则射线的极坐标方程为θ=φ,且k =tan φ∈(1,3].联立⎩⎨⎧ρ=2cos θ,θ=φ,得|OA |=ρA =2cos φ,联立⎩⎨⎧ρcos 2θ=sin θ,θ=φ,得|OB |=ρB =sin φcos 2 φ,所以|OA |·|OB |=ρA ·ρB =2cos φ·sin φcos 2 φ=2tan φ=2k ∈(2,23],即|OA |·|OB |的取值范围是(2,23].。
6.5 异步电动机的动态数学模型和坐标变换本节提要异步电动机动态数学模型的性质三相异步电动机的多变量非线性数学模型坐标变换和变换矩阵三相异步电动机在两相坐标系上的数学模型三相异步电动机在两相坐标系上的状态方程一、异步电动机动态数学模型的性质2. 交流电机数学模型的性质1异步电机变压变频调速时需要进行电压或电流和频率的协调控制,有电压电流和频率两种独立的输入变量;在输出变量中,除转速外,磁通也得算一个独立的输出变量;因为电机只有一个三相输入电源,磁通的建立和转速的变化是同时进行的,为了获得良好的动态性能,也希望对磁通施加某种控制,使它在动态过程中尽量保持恒定,才能产生较大的动态转矩;多变量、强耦合的模型结构由于这些原因,异步电机是一个多变量多输入多输出系统,而电压电流、频率、磁通、转速之间又互相都有影响,所以是强耦合的多变量系统,可以先用图来定性地表示;图6-43 异步电机的多变量、强耦合模型结构模型的非线性2在异步电机中,电流乘磁通产生转矩,转速乘磁通得到感应电动势,由于它们都是同时变化的,在数学模型中就含有两个变量的乘积项;这样一来,即使不考虑磁饱和等因素,数学模型也是非线性的;模型的高阶性3三相异步电机定子有三个绕组,转子也可等效为三个绕组,每个绕组产生磁通时都有自己的电磁惯性,再算上运动系统的机电惯性,和转速与转角的积分关系,即使不考虑变频装置的滞后因素,也是一个八阶系统;总起来说,异步电机的动态数学模型是一个高阶、非线性、强耦合的多变量系统;二、三相异步电动机的多变量非线性数学模型假设条件:1忽略空间谐波,设三相绕组对称,在空间互差120°电角度,所产生的磁动势沿气隙周围按正弦规律分布;2忽略磁路饱和,各绕组的自感和互感都是恒定的;3忽略铁心损耗;4不考虑频率变化和温度变化对绕组电阻的影响;1. 电压方程三相定子绕组的电压平衡方程为:电压方程续与此相应,三相转子绕组折算到定子侧后的电压方程为:电压方程的矩阵形式将电压方程写成矩阵形式,并以微分算子 p 代替微分符号 d /dt或写成6-67b2. 磁链方程每个绕组的磁链是它本身的自感磁链和其它绕组对它的互感磁链之和,因此,六个绕组的磁链可表达为:或写成6-68b电感矩阵式中,L 是6×6电感矩阵,其中对角线元素 LAA, LBB, LCC,Laa,Lbb,Lcc 是各有关绕组的自感,其余各项则是绕组间的互感;实际上,与电机绕组交链的磁通主要只有两类:一类是穿过气隙的相间互感磁通,另一类是只与一相绕组交链而不穿过气隙的漏磁通,前者是主要的;电感的种类和计算定子漏感 Lls ——定子各相漏磁通所对应的电感,由于绕组的对称性,各相漏感值均相等;转子漏感 Lk ——转子各相漏磁通所对应的电感;定子互感 Lms——与定子一相绕组交链的最大互感磁通;转子互感 Lmr——与转子一相绕组交链的最大互感磁通;由于折算后定、转子绕组匝数相等,且各绕组间互感磁通都通过气隙,磁阻相同,故可认为:自感表达式对于每一相绕组来说,它所交链的磁通是互感磁通与漏感磁通之和,因此,定子各相自感为:转子各相自感为:互感表达式两相绕组之间只有互感;互感又分为两类:1 定子三相彼此之间和转子三相彼此之间位置都是固定的,故互感为常值;2 定子任一相与转子任一相之间的位置是变化的,互感是角位移的函数第一类固定位置绕组的互感三相绕组轴线彼此在空间的相位差是±120°,在假定气隙磁通为正弦分布的条件下,互感值应为,于是,第二类变化位置绕组的互感定、转子绕组间的互感,由于相互间位置的变化见图6-44,可分别表示为:当定、转子两相绕组轴线一致时,两者之间的互感值最大,就是每相最大互感 Lms ;磁链方程将式6-69~式6-75都代入式6-68a,即得完整的磁链方程,显然这个矩阵方程是比较复杂的,为了方便起见,可以将它写成分块矩阵的形式式中值得注意的是,和两个分块矩阵互为转置,且均与转子位置有关,它们的元素都是变参数,这是系统非线性的一个根源;为了把变参数转换成常参数须利用坐标变换,后面将详细讨论这个问题;电压方程的展开形式如果把磁链方程6-68b代入电压方程6-67b中,即得展开后的电压方程:式中,项属于电磁感应电动势中的脉变电动势或称变压器电动势,项属于电磁感应电动势中与转速成正比的旋转电动势;3. 转矩方程根据机电能量转换原理,在多绕组电机中,在线性电感的条件下,磁场的储能和磁共能为:而电磁转矩等于机械角位移变化时磁共能的变化率电流约束为常值,且机械角位移,于是转矩方程的矩阵形式将式6-81代入式6-82,并考虑到电感的分块矩阵关系式6-77~6-79,得:又由于代入式6-83得:该方程适用变压变频器供电含有电流谐波三相异步电动机转矩方程的三相坐标系形式以式6-79代入式6-84并展开后,舍去负号,意即电磁转矩的正方向为使 q 减小的方向,则4. 电力拖动系统运动方程在一般情况下,电力拖动系统的运动方程式是TL ——负载阻转矩;J ——机组的转动惯量;D ——与转速成正比的阻转矩阻尼系数;K ——扭转弹性转矩系数;运动方程的简化形式对于恒转矩负载,D = 0 , K = 0 ,则5. 三相异步电机的数学模型将式6-76,式6-80,式6-85和式6-87综合起来,再加上,便构成在恒转矩负载下三相异步电机的多变量非线性数学模型,用结构图表示出来如下图所示:异步电机的多变量非线性动态结构图三、坐标变换和变换矩阵上节中虽已推导出异步电机的动态数学模型,但是,要分析和求解这组非线性方程显然是十分困难的;在实际应用中必须设法予以简化,简化的基本方法是坐标变换;1. 交流电机的物理模型直流电机物理模型简单励磁绕组d轴上,电枢绕组在q轴上,如果能将交流电机的物理模型见下图等效地变换成类似直流电机的模式,分析和控制就可以大大简化;坐标变换正是按照这条思路进行的; 在这里,不同电机模型彼此等效的原则是:在不同坐标下所产生的磁动势完全一致;1交流电机绕组的等效物理模型2等效的两相交流电机绕组3旋转的直流绕组与等效直流电机模型再看图c中的两个匝数相等且互相垂直的绕组 M 和 T,其中分别通以直流电流和,产生合成磁动势 F ,其位置相对于绕组来说是固定的;如果让包含两个绕组在内的整个铁心以同步转速旋转,则磁动势 F 自然也随之旋转起来,成为旋转磁动势;把这个旋转磁动势的大小和转速也控制成与图 a 和图 b 中的磁动势一样,那么这套旋转的直流绕组也就和前面两套固定的交流绕组都等效了;当观察者也站到铁心上和绕组一起旋转时,在他看来,M 和 T 是两个通以直流而相互垂直的静止绕组;如果控制磁通的位置在 M 轴上,就和直流电机物理模型没有本质上的区别了;这时,绕组M相当于励磁绕组,T 相当于伪静止的电枢绕组;等效的概念由此可见,以产生同样的旋转磁动势为准则,图a的三相交流绕组、图b的两相交流绕组和图c中整体旋转的直流绕组彼此等效;或者说,在三相坐标系下的,在两相坐标系下的和在旋转两相坐标系下的直流是等效的,它们能产生相同的旋转磁动势;现在的问题是,如何求出与和之间准确的等效关系,这就是坐标变换的任务;2. 三相--两相变换3/2变换现在先考虑上述的第一种坐标变换——在三相静止绕组A、B、C和两相静止绕组之间的变换,或称三相静止坐标系和两相静止坐标系间的变换,简称 3/2 变换;三相和两相坐标系与绕组磁动势的空间矢量 :设磁动势波形是正弦分布的,当三相总磁动势与二相总磁动势相等时,两套绕组瞬时磁动势在轴上的投影都应相等,写成矩阵形式,得:考虑变换前后总功率不变,在此前提下,可以证明匝数比应为:为求两项到三项的变换阵将三项到两项的变换阵增广成可逆的方阵,物理意义在两项系统上人为加入零轴磁动势并定义满足功率不变的条件可以求得如下关系:这表明保持坐标变换前后的功率不变,又要维持磁链相同,变换前后两项绕组每相匝数应为原三项绕组匝数的倍于此同时利用上述关系得三项/两项变换方阵:如要从两相坐标系变换到三相坐标系2/3变换可求反变换:N3 /N2 值代入式6-89,得:3. 两相—两相旋转变换2s/2r变换从上图等效的交流电机绕组和直流电机绕组物理模型的图 b 和图 c 中从两相静止坐标系到两相旋转坐标系 M、T 变换称作两相—两相旋转变换,简称 2s/2r 变换,其中 s 表示静止,r 表示旋转;把两个坐标系画在一起,即得下图;两相静止和旋转坐标系与磁动势电流空间矢量2s/2r变换公式两相旋转—两相静止坐标系的变换矩阵写成矩阵形式,得:式中是两相旋转坐标系变换到两相静止坐标系的变换阵;对式6-96两边都左乘以变换阵的逆矩阵,即得:两相静止—两相旋转坐标系的变换矩阵则两相静止坐标系变换到两相旋转坐标系的变换阵是:电压和磁链的旋转变换阵也与电流磁动势旋转变换阵相同;四、三相异步电动机在两相坐标系上的数学模型前已指出,异步电机的数学模型比较复杂,坐标变换的目的就是要简化数学模型;第6.6.2节的异步电机数学模型是建立在三相静止的ABC坐标系上的,如果把它变换到两相坐标系上,由于两相坐标轴互相垂直,两相绕组之间没有磁的耦合,仅此一点,就会使数学模型简单了许多;1.异步电机在两相任意旋转坐标系dq坐标系上的数学模型两相坐标系可以是静止的,也可以是旋转的,其中以任意转速旋转的坐标系为最一般的情况,有了这种情况下的数学模型,要求出某一具体两相坐标系上的模型就比较容易了;变换关系设两相坐标轴与三相坐标轴的夹角为, 而为坐标系相对于定子的角转速,为坐标系相对于转子的角转速;变换过程具体的变换运算比较复杂,根据式6-98另0轴为假想轴d轴和A轴夹角为θ 可得:写成矩阵形式:合并以上两个方程式得三相静止ABC坐标系到两项旋转dq0坐标系的变换式1磁链方程利用变换将定子的三项磁链和转子的三项磁链变换到dqo坐标系中去,定子磁链的变换阵是其中d轴与A轴的夹角为,转子磁链的变换阵是是旋转三相坐标系变换到不同转速的旋转两相坐标系;其中 d 轴与α 轴的夹角为 ;则磁链的变换式为:把定子和转子的磁链表达成电感阵和电流向量乘积,在用和的反变换阵把电流变换到dq0坐标上:磁链的零轴分量为它们各自独立对dq轴磁链没有影响,可以不考虑则可以简化;控制有关;代入参数计算,并去掉零轴分量则dq坐标系磁链方程为或写成式中—— dq坐标系定子与转子同轴等效绕组间的互感;—— dq坐标系定子等效两相绕组的自感;——dq坐标系转子等效两相绕组的自感;异步电机在两相旋转坐标系dq上的物理模型图6-50 异步电动机在两相旋转坐标系dq上的物理模型 2电压方程利用上式A得定子电压变换的关系为先讨论A相的关系同理在ABC坐标系下A相的电压方程,代入得为dq0旋转坐标系对于定子的角速度由于为任意值因此下式三式成立同理转子电压方程为式中为dq0旋转坐标系相对于转子的角速度同理利用B相和C相的电压方程求出的结果与上面一致; 2电压方程上面的方程整理有定子和转子的电压方程令旋转电动势向量则式6-106a变成这就是异步电机非线性动态电压方程式;与第6.6.2节中ABC坐标系方程不同的是:此处电感矩阵 L 变成 4 4 常参数线性矩阵,而整个电压方程也降低为4维方程;3转矩和运动方程dq坐标系上的转矩方程为运动方程与坐标变换无关,仍为其中——电机转子角速度;阶数下降,但非线性、强耦合、多变量性质未变;异步电机在dq坐标系上的动态等效电路2. 异步电机在坐标系上的数学模型在静止坐标系上的数学模型是任意旋转坐标系数学模型当坐标转速等于零时的特例;当时,,即转子角转速的负值,并将下角标改成,则式6-105的电压矩阵方程变成而式6-103a的磁链方程改为利用两相旋转变换阵,可得代入式6-107并整理后,即得到坐标上的电磁转矩式6-108~式6-110再加上运动方程式便成为坐标系上的异步电机数学模型;这种在两相静止坐标系上的数学模型又称作Kron的异步电机方程式或双轴原型电机Two Axis Primitive Machine基本方程式;3. 异步电机在两相同步旋转坐标系上的数学模型另一种很有用的坐标系是两相同步旋转坐标系,其坐标轴仍用d,q表示,只是坐标轴的旋转速度等于定子频率的同步角转速;而转子的转速为,因此 dq 轴相对于转子的角转速,即转差;代入式6-105,即得同步旋转坐标系上的电压方程在二相同步旋转坐标系上的电压方程磁链方程、转矩方程和运动方程均不变;两相同步旋转坐标系的突出特点是,当三相ABC坐标系中的电压和电流是交流正弦波时,变换到dq坐标系上就成为直流;4、按转子磁场定向下的数学模型在dq坐标系放在同步旋转磁场下使d轴与转子磁场的方向重合此时转子的d轴的磁通分量为0,既有下式;带入式6-111三四行出现零元素,减少了耦合,简化了模型上式中解得,带入dq坐标系中的转矩方程有如下结果,这个关系和直流电机的转矩方程非常接近了,如果是鼠笼电机结果会更加简单;五、三相异步电动机在两相坐标系上的状态方程作为异步电机控制系统研究和分析基础的数学模型,过去经常使用矩阵方程,近来越来越多地采用状态方程的形式,因此有必要再介绍一下状态方程;为了简单起见,这里只讨论两相同步旋转dq 坐标系上的状态方程,如果需要其它类型的两相坐标,只须稍加变换,就可以得到;第6.6.4节的分析结果告诉我们,在两相坐标系上的电压源型变频器—异步电机具有4阶电压方程和1阶运动方程,因此其状态方程也应该是5阶的,须选取5个状态变量,而可选的变量共有9个,即转速、4个电流变量和4个磁链变量;状态变量的选择转子电流是不可测的,不宜用作状态变量,因此只能选定子电流和转子磁链;定子电流和定子磁链;也就是说,可以有下列两组状态方程;1.状态方程由前节式6-103b表示dq坐标系上的磁链方程式6-104为任意旋转坐标系上的电压方程对于同步旋转坐标系,,又考虑到笼型转子内部是短路的,则,于是,电压方程可写成由式6-103b中第3,4两式可解出代入式6-107的转矩公式,得状态方程标准形式将式6-103b代入式6-112,消去,同时将6-113代入运动方程式6-87,经整理后即得状态方程如下:——电机漏磁系数,——转子电磁时间常数;状态变量与输入变量在6-114~6-118的状态方程中,状态变量为输入变量为式中,状态变量为输入变量为。
初中数学平面直角坐标系与坐标变换平面直角坐标系是数学中常用的坐标系之一,用于描述二维平面上的点的位置。
学会使用平面直角坐标系及其坐标变换,对于数学的学习和解题能力的提高至关重要。
本文将介绍平面直角坐标系的概念、性质以及常用的坐标变换方法。
一、平面直角坐标系平面直角坐标系是由一个平面上的两个相互垂直的直线(通常称为x轴和y轴)所确定的。
x轴和y轴的交点称为原点O,它是平面直角坐标系的起点。
在平面直角坐标系中,每个点都可以用一个有序数对(x, y)来表示,其中x代表点在x轴上的坐标,y代表点在y轴上的坐标。
二、平面直角坐标系的性质1. 坐标轴:平面直角坐标系中的x轴和y轴互相垂直,且相交于原点O。
x轴是水平方向的,y轴是垂直方向的。
2. 坐标轴的正方向:x轴从左往右延伸,正方向是从左往右;y轴从下往上延伸,正方向是从下往上。
3. 坐标轴的刻度:x轴和y轴上的刻度表示数值,用来表示点在坐标轴上的位置。
沿x轴和y轴的正方向,每个刻度之间的距离相等。
4. 坐标轴的单位:坐标轴上的单位长度可以自行确定,一般用数值表示。
5. 坐标变换:平面直角坐标系可以通过平移、旋转等方式进行坐标变换,不改变原点的位置和坐标轴的方向。
三、坐标变换1. 平移变换:平移变换是平面直角坐标系中最基本的坐标变换。
平移变换只改变点的位置,不改变点的坐标值。
假设有一个点A(x, y),平移变换后的点A'的坐标为(x+a, y+b),其中a和b分别表示平移的横向和纵向距离。
例题:已知点A(2, 3),对平面直角坐标系进行平移变换,使得点A'的坐标为(-1, 4),求平移的向量。
解答:设平移的向量为(a, b),根据平移变换的定义可得:-1 = 2 + a4 = 3 + b解方程组可得 a = -3,b = 1。
因此,平移的向量为(-3, 1)。
2. 旋转变换:旋转变换是将平面直角坐标系绕原点进行旋转的变换。
旋转变换可以按顺时针或逆时针方向进行。
高中数学中的坐标系与平移变换在高中数学中,坐标系和平移变换是两个非常重要的概念。
坐标系是一种表示点在平面上位置的方式,而平移变换则是一种改变点位置的操作。
本文将对这两个概念进行详细讨论。
一、坐标系的基本概念1. 直角坐标系直角坐标系是最常见的坐标系,由两条垂直的直线(通常称为x轴和y轴)交叉而成。
通过定义一个原点和单位长度,我们可以用有序数对(x, y)来表示平面上的任意一点。
2. 极坐标系极坐标系使用径向距离和极角来描述点的位置。
其中,径向距离表示点到原点的距离,极角则表示点与正向x轴之间的夹角。
3. 其他坐标系此外,还有柱面坐标系、球面坐标系等其他不同形式的坐标系,它们在特定的数学领域和物理领域中具有重要的应用。
二、平移变换的基本原理在数学中,平移是一种将图形沿着指定方向移动的变换方式。
它通过将所有点的坐标值分别增加或减少一个常数来实现。
平移变换的基本原理如下:1. 平移向量平移变换通过一个平移向量来描述移动的方向和距离。
平移向量由两个分量组成,分别表示在x轴和y轴上的移动距离。
2. 平移的公式设点P(x, y)进行平移变换,平移向量为(a, b),则点P'的坐标可以表示为:P'(x', y') = P(x+a, y+b)三、坐标系与平移变换的关系坐标系与平移变换密切相关,它们之间的关系主要体现在以下几个方面:1. 坐标系对平移变换的作用坐标系为平移变换提供了基础。
在直角坐标系中,通过改变点的坐标值,可以实现平移变换。
而在极坐标系中,则需要通过改变径向距离和极角来实现平移。
2. 平移变换对坐标系的作用平移变换改变了图形中每个点的位置,从而影响了坐标系的布局。
在平移变换之后,原有的坐标系会随之发生改变,因此我们需要根据新的图形位置重新确定坐标系。
3. 坐标系和平移变换的综合应用在几何图形的研究中,我们经常会用到坐标系和平移变换。
通过在坐标系中进行平移变换,我们可以研究图形的性质、计算图形的参数等。
坐标变换的作用
在一个机器人系统中,每个测量元件测量同一物体得出的信息是不一样的,原因
实现坐标变换所需的数据
我们常用出发与坐标系原点终止于坐标系中坐标点的向量来表示坐标系中坐标点相对于坐标原点的位置(距离+方位)。
坐标系的相互转化必须以地球坐标系为媒介才可以实现,即坐标系的相互转化必须已知“任意坐标系中各个坐标轴在world坐标系中的坐标”:
位姿
坐标变换中旋转的实质
坐标变换的实质就是“投影”。
首先,我们解读一下向量是如何转化为坐标的:
其实,这个矩阵的乘法与卷积有着异曲同工之妙。
旋转矩阵的性质:
从B到A的转化:
从A到B的转化:
、都是单位正交仿真,因此
坐标变换中平移的实质
向量可以在坐标系中任意移动,只要不改变向量的方向和大小,向量的属性不会发生变化。
但是我们研究的是坐标系B中一个坐标点在坐标系A中的映射,因此
多坐标变换
首先,我们要知道世界坐标系下坐标系A/坐标系B的各个坐标轴在世界坐标系(参
如何实现坐标变换
其中O1O2是从O1指向O2的向量。