数据的分析中考题大全
- 格式:doc
- 大小:414.50 KB
- 文档页数:17
中考数学复习《数据的分析》专项练习题-附带有答案一、单选题1.为了解当地气温变化情况,某研究小组记录了冬天连续4天的最高气温,结果如下(单位: °C ):-1,-3,-1,5.下列结论错误的是( ) A .平均数是0B .中位数是-1C .众数是-1D .方差是62.甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数均是9.2环,方差分别为 S 甲2=0.56, S 乙2 =0.60, S 丙2 =0.50, S 丁2 =0.44,则成绩最稳定的是( )A .甲B .乙C .丙D .丁3.在一次古诗词诵读比赛中,五位评委给某选手打分,得到互不相等的五个分数,若去掉一个最高分,平均分为a ;若去掉一个最低分,平均分为c ;同时去掉一个最高分和一个最低分,平均分为m .则a ,c ,m 的大小关系正确的是( ) A .c >m >aB .a >m >cC .c >a >mD .m >c >a4.在2021年初中毕业生体育测试中,某校随机抽取了10名男生的引体向上成绩,将这组数据整理后制成如下统计表:成绩(次) 12 11 10 9 人数(名)1342关于这组数据的结论错误的是( ) A .中位数是10.5 B .平均数是10.3 C .众数是10D .方差是0.815.九(2)班体育委员用划记法统计本班40名同学投掷实心球的成绩,结果如图所示:则这40名同学投掷实心球的成绩的众数和中位数分别是( )成绩 6 7 8 910 人数正 一正 正 一正 正正A .8,8B .8,8.5C .9,8D .9,8.56.为了推进“科学防疫,佩戴口罩”,某中学向学生发放口罩,如图为七年级五个班级上报的学生人数,统计条不小心被撕掉了一块,已知这组数据的平均数为30,则这组数据的中位数为( )A.28 B.29 C.30 D.317.某校八年级两个班,各选派10名学生参加学校举行的“古诗词”大赛,各参赛选手成绩的数据分析如表所示,则以下判断错误的是()班级平均数中位数众数方差八(1)班94 93 94 12八(2)班95 95.5 93 8.4A.八(2)班的总分高于八(1)班B.八(2)班的成绩比八(1)班稳定C.两个班的最高分在八(2)班D.八(2)班的成绩集中在中上游8.班级准备推选一名同学参加学校演讲比赛,在五轮班级预选赛中,甲、乙、丙三名同学五轮预选赛成绩的平均数和方差如下表所示:甲乙丙平均数/分96 95 97方差0.4 2 2丁同学五轮预选赛的成绩依次为:97分、96分、98分、97分、97分,根据表中数据,要从甲、乙、丙、丁四名同学中选择一名成绩好又发挥稳定的同学参赛应该选择()A.甲B.乙C.丙D.丁二、填空题9.数据1,3,5,12,a,其中整数a是这组数据的中位数,则该组数据的平均数是.10.据统计,某车间10名员工的日平均生产零件个数为8个,方差为2.5个²。
中考数学总复习《数据的分析》专项测试题-附参考答案(考试时间:60分钟总分:100分)一、选择题(共8题,共40分)1.某鞋厂调查了商场一个月内不同尺码男鞋的销量,在平均数,中位数,众数和方差等数个统计量中,该鞋厂最关注的是( )A.平均数B.中位数C.众数D.方差2.测试五位学生的“一分钟跳绳”成绩,得到五个不相同的数据,在统计时出现了一处错误:将最高成绩写得更高了,计算结果不受影响的是( )A.中位数B.平均数C.方差D.极差3.一组数据2,3,4,6,6,7的众数是( )A.3B.4C.5D.64.第七届世界军人运动会将于2019年10月18日至27日在武汉举行.光谷某中学开展了“助力军动会”志愿者招募活动,同学们踊跃报名参与竞选.经选拔,最终每个班级都有同学光荣晋升为本次军运会志愿者.下面的条形统计图描述了这些班级选拔出的志愿者人数的情况;下列说法错误的是( )A.参加竞选的共有28个班级B.本次竞选共选拔出166名志愿者C.各班选拔出的志愿者人数的众数为4D.各班选拔出的志愿者人数的中位数为65.已知数据A:1,2,3,x数据B:3,4,5,6.若数据A的方差比数据B的方差小,则x的值可能是()A.5 B.4 C.2 D.0 6.一组数据3,5,5,7,若添加一个数据5,则发生变化的统计量是()A.平均数B.中位数C.方差D.众数7.若一组数据a1,a2,a3⋯a n的方差是4,那么另一组数据3a1−1,3a2−1,⋯3a n−1的标准差是()A.7 B.2 C.4 D.6 8.学校组织“热爱祖国”演讲比赛,小娜演讲内容得90分,语言表达得88分,若按演讲内容占60%、语言表达占40%的比例计算总成绩,则小娜的总成绩是()A.90分B.88分C.89分D.89.2分二、填空题(共5题,共15分)9.为保证中小学生每天锻炼一小时,某校开展了形式多样的体育活动项目,小明对某班同学参加锻炼的情况进行了统计,并绘制了下面的统计图①和图②,则扇形统计图②中表示“足球”项目扇形的圆心角的度数为.10.某校在举行疫情下主题为“致敬最美逆行者”线上演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同,其中一位同学想知道自己是否进入前5名,不仅要了解自己的成绩,还要了解这8名学生成绩的.(填“平均数”“中位数”或“众数”)11.已知一组数据4,3,2,m,n的众数为3,平均数为2,则m的值可能为,对应的n值为,该组数据的中位数是.12.光明中学共有学生1600人,为了解学生最喜欢的课外体育运动项目的情况,学校随机抽查了200名学生,其中有85名学生表示最喜欢的项目是跳绳,则可估计该校学生中最喜欢的课外体育运动项目为跳绳的学生有人.13.在开展“全民阅读”活动中,某校为了解全校1500名学生课外阅读的情况,随机调查了50名学生一周的课外阅读时间,并绘制成如图所示的条形统计图.根据图中数据,估计该校1500名学生一周的课外阅读时间不少于7小时的人数是.三、解答题(共3题,共45分)14.为了了解全年级学生英语作业的完成情况,帮助英语学习成绩差的学生尽快提高成绩,班主任和英语教师从全年级1000名学生中抽取100名进行调查.首先,老师检查了这些学生的作业本,记录下获得“优”“良”“中”“差”的人数比例情况;其次老师发给每人一张调查问卷,其中有一个调查问题是:“你的英语作业完成情况如何?”给出五个选项:A独立完成;B辅导完成;C有时抄袭完成;D经常抄袭完成;E经常不完成,供学生选择,英语教师发现选独立完成和辅导完成这两项的学生一共占65%,明显高于他,平时观察到的比例,请回答下列问题.(1) 英语教师所用的调查方式是.(2) 指出问题中的总体,个体,样本,样本容量.(3) 如果老师的英语作业检查只得“差”的同学有8名,那么估计全年级的英语作业中可能有多少同学得“差”.(4) 通过问卷调查,老师得到的数据与事实不符,你能解释这个统计数字失真的原因吗.15.为了了解南山区学生喜欢球类活动的情况,采取抽样调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了全班学生的兴趣爱好,根据调查的结果绘制成如图所示的两幅不完整的统计图(如图1,2,要求每位学生只能选择一种自己喜欢的球类),请你根据图中提供的信息解答下列问题:(1) 本次共调查的学生人数为,并把条形统计图补充完整;(2) 扇形统计图中m=,n=;(3) 表示“足球”的扇形的圆心角是度;(4) 若南山区初中学生共有60000人,则喜欢乒乓球的有多少人?16.小明想了解全校3000名同学对新闻、体育、音乐、娱乐、戏曲五类电视节目的喜爱情况,从中抽取了一部分同学进行了一次抽样调查,利用所得数据绘制成下面两幅不完整的统计图:(1) 在这次调查研究中,一共调查了名学生,“体育”在扇形图中所占的圆心角是度.(2) 求出如图中a,b的值,并补全条形图.(3) 若此次调查中喜欢体育节目的女同学有10人,请估算该校喜欢体育节目的女同学有多少人?参考答案1. 【答案】C2. 【答案】A3. 【答案】D4. 【答案】C5.【答案】C6.【答案】C7.【答案】D8.【答案】D9. 【答案】36°10. 【答案】中位数11. 【答案】3或−2;−2或3;312. 【答案】68013. 【答案】60014. 【答案】(1) 抽样调查(2) 总体是全校1000名学生英语作业的完成情况,个体是每一名同学英语作业的完成情况,样本是抽取的100名学生的英语作业完成情况,样本容量是100.(3) ∵100名学生中只得“差”的同学有8名=80(人).∴1000名学生有得“差”的为1000×8100(4) 抄袭和不完成作业是不好行为,勇于承认错误不是每个人都能做到的,所以,这样的问题设计的不好,容易失真.15. 【答案】(1) 40(2) 10;20(3) 72(4) 南山区初中学生喜欢乒乓球的有60000×40%=24000(人).16. 【答案】(1) 150;72(2) 根据题意得:30÷150×100%=20%即b=20;a%=1−(6%+8%+20%+30%)=36%即a=36.=200.(3) 根据题意得:3000×20%×1030则该校喜欢体育节目的女同学有200人.。
备战2015中考系列:数学2年中考1年模拟第六篇 统计与概率 专题31 数据的分析☞解读考点知 识 点名师点晴数据的集中趋势1. 平均数会求一组数据的平均数、中位数、众数,并会选择适当的统计量表示数据的集中趋势和集中程度。
2. 中位数3. 众数 数据的波动1、方差会求一组数据的方差、标准差、极差,并会选择适当的统计量表示数据的波动趋势。
2、标准差3、极差☞2年中考[2014年题组]1.(2014年福建福州中考)若7名学生的体重(单位:kg )分别是:40,42,43,45,47,47,58,则这组数据的平均数是【 】A .44B .45C .46D .47 2. (2014年福建南平中考)下列说法正确的是【 】A. 了解某班同学的身高情况适合用全面调查B. 数据2、3、4、2、3的众数是2C. 数据4、5、5、6、0的平均数是5D. 甲、乙两组数据的平均数相同,方差分别是22S 3.2S 2.9==乙甲,,则甲组数据更稳定3. (2014年甘肃兰州中考)期中考试后,班里有两位同学议论他们所在小组同学的数学成绩,小明说:“我们组成绩是86分的同学最多”,小英说:“我们组的7位同学成绩排在最中间的恰好也是86分”,上面两位同学的话能反映出的统计量是【 】A. 众数和平均数B. 平均数和中位数C. 众数和方差D. 众数和中位数4. (2014年广东广州中考)在一次科技作品制作比赛中,某小组八件作品的成绩(单位:分)分别是7,10,9,8,7,9,9,8,对这组数据,下列说法正确的是【 】A. 中位数是8B. 众数是9C. 平均数是8D. 极差是75. (2014年广西北海中考)甲、乙、丙、丁四人参加射击训练,每人各射击20次,他们射击成绩的平均数都是9.1环,各自的方差见如下表格:甲乙丙丁方差0.293 0.375 0.362 0.398由上可知射击成绩最稳定的是【 】A .甲B .乙C .丙D .丁6. (2014年福建厦门中考)已知一组数据:6,6,6,6,6,6,则这组数据的方差为 ▲ . 【注:计算方差的公式是()()()222212n 1S x x x xx x n ⎡⎤=-+-+⋯+-⎢⎥⎣⎦】7. (2014年福建龙岩中考)若一组数据3,4,x ,5,8的平均数是4,则该组数据的中位数是 ▲ . 8. (2014年福建三明中考)甲、乙两支仪仗队的队员人数相同,平均身高相同,身高的方差分别为S 2甲=0.9,S 2乙=1.1,则甲、乙两支仪仗队的队员身高更整齐的是 ▲ (填“甲”或“乙”).9. (2014年天津市中考)为了推广阳光体育运动的广泛开展,引导学生走向操场,走进大自然,走到阳光下,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用.现从各年级随机抽取了部分学生的鞋号,绘制出如下的统计图①和图②,请根据有关信息,解答下列问题:(1)本次接受随机抽样调查的学生人数为 ▲ ,图①中m 的值是 ▲ ;(2)求本次调查获取的样本数据的众数和中位数;(3)根据样本数据,若学校计划购买200双运动鞋,建议购买35号运动鞋多少双?10.(2014年浙江义乌中考)九(3)班为了组队参加学校举行的“五水共治”知识竞赛,在班里选取了若干名学生,分成人数相同的甲乙两组,进行了四次“五水共治”模拟竞赛,成绩优秀的人数和优秀率分别绘制成如下统计图.根据统计图,解答下列问题:(1)第三次成绩的优秀率是多少?并将条形统计图补充完整.(2)已求得甲组成绩优秀人数的平均数x=7,请通过计算说明,哪一组成绩优秀的人数甲组,方差2S=1.5甲组较稳定?[2013年题组]1. (2013年福建龙岩4分)在九年级某次体育测试中,某班参加仰卧起坐测试的一组女生(每组8人)成绩如下(单位:次/分):45、44、45、42、45、46、48、45,则这组数据的平均数、众数分别为【 】 A .44、45 B .45、45 C .44、46 D .45、462. (2013年福建莆田4分)对于一组统计数据:2,4,4,5,6,9.下列说法错误的是【 】 A .众数是4 B .中位数是5 C .极差是7 D .平均数是53. (2013年福建泉州3分)甲、乙、丙、丁四位选手各射击10次,每人的平均成绩都是9.3环,方差如表:选手 甲 乙 丙 丁 方差(环2)0.0350.0160.0220.025则这四个人种成绩发挥最稳定的是【 】A .甲B .乙C .丙D .丁4. (2013年福建莆田4分)统计学规定:某次测量得到n 个结果x 1,x 2,…,x n .当函数()()()22212n y x x x x x x =-+-+⋯+-取最小值时,对应x 的值称为这次测量的“最佳近似值”.若某次测量得到5个结果9.8,10.1,10.5,10.3,9.8.则这次测量的“最佳近似值”为 ▲ .5. (2013年广东茂名3分)小李和小林练习射箭,射完10箭后两人的成绩如图所示,通常新手的成绩不太稳定,根据图中的信息,估计这两人中的新手是 ▲ .6. (2013年四川眉山3分)为筹备班级里的新年晚会,班长对全班同学爱吃哪几种水果作了民意调查,最终买什么水果,该由调查数据的 ▲ 决定(在横线上填写:平均数或中位数或众数).7. (2013年湖南株洲3分)某招聘考试分笔试和面试两种,其中笔试按60%、面试按40%计算加权平均数,作为总成绩.孔明笔试成绩90分,面试成绩85分,那么孔明的总成绩是 ▲ 分.8. ( 2013年广西贵港3分)若一组数据1,7,8,a ,4的平均数是5、中位数是m 、极差是n ,则m+n= ▲ .9.(2013年广西钦州12分)(1)我市开展了“寻找雷锋足迹”的活动,某中学为了了解七年级800名学生在“学雷锋活动月”中做好事的情况,随机调查了七年级50名学生在一个月内做好事的次数,并将所得数据绘制成统计图,请根据图中提供的信息解答下列问题:①所调查的七年级50名学生在这个月内做好事次数的平均数是▲ ,众数是▲ ,极差是▲ :②根据样本数据,估计该校七年级800名学生在“学雷锋活动月”中做好事不少于4次的人数.(2)甲口袋有2个相同的小球,它们分别写有数字1和2;乙口袋中装有3个相同的小球,它们分别写有数字3、4和5,从这两个口袋中各随机地取出1个小球.①用“树状图法”或“列表法”表示所有可能出现的结果;②取出的两个小球上所写数字之和是偶数的概率是多少?10.(2013年广西梧州6分)某校为了招聘一名优秀教师,对入选的三名候选人进行教学技能与专业知识两种考核,现将甲、乙、丙三人的考核成绩统计如下:候选人百分制教学技能考核成绩专业知识考核成绩甲85 92乙91 85丙80 90(1)如果校方认为教师的教学技能水平与专业知识水平同等重要,则候选人▲ 将被录取.(2)如果校方认为教师的教学技能水平比专业知识水平重要,因此分别赋予它们6和4的权.计算他们赋权后各自的平均成绩,并说明谁将被录取.☞考点归纳归纳 1:平均数 基础知识归纳:1、平均数的概念(1)平均数:一般地,如果有n 个数,,,,21n x x x 那么,)(121n x x x nx +++= 叫做这n 个数的平均数,x 读作“x 拔”。
九年级中考数学复习《数据的分析》专项练习题-附带答案一、单选题1.一组数据﹣3,3,﹣2,3,1的中位数是()A.﹣3 B.﹣2 C.1 D.32.下列说法正确的是()则做10次这样的游戏一定会中奖A.一个游戏的中奖概率是110B.为了解全国中学生的心理健康情况,应该采用普查的方式C.一组数据 8,8,7,10,6,8,9 的众数和中位数都是8D.若甲组数据的方差S2=0.01,乙组数据的方差s2=0.1,则乙组数据比甲组数据稳定3.某班6个合作小组的人数分别是4,6,4,5,7,8,现第4小组调出1人去第2小组,则新各组人数分别为:4,7,4,4,7,8,下列关于调配后的数据说法正确的是()A.调配后平均数变小了B.调配后众数变小了C.调配后中位数变大了D.调配后方差变大了4.甲、乙、丙三个旅行团的游客人数都相等,且每个团游客的平均年龄都是35岁,这三个团游客年龄的方差分别是S甲2= 28,S乙2= 18.6,S丙2= 1.7.导游小李最喜欢带游客年龄相近的团队,若在三个团中选择一个,则他应选()A.甲团B.乙团C.丙团D.三个团都一样5.2023年6月是第22个全国“安全生产月”,主题是“人人讲安全,个个会应急”,为加强安全宣传教育,某校在全体学生中进行了一次安全知识竞赛,随机抽取了10名学生的竞赛成绩如下(单位:分):得分80 84 92 96 100人数 1 2 2 3 2根据表格中的信息判断,下列关于这10名学生竞赛成绩的结论中错误..的是()A.平均数为92 B.众数为96 C.中位数为92 D.方差为44.86.郑州市统计部门公布最近五年消费指数增产率分别为8.5%,9.2%,10.2%,9.8%,业内人士评论说:“这五年消费指数增产率之间相当平稳”,从统计角度看,“增产率之间相当平稳”说明这组数据的()比较小A.方差B.平均数C.众数D.中位数7.某班40名学生一周阅读书籍的册数统计图如图所示,该班阅读书籍的册数的中位数是()A.1册B.2册C.3册D.4册8.为了解某校学生每周课外阅读时间的情况,随机抽取该校a名学生进行调查,获得的数据整理后绘制成统计表如下:每周课外阅读时间x(小时)0≤x<2 2≤x<4 4≤x<6 6≤x<8 x≥8 合计频数8 17 b15 a频率0.08 0.17 c0.15 1表中4≤x<6组的频数b满足25≤b≤35.下面有四个推断:①表中a的值为100;②表中c的值可以为0.31;③这a名学生每周课外阅读时间的中位数一定不在6~8之间;④这a名学生每周课外阅读时间的平均数不会超过6.所有合理推断的序号是()A.①②B.③④C.①②③D.②③④二、填空题9.已知一组数据10、3、a、5的平均数为5,那么a为.10.随机从甲、乙两块试验田中各抽取100株麦苗测量高度,甲、乙两块试验田的平均数都是13,方差结果为:S甲2=36,S乙2=158,则小麦长势比较整齐的试验田是11.小刚开学后,第一次测试数学得了70分,语文得了84分,则英语至少得分,才能使三科平均分不低于80分.12.某班10位同学将平时积攒的零花钱捐献给贫困地区的失学儿童,每人捐款金额(单位:元)依次为5,6,10,8,12,6,9,7,6,8,则这10名同学平均每人捐款元,捐款金额的中位数是元,众数是元.13.某住宅小区六月份1日至5日每天的用水量变化情况如图所示,则这5天该住宅小区平均每天的用水量是吨.三、解答题14.某公司计划从两家皮具生产能力相近的制造厂选择一家来承担外销业务,这两家厂生产的皮具款式和材料都符合要求,因此只需要检测皮具质量的克数是否稳定.现从两家提供的样品中各抽查10件,测得它们的质量如下(单位:克)甲:500,499,500,500,503,498,497,502,500,501乙:499,500,498,501,500,501,500,499,500,502你认为该选择哪一家制造厂?15.学生的平时作业、期中考试、期末考试三项成绩分别按2:3:5的比例计入学期总评成绩.小明、小亮、小红的平时作业、期中考试、期末考试的数学成绩如下表,计算这学期谁的数学总评成绩最高?16.一次演讲比赛,评委将从演讲内容、演讲能力、演讲效果三个方面为选手打分,各项成绩均按百分制,然后再按演讲内容∶演讲能力∶演讲效果=5:4:1的比例计算选手的综合成绩(百分制),进入决赛的前两名选手的单项成绩如下表所示:选手演讲内容演讲能力演讲效果A85 95 95B95 85 95请计算说明哪位选手成绩更优秀.17.某跳水训练基地为了解运动员的年龄情况,作了一次年龄调查,根据跳水运动员的年龄(单位:岁),绘制出如下的统计图1和图2.请根据相关信息,解答下列问题:(1)本次调查的样本容量大小是,图1中a的值为;(2)请把条形统计图补充完整;(3)求统计的这组跳水运动员年龄数据的平均数、众数和中位数.18.香坊区某学校开展读书活动,为了解学生的参与程度,从全校学生中随机抽取200人进行问卷调查,获取了他们每人平均每天的阅读时间m(单位:分钟)将收集的数据分为A,B,C,D,E五个等级,绘制成如下的统计表及如图所示的统计图(不完整):平均每天阅读时间统计表等级人数(频数)A(10≤m<20) 5B(20≤m<30)10C(30≤m<40)xD(40≤m<50)80E(50≤m<60)y请根据图表中的信息,解答下列问题:(1)求x的值.(2)这组数据的中位数所在的等级是.(3)学校拟将平均每天阅读时间不低于50分钟的学生评为“阅读达人”,并予以表扬若全校学生以1800人计算,估计受表扬的学生有多少人.参考答案 1.C 2.C 3.D 4.C 5.C 6.A 7.B 8.A 9.2 10.甲 11.8612.7.7;7.5;6 13.3214.解:甲的平均数:110(500+499+500+500+503+498+497+502+500+501)=500(克)乙的平均数:110(499+500+498+501+500+501+500+499+500+502)=500(克)s 2甲=110×28=2.8 s 2乙=110 ×12=1.2 ∵s 甲2>s 乙2 ∴选乙.15.解:小明数学总评成绩:96× 210 +94× 310 +90× 510 =92.4 小亮数学总评成绩:90× 210 +96× 310 +93× 510 =93.3 小红数学总评成绩:90× 210 +90× 310 +96× 510 =93. ∵93.3>93>92.4,∴小亮成绩最高. 答:这学期小亮的数学总评成绩最高. 16.解:根据题意得: 选手 A 的综合成绩为:85×5+95×4+95×15+4+1=90 分=91分选手B的综合成绩为:95×5+85×4+95×15+4+1∵91>90∴选手B的成绩更优秀.17.(1)40;20(2)解:17岁的人数为:40×25%=10(人),补全条形统计图如下图:(3)解:这组跳水运动员年龄数据的平均数是:(13×4+14×6+15×12+16×8+17×10)÷40=15.35(岁)15岁出现了12次,次数最多,所以众数为15岁;按大小顺序排列,中间两个数都为15岁,则中位数为15岁.18.(1)200×20%=40答:x的值为40.(2)D=585(人)(3)解:1800×200−5−10−40−80200答:估计受表扬的学生约有585人。
2022年中考数学专题《数据的整理与分析》复习试卷含答案解析一、选择题1.一组数据2,1,2,5,3,2的众数是()A.1B.2C.3D.5【答案】B【解析】:“2”出现3次,出现次数最多,∴众数是2.故答案为:B.【分析】一组数据中出现次数最多的数据是众数.这组数据中一共有6个数,数据“2”出现次数最多.2.为调查某大型企业员工对企业的满意程度,以下样本最具代表性的是()A.企业男员工B.企业年满50岁及以上的员工C.用企业人员名册,随机抽取三分之一的员工D.企业新进员工【答案】C【解析】A、调查对象只涉及到男性员工,选取的样本不具有代表性质;B、调查对象只涉及到即将退休的员工,选取的样本不具有代表性质;C、用企业人员名册,随机抽取三分之一的员工,选取的样本具有代表性;D调查对象只涉及到新进员工,选取的样本不具有代表性,故答案为:C.【分析】为调查某大型企业员工对企业的满意程度,那么做抽样调查的对象必须具有代表性而且调查对象的数量必须要达到一定的量,一个企业的所有员工中,它是包括男女老少,故可得出最具代表性样本。
3.若一组数据3、4、5、某、6、7的平均数是5,则某的值是()。
A.4B.5C.6D.7【答案】B【解析】:∵一组数据3、4、5、某、6、7的平均数是5,∴3+4+5+某+6+7=6某5,∴某=5.故答案为:B.【分析】根据平均数的定义和公式即可得出答案.4.下列说法正确的是()A.了解“孝感市初中生每天课外阅读书籍时间的情况”最适合的调查方式是全面调查B.甲乙两人跳绳各10次,其成绩的平均数相等,,则甲的成绩比乙稳定C.三张分别画有菱形,等边三角形,圆的卡片,从中随机抽取一张,恰好抽到中心对称图形卡片的概率是D.“任意画一个三角形,其内角和是”这一事件是不可能事件【答案】D【解析】:A、了解“孝感市初中生每天课外阅读书籍时间的情况”最适合的调查方式是抽样调查,不符合题意;B、甲乙两人跳绳各10次,其成绩的平均数相等,S甲2>S乙2,则乙的成绩比甲稳定,不符合题意;C、三张分别画有菱形,等边三角形,圆的卡片,从中随机抽取一张,恰好抽到中心对称图形卡片的概率是,不符合题意;D、“任意画一个三角形,其内角和是360°”这一事件是不可能事件,符合题意.故答案为:D.【分析】根据全面调查及抽样调查适用的条件;根据方差越大数据的波动越大;根据中心对称图形,轴对称图形的概念,三角形的内角和;一一判断即可。
一、选择题1.反映一组数据变化范围的是( ) A .极差 B .方差 C .众数 D .平均数 2.数据2-,1-,0,1,2的方差是( )A .0B .2C .2D .43.小王在清点本班为偏远贫困地区的捐款时发现,全班同学捐款的钞票情况如下:100元的3 张,50元的9张,10元的23张,5元的10张.在这些不同面额的钞票中,众数是( )A .10B .23C .50D .1004.甲、乙、丙、丁四人进行射击测试,每人10次射击的平均成绩恰好都是9.2环,方差分别是20.56S =甲,20.45S =乙,20.50S =丙,20.60S =丁;则成绩最稳定的是( )A .甲B .乙C .丙D .丁 5.若一组数据2468x ,,,,的方差比另一组数据5791113,,,,的方差大,则 x 的值可以为( ) A .12B .10C .2D .06.某校有21名同学们参加某比赛,预赛成绩各不同,要取前11名参加决赛,小颖已经知道了自己的成绩,她想知道自己能否进入决赛,只需要再知道这21名同学成绩的( ) A .最高分B .中位数C .极差D .平均数7.某次数学趣味竞赛共有10道题目,每道题答对得10分,答错或不答得0分. 人数 2 5 13 10 7 3 成绩(分)5060708090100全班40名同学的成绩的中位数和众数分别是( ) A .75,70B .70,70C .80,80D .75,808.下列说法正确的是( )A .为了解我国中学生课外阅读的情况,应采取全面调查的方式B .一组数据1、2、5、5、5、3、3的中位数和众数都是5C .若甲组数据的方差是003,乙组数据的方差是0.1,则甲组数据比乙组数据稳定D .抛掷一枚硬币100次,一定有50次“正面朝上”9.已知数据x ,4,0,3,-1的平均数是1,那么它的众数是( ) A .4B .0C .3D .-110.通过统计甲、乙、丙、丁四名同学某学期的四次数学测试成绩,得到甲、乙、丙、丁三明同学四次数学测试成绩的方差分别为S 甲2=17,S 乙2=36,S 丙2=14,丁同学四次数学测试成绩(单位:分).如下表:第一次 第二次 第三次 第四次 丁同学80809090则这四名同学四次数学测试成绩最稳定的是( ) A .甲B .乙C .丙D .丁11.一组数据中有m 个a ,n 个b ,k 个c ,那么这组数据的平均数为( ) A .3a b c++ B .3m n k++ C .3ma nb kc++D .ma nb kcm n k++++12.某兴趣小组为了解我市气温变化情况,记录了今年1月份连续6天的最低气温(单位:C ︒):-6,-4,-2,0,-2,2.关于这组数据,下列结论不正确的是( ) A .平均数是-2B .中位数是-2C .众数是-2D .方差是513.某班七个兴趣小组人数如下:5,6,6,x ,7,8,9,已知这组数据的平均数是7,则这组数据的中位数是( ) A .6B .6.5C .7D .814.某小组7名学生的中考体育分数如下:37,40,39,37,40,38,40,该组数据的众数、中位数分别为( ) A .40,37B .40,39C .39,40D .40,3815.某班体育委员记录了第一小组七位同学定点投篮(每人投10次)的情况,投进篮筐的个数为6,9,5,3,4,8,4,这组数据的众数是( ) A .3B .4C .5D .8二、填空题16.图中显示的是某商场日用品柜台10名售货员4月份完成销售额(单位:千元)的情况,根据统计图,我们可以计算出该柜台的人均销售额为___________千元.17.已知一组数据a ,b ,c 的方差为2,那么数据3a +,3b +,3+c 的方差是________.18.数据-1,2,0,1,-2的方差是____.19.已知一组数据为1-、x 、0、1、2-的平均数为0,则x =__________这组数据的标准差为___________.20.某校男子足球队的年龄分布如图所示,则根据图中信息可知这些队员年龄的平均数是_______,中位数是___________.21.小明用S 2=110[(x 1﹣3)2+(x 2﹣3)2+…+(x 10﹣3)2]计算一组数据的方差,那么x 1+x 2+x 3+…+x 10=______.22.某同学记录了自己一周每天的零花钱(单位:元),分别如下:5,4.5,5,5.5,5.5,5,4.5这组数据的众数和平均数分别是_______和_______.23.某组数据的方差计算公式为S 2=18[(x 1﹣2)2+(x 2﹣2)2+…+(x 8﹣2)2],则该组数据的样本容量是_____,该组数据的平均数是_____.24.小林同学对甲、乙、丙三个市场某月份每天的白菜价格进行调查,计算后发现这个月三个市场的价格平均值相同,方差分别为2S 7.5=甲,2S 1.5乙=,2S 3.1=丙,那么该月份白菜价格最稳定的是______市场.25.现有甲、乙两个合唱队队员的平均身高均为170cm ,方差分别是2S 甲,2S 乙,且22S S <甲乙,则两个队的队员的身高较整齐的是______.26.一组数据1、2、3、4、5的方差为S 12,另一组数据6、7、8、9、10的方差为S 22,那么S 12_______________ S 22(填“>”、“=”或“<”).三、解答题27.某校在一次广播操比赛中,初二 (1)班、初二(2)班、初二(3)班的各项得分如下:服装统一 动作整齐 动作准确初二(1)班 80 84 87 初二(2)班 977880初二(3)班90 78 85(1)填空:根据表中提供的信息,在服装统一方面,三个班得分的平均数是________;在动作整齐方面三个班得分的众数是________;在动作准确方面最有优势的是________班. (2)如果服装统一、动作整齐、动作准确三个方面的重要性之比为2:3:5,那么这三个班的排名顺序怎样?为什么?(3)在(2)的条件下,你对三个班级中排名最靠后的班级有何建议?28.在“全民读书月”活动中,小明调查了班级里40名同学本学期计划购买课外书的花费情况,并将结果绘制成如图所示的统计图,请根据相关信息,解答下列问题:(直接填写结果)(1)本次调查获取的样本数据的众数是 ; (2)这次调查获取的样本数据的中位数是 ;(3)若该校共有学生1000人,根据样本数据,估计本学期计划购买课外书花费50元的学生有 人.29.为宣传6月6日世界海洋日,某校九年级举行了主题为“珍惜海洋资源,保护海洋生物多样性”的知识竞赛活动.为了解全年级500名学生此次竞赛成绩(百分制)的情况,随机抽取了部分参赛学生的成绩,整理并绘制出如下不完整的统计表(表1)和统计图(如图).表1知识竞赛成绩分组统计表 组别分数/分 频数A6070x ≤< aB7080x ≤< 10 C8090x ≤< 14 D90100x ≤<18请根据图表信息解答以下问题:(1)本次调查一共随机抽取了________个参赛学生的成绩,表1中a =________; (2)所抽取的参赛学生的成绩的中位数落在的“组别”是________;(3)请你估计,该校九年级竞赛成绩达到80分以上(含80分)的学生约多少人? 30.山青养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,统计了它们的质量(单位:kg ),并绘制出如下的统计图1和图2.请根据以上信息解答下列问题:(1)图1中m的值为;(2)统计的这组数据的众数是;中位数是;(3)求出这组数据的平均数,并估计这2500只鸡的总质量约为多少kg.。
八年级(下)中考题单元试卷:第20章数据的分析(2)一、选择题(共6小题)1. 在一次“爱心互助”捐款活动中,某班第一小组8名同学捐款的金额(单位:元)如下表所示:这8名同学捐款的平均金额为()A.3.5元B.6元C.6.5元D.7元2. 如表是10支不同型号签字笔的相关信息,则这10支签字笔的平均价格是()A.1.4元B.1.5元C.1.6元D.1.7元3. 某销售公司有营销人员15人,销售部为了制定某种商品的月销售量定额,统计了这15人某月的销售量,如下表所示:那么这15位销售人员该月销售量的平均数、众数、中位数分别是()A.320,210,230B.320,210,210C.206,210,210D.206,210,2304. 某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:)A.6.2小时B.6.4小时C.6.5小时D.7小时5. 某公司欲招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如表:和4的权.根据四人各自的平均成绩,公司将录取()A.甲B.乙C.丙D.丁6. 学校抽查了30名学生参加“学雷锋社会实践”活动的次数,并根据数据绘制成了条形统计图,则30名学生参加活动的平均次数是()A.2B.2.8C.3D.3.3二、填空题(共16小题)7. 学校以德智体三项成绩来计算学生的平均成绩,三项成绩的比例依次为1:3:1,小明德智体三项成绩分别为98分,95分,96分,则小明的平均成绩为________分.8. 某老师为了了解学生周末利用网络进行学习的时间,在所任教班级随机调查了10名学生,其统计数据如表:则这10名学生周末利用网络进行学习的平均时间是________小时.9. 某校女子排球队队员的年龄分布如下表:则该校女子排球队队员的平均年龄是________岁.10. 某市号召居民节约用水,为了解居民用水情况,随机抽查了20户家庭某月的用水量,结果如表,则这20户家庭这个月的平均用水量是________吨.11. 某次射击训练中,一小组的成绩如表所示:已知该小组的平均成绩为8环,那么成绩为9环的人数是________.12. 某中学规定:学生的学期体育综合成绩满分为100分,其中,期中考试成绩占40%,期末考试成绩占60%,小海这个学期的期中、期末成绩(百分制)分别是80分、90分,则小海这个学期的体育综合成绩是________分.13. 某次能力测试中,10人的成绩统计如表,则这10人成绩的平均数为________.14. 某校规定:学生的数学学期综合成绩是由平时、期中和期末三项成绩按3:3:4的比例计算所得.若某同学本学期数学的平时、期中和期末成绩分别是90分,90分和85分,则他本学期数学学期综合成绩是________分.15. 某食堂午餐供应10元、16元、20元三种价格的盒饭,根据食堂某月销售午餐盒饭的统计图,可计算出该月食堂午餐盒饭的平均价格是________元.16. 某中学随机抽查了50名学生,了解他们一周的课外阅读时间,结果如下表所示:则这50名学生一周的平均课外阅读时间是________小时.17. 已知一组数据4,13,24的权数分别是16,13,12,则这组数据的加权平均数是________.18. 某学校举行演讲比赛,5位评委对某选手的打分如下(单位:分)9.5,9.4,9.4,9.5,9.2,则这5个分数的平均分为________分.19. 某公司欲招聘职员若干名,公司对候选人进行了面试和笔试(满分均为100分),规定面试成绩占20%,笔试成绩占80%.一候选人面试成绩和笔试成绩分别为80分和95分,该候选人的最终得分是________分.20. 某种蔬菜按品质分成三个等级销售,销售情况如表:则售出蔬菜的平均单价为________元/千克.21. 如表是某校女子排球队队员的年龄分布:则该校女子排球队队员的平均年龄为________岁.22. 某招聘考试分笔试和面试两种,其中笔试按60%、面试按40%计算加权平均数,作为总成绩.孔明笔试成绩90分,面试成绩85分,那么孔明的总成绩是________分.三、解答题(共8小题)23. 某公司欲招聘一名工作人员,对甲、乙两位应聘者进行面试和笔试,他们的成绩(百分制)如表所示.若公司分别赋予面试成绩和笔试成绩6和4的权,计算甲、乙两人各自的平均成绩,谁将被录取?24. 某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核.甲、乙、丙各项得分如下表:(1)根据三项得分的平均分,从高到低确定三名应聘者的排名顺序.(2)该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,并按60%,30%,10%的比例计入总分.根据规定,请你说明谁将被录用.25. 某单位招聘员工,采取笔试与面试相结合的方式进行,两项成绩的原始分均为100分.前6名选手的得分如下:分仍为100分)(1)这6名选手笔试成绩的中位数是________分,众数是________分.(2)现得知1号选手的综合成绩为88分,求笔试成绩和面试成绩各占的百分比.(3)求出其余五名选手的综合成绩,并以综合成绩排序确定前两名人选.26. 某校为了招聘一名优秀教师,对入选的三名候选人进行教学技能与专业知识两种考核,现将甲、乙、丙三人的考核成绩统计如下:(1)如果校方认为教师的教学技能水平与专业知识水平同等重要,则候选人________将被录取.(2)如果校方认为教师的教学技能水平比专业知识水平重要,因此分别赋予它们6和4的权.计算他们赋权后各自的平均成绩,并说明谁将被录取.27. 已知甲校有a人,其中男生占60%;乙校有b人,其中男生占50%.今将甲、乙两=55%,所以合并后的男生占总人数的55%.」校合并后,小清认为:「因为60%+50%2如果是你,你会怎么列式求出合并后男生在总人数中占的百分比?你认为小清的答案在任何情况都对吗?请指出你认为小清的答案会对的情况.请依据你的列式检验你指出的情况下小清的答案会对的理由.28. 某校学生会决定从三名学生会干事中选拔一名干事,对甲、乙、丙三名候选人进行了笔试和面试,三人的测试成绩如下表所示:根据录用程序,学校组织200名学生采用投票推荐的方式,对三人进行民主测评,三人得票率(没有弃权,每位同学只能推荐1人)如扇形统计图所示,每得一票记1分.(1)分别计算三人民主评议的得分;(2)根据实际需要,学校将笔试、面试、民主评议三项得分按4:3:3的比例确定个人成绩,三人中谁的得分最高?29. 某企业招聘员工,要求所要应聘者都要经过笔试与面试两种考核,且按考核总成绩从高到低进行录取,如果考核总成绩相同时,则优先录取面试成绩高分者.下面是招聘考核总成绩的计算说明:笔试总成绩=(笔试总成绩+加分)÷2考核总成绩=笔试总成绩+面试总成绩现有甲、乙两名应聘者,他们的成绩情况如下:(1)甲、乙两人面试的平均成绩为________;(2)甲应聘者的考核总成绩为________;(3)根据上表的数据,若只应聘1人,则应录取________.30. 某班同学分三组进行数学活动,对七年级400名同学最喜欢喝的饮料情况,八年级300名同学零花钱的最主要用途情况,九年级300名同学完成家庭作业时间情况进行了全面调查,并分别用扇形图、频数分布直方图、表格来描述整理得到的数据.根据以上信息,请回答下列问题:(1)七年级400名同学中最喜欢喝“冰红茶”的人数是多少;(2)补全八年级300名同学中零花钱的最主要用途情况频数分布直方图;(3)九年级300名同学中完成家庭作业的平均时间大约是多少小时?(结果保留一位小数)参考答案与试题解析一、选择题(共6小题)1.【答案】C【考点】加权平均数【解析】根据加权平均数的计算公式用捐款的总钱数除以8即可得出答案.【解答】解:根据题意得:(5×2+6×3+7×2+10×1)÷8=6.5(元);故选C.2.【答案】C【考点】加权平均数【解析】平均数的计算方法是求出所有数据的和,然后除以数据的总个数.【解答】(1×3+1.5×2+2×5)=1.6(元).该组数据的平均数=1103.【答案】B【考点】中位数加权平均数众数【解析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.平均数是指在一组数据中所有数据之和再除以数据的个数.【解答】平均数是:(1800+510+250×3+210×5+150×3+120×2)÷15=4800÷15=320(件);210出现了5次最多,所以众数是210;表中的数据是按从大到小的顺序排列的,处于中间位置的是210,因而中位数是210(件).4.【答案】B【考点】加权平均数【解析】根据加权平均数的计算公式列出算式(5×10+6×15+7×20+8×5)÷50,再进行计算即可.【解答】解:根据题意得:(5×10+6×15+7×20+8×5)÷50=(50+90+140+40)÷50=320÷50=6.4(小时).故这50名学生这一周在校的平均体育锻炼时间是6.4小时.故选:B.5.【答案】B【考点】加权平均数【解析】根据题意先算出甲、乙、丙、丁四位候选人的加权平均数,再进行比较,即可得出答案.【解答】解:甲的平均成绩为:(86×6+90×4)÷10=87.6(分),乙的平均成绩为:(92×6+83×4)÷10=88.4(分),丙的平均成绩为:(90×6+83×4)÷10=87.2(分),丁的平均成绩为:(83×6+92×4)÷10=86.6(分),因为乙的平均分数最高,所以乙将被录取.故选:B.6.【答案】C【考点】加权平均数条形统计图【解析】平均数的计算方法是求出所有数据的和,然后除以数据的总个数.注意本题不是求3,5,11,11这四个数的平均数.【解答】解:(3×1+5×2+11×3+11×4)÷30=(3+10+33+44)÷30=90÷30=3.故30名学生参加活动的平均次数是3.故选C.二、填空题(共16小题)7.【答案】95.8【考点】加权平均数【解析】根据加权平均数的计算方法进行计算即可.【解答】解:根据题意得:(98×1+95×3+96×1)÷5=95.8(分),答:小明的平均成绩为95.8分.故答案为:95.8.8.【答案】2.5【考点】加权平均数【解析】平均数的计算方法是求出所有数据的和,然后除以数据的总个数.本题利用加权平均数的公式即可求解.【解答】解:由题意,可得这10名学生周末利用网络进行学习的平均时间是:1(4×2+3×4+2×2+1×1+0×1)=2.5(小时).10故答案为:2.5.9.【答案】14【考点】加权平均数【解析】根据加权平均数的计算公式把所有人的年龄数加起来,再除以总人数即可.【解答】根据题意得:(13×4+14×7+15×4)÷15=14(岁),10.【答案】5.8【考点】加权平均数【解析】根据加权平均数的计算方法先求出所有数据的和,然后除以数据的总个数即可.【解答】解:根据题意得:这20户家庭这个月的平均用水量是(4×3+5×8+6×4+8×5)÷20=5.8(吨);故答案为:5.8.11.【答案】3【考点】加权平均数【解析】先设成绩为9环的人数是x,根据加权平均数的计算公式列出方程,求出x的值即可.【解答】解:设成绩为9环的人数是x,根据题意得:(7×3+8×4+9⋅x)÷(3+4+x)=8,解得:x=3,则成绩为9环的人数是3;故答案为:3.12.【答案】86【考点】加权平均数【解析】利用加权平均数的公式直接计算.用80分,90分分别乘以它们的百分比,再求和即可.【解答】解:小海这学期的体育综合成绩=(80×40%+90×60%)=86(分).故答案为:86.13.【答案】3.1【考点】加权平均数【解析】利用加权平均数的计算方法列式计算即可得解.【解答】解:110×(5×3+4×1+3×2+2×2+1×2)=110×(15+4+6+4+2)=110×31=3.1.所以,这10人成绩的平均数为3.1.故答案为:3.1.14.【答案】88【考点】加权平均数按3:3:4的比例算出本学期数学学期综合成绩即可.【解答】解:本学期数学学期综合成绩=90×30%+90×30%+85×40%=88(分).故答案为:88.15.【答案】13【考点】扇形统计图加权平均数【解析】根据加权平均数的计算方法,分别用单价乘以相应的百分比,计算即可得解.【解答】10×60%+16×25%+20×15%=6+4+3=13(元).16.【答案】5.3【考点】加权平均数【解析】平均数的计算方法是求出所有数据的和,然后除以数据的总个数.【解答】解:该组数据的平均数=150(4×10+5×20+6×15+7×5)=265÷50=5.3(小时).故答案为:5.317.【答案】17【考点】加权平均数【解析】本题是求加权平均数,根据公式即可直接求解.【解答】解:平均数为:4×16+13×13+24×12=17,故答案为:17.18.【答案】9.4【考点】【解析】根据加权平均数的计算公式列出算式,再进行计算即可.【解答】解:这5个分数的平均分为(9.5×2+9.4×2+9.2)÷5=9.4;故答案为:9.4.19.【答案】92【考点】加权平均数【解析】根据加权平均数的计算公式和面试成绩占20%,笔试成绩占80%,列出算式,再进行计算即可.【解答】解:根据题意得:80×20%+95×80%=92(分),答:该候选人的最终得分是92分;故答案为:92.20.【答案】4.4【考点】加权平均数【解析】利用售出蔬菜的总价÷售出蔬菜的总数量=售出蔬菜的平均单价,列式解答即可.【解答】(5×20+4.5×40+4×40)÷(20+40+40)=(100+180+160)÷100=440÷100=4.4(元/千克)答:售出蔬菜的平均单价为4.4元/千克.故答案为:4.4.21.【答案】15【考点】加权平均数【解析】根据加权平均数的计算公式列出算式,再进行计算即可.【解答】解:根据题意得:(13+14×2+15×5+16×4)÷12=15(岁),答:该校女子排球队队员的平均年龄为15岁;故答案为:15.22.88【考点】加权平均数【解析】此题考查了加权平均数.【解答】解:∵笔试按60%、面试按40%,∴总成绩是(90×60%+85×40%)=88分,故答案为:88.三、解答题(共8小题)23.【答案】甲的平均成绩为:(87×6+90×4)÷10=88.2(分),乙的平均成绩为:(91×6+82×4)÷10=87.4(分),因为甲的平均分数较高,所以甲将被录取.【考点】加权平均数【解析】根据题意先算出甲、乙两位应聘者的加权平均数,再进行比较,即可得出答案.【解答】甲的平均成绩为:(87×6+90×4)÷10=88.2(分),乙的平均成绩为:(91×6+82×4)÷10=87.4(分),因为甲的平均分数较高,所以甲将被录取.24.【答案】x¯=(83+79+90)÷3=84,甲x¯=(85+80+75)÷3=80,乙x¯=(80+90+73)÷3=81.丙从高到低确定三名应聘者的排名顺序为:甲,丙,乙;∵该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,∴甲淘汰;乙成绩=85×60%+80×30%+75×10%=82.5,丙成绩=80×60%+90×30%+73×10%=82.3,乙将被录取.【考点】加权平均数【解析】(1)代入求平均数公式即可求出三人的平均成绩,比较得出结果;(2)由于甲的面试成绩低于80分,根据公司规定甲被淘汰;再将乙与丙的总成绩按比例求出测试成绩,比较得出结果.【解答】x ¯甲=(83+79+90)÷3=84,x ¯乙=(85+80+75)÷3=80,x ¯丙=(80+90+73)÷3=81.从高到低确定三名应聘者的排名顺序为:甲,丙,乙;∵ 该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分, ∴ 甲淘汰;乙成绩=85×60%+80×30%+75×10%=82.5,丙成绩=80×60%+90×30%+73×10%=82.3,乙将被录取.25.【答案】84.5,84(2)设笔试成绩和面试成绩各占的百分比是x ,y ,根据题意得:{x +y =185x +90y =88, 解得:{x =0.4y =0.6, 笔试成绩和面试成绩各占的百分比是40%,60%;(3)2号选手的综合成绩是92×0.4+88×0.6=89.6(分),3号选手的综合成绩是84×0.4+86×0.6=85.2(分),4号选手的综合成绩是90×0.4+90×0.6=90(分),5号选手的综合成绩是84×0.4+80×0.6=81.6(分),6号选手的综合成绩是80×0.4+85×0.6=83(分),则综合成绩排序前两名人选是4号和2号.【考点】加权平均数中位数众数统计量的选择【解析】(1)根据中位数和众数的定义即把这组数据从小到大排列,再找出最中间两个数的平均数就是中位数,再找出出现的次数最多的数即是众数;(2)先设笔试成绩和面试成绩各占的百分百是x ,y ,根据题意列出方程组,求出x ,y 的值即可;(3)根据笔试成绩和面试成绩各占的百分比,分别求出其余五名选手的综合成绩,即可得出答案.【解答】解:(1)把这组数据从小到大排列为,80,84,84,85,90,92,最中间两个数的平均数是(84+85)÷2=84.5(分),则这6名选手笔试成绩的中位数是84.5分,84出现了2次,出现的次数最多,则这6名选手笔试成绩的众数是84分;(2)设笔试成绩和面试成绩各占的百分比是x ,y ,根据题意得:{x +y =185x +90y =88, 解得:{x =0.4y =0.6, 笔试成绩和面试成绩各占的百分比是40%,60%;(3)2号选手的综合成绩是92×0.4+88×0.6=89.6(分),3号选手的综合成绩是84×0.4+86×0.6=85.2(分),4号选手的综合成绩是90×0.4+90×0.6=90(分),5号选手的综合成绩是84×0.4+80×0.6=81.6(分),6号选手的综合成绩是80×0.4+85×0.6=83(分),则综合成绩排序前两名人选是4号和2号.26.【答案】甲.(2)根据题意得:甲的平均成绩为:(85×6+92×4)÷10=87.8(分),乙的平均成绩为:(91×6+85×4)÷10=88.6(分),丙的平均成绩为:(80×6+90×4)÷10=84(分),因为乙的平均分数最高,所以乙将被录取.【考点】加权平均数算术平均数【解析】(1)根据平均数的计算公式分别计算出甲、乙、丙的平均数,再进行比较,即可得出答案;(2)根据题意先算出按6和4的甲、乙、丙的平均数,再进行比较,即可得出答案.【解答】解:(1)甲的平均数是:(85+92)÷2=88.5(分),乙的平均数是:(91+85)÷2=88(分),丙的平均数是:(80+90)÷2=85(分),∵ 甲的平均成绩最高,∴ 候选人甲将被录取.(2)根据题意得:甲的平均成绩为:(85×6+92×4)÷10=87.8(分),乙的平均成绩为:(91×6+85×4)÷10=88.6(分),丙的平均成绩为:(80×6+90×4)÷10=84(分),因为乙的平均分数最高,所以乙将被录取.27.【答案】×100%.解:合并后男生在总人数中占的百分比是:0.6a+0.5ba+b当a=b时小清的答案才成立;×100%=55%.当a=b时,0.6a+0.5aa+a【考点】加权平均数【解析】根据加权平均数的计算公式可得合并后男生在总人数中占的百分比,再与小清的结果进行比较即可.【解答】×100%.解:合并后男生在总人数中占的百分比是:0.6a+0.5ba+b当a=b时小清的答案才成立;×100%=55%.当a=b时,0.6a+0.5aa+a28.【答案】甲民主评议的得分是:200×25%=50(分);乙民主评议的得分是:200×40%=80(分);丙民主评议的得分是:200×35%=70(分).甲的成绩是:(75×4+93×3+50×3)÷(4+3+3)=729÷10=72.9(分)乙的成绩是:(80×4+70×3+80×3)÷(4+3+3)=770÷10=77(分)丙的成绩是:(90×4+68×3+70×3)÷(4+3+3)=774÷10=77.4(分)∵77.4>77>72.9,∴丙的得分最高.【考点】算术平均数统计表加权平均数扇形统计图【解析】(1)根据百分数乘法的意义,分别用200乘以三人的得票率,求出三人民主评议的得分各是多少即可.(2)首先根据加权平均数的计算方法列式计算,分别求出三人的得分各是多少;然后比较大小,判断出三人中谁的得分最高即可.【解答】甲民主评议的得分是:200×25%=50(分);乙民主评议的得分是:200×40%=80(分);丙民主评议的得分是:200×35%=70(分).甲的成绩是:(75×4+93×3+50×3)÷(4+3+3)=729÷10=72.9(分)乙的成绩是:(80×4+70×3+80×3)÷(4+3+3)=770÷10=77(分)丙的成绩是:(90×4+68×3+70×3)÷(4+3+3)=774÷10=77.4(分)∵77.4>77>72.9,∴丙的得分最高.29.【答案】85.35,145.6甲【考点】算术平均数加权平均数【解析】(1)先求出甲、乙两人的面试总成绩,再求出其平均成绩即可;(2)根据笔试总成绩=(笔试总成绩+加分)÷2,考核总成绩=笔试总成绩+面试总成绩分别求出甲的考核总成绩即可;(3)求出乙的考核成绩与甲的考核成绩相比较即可得出结论.【解答】∵甲的面试成绩为85.6分,乙的面试成绩为85.1分,∴甲、乙两人面试的平均成绩=85.6+85.1=85.35(分).2故答案为:85.35;∵甲的笔试总成绩=(117+3)÷2=60分,面试成绩=85.6分,∴甲应聘者的考核总成绩=60+85.6=145.6(分).故答案为:145.6;∵乙的笔试总成绩=121÷2=60.5分,面试成绩=85.1分,∴乙应聘者的考核总成绩=60.5+85.1=145.6(分)=145.6分,85.6>85.1∴应录取甲.故答案为:甲.30.【答案】九年级300名同学完成家庭作业的平均时间约为1.8小时.【考点】加权平均数用样本估计总体频数(率)分布直方图扇形统计图【解析】(1)先求出喝红茶的百分比,再乘总数.(2)先让总数减其它三种人数,再根据数值画直方图.(3)用加权平均公式求即可.【解答】解:(1)冰红茶的百分比为100%−25%−25%−10%=40%,冰红茶的人数为400×40%=160(人),即七年级同学最喜欢喝“冰红茶”的人数是160人;(2)补全频数分布直方图如右图所示.≈1.8(小时).(3)1×50+1.5×80+2×120+2.5×5050+80+120+50答:九年级300名同学完成家庭作业的平均时间约为1.8小时.。
一.选择题1.九年级一班和二班每班选8名同学进行投篮比赛,每名同学投篮10次,对每名同学投中的次数进行统计,甲说:“一班同学投中次数为6个的最多”乙说:“二班同学投中次数最多与最少的相差6个.”上面两名同学的议论能反映出的统计量是(D)A.平均数和众数 B.众数和极差C.众数和方差 D.中位数和极差2.在“我的阅读生活”校园演讲比赛中,有11名学生参加比赛,他们决赛的最终成绩各不相同,其中一名学生想知道自己能否进入前6名,除了要了解自己的成绩外,还要了解这11名学生成绩的(D)A.众数 B.方差 C.平均数 D.中位数3.下列特征量不能反映一组数据集中趋势的是(C)A.众数 B.中位数 C.方差 D.平均数4.表为甲班55人某次数学小考成绩的统计结果,关于甲班男、女生此次小考成绩的统计量,下列叙述何者正确?(A)A.男生成绩的四分位距大于女生成绩的四分位距B.男生成绩的四分位距小于女生成绩的四分位距C.男生成绩的平均数大于女生成绩的平均数D.男生成绩的平均数小于女生成绩的平均数5.刻画一组数据波动大小的统计量是(B)A.平均数 B.方差 C.众数 D.中位数6.某班要从9名百米跑成绩各不相同的同学中选4名参加4×100米接力赛,而这9名同学只知道自己的成绩,要想让他们知道自己是否入选,老师只需公布他们成绩的(B)A.平均数 B.中位数 C.众数 D.方差7.小颖随机抽样调查本班20名女同学所穿运动鞋尺码,并统计如表:学校附近的商店经理根据表中决定本月多进尺码为23.0cm的女式运动鞋,商店经理的这一决定应用了哪个统计知识(A)A.众数 B.中位数 C.平均数 D.方差8.小洪根据演讲比赛中九位评委所给的分数制作了如下表格:如果去掉一个最高分和一个最低分,那么表格中数据一定不发生变化的是(B)A.平均数 B.中位数 C.众数 D.方差9.以下是期中考试后,班里两位同学的对话:小晖:我们小组成绩是85分的人最多;小聪:我们小组7位同学成绩排在最中间的恰好也是85分以上两位同学的对话反映出的统计量是(D)A.众数和方差 B.平均数和中位数C.众数和平均数 D.众数和中位数10.下列说法不正确的是(A)A.数据0、1、2、3、4、5的平均数是3B.选举中,人们通常最关心的数据是众数C.数据3、5、4、1、2的中位数是3D.甲、乙两组数据的平均数相同,方差分别是S=0.1,S乙²=0.11,则甲组数据比乙组数据更稳定甲²二.填空题11.用于衡量一组数据的波动程度的三个量为极差、方差、标准差.12.有13位同学参加学校组织的才艺表演比赛,已知他们所得的分数互不相同,共设7个获奖名额,某同学知道自己的比赛分数后,要判断自己能否获奖,在这13名同学成绩的统计量中只需知道一个量,它是中位数(填众数或方差或中位数或平均数)13.某服装店销售一款新式女式T恤,试销期间对该款不同型号女式T恤的销售量统计如下表:该店经理如果想要了解哪种型号女式T恤销售量最大,那么他应关注的统计量是众数.14.从甲、乙、丙三个厂家生产的同一种产品中各抽取8件,对它们的使用寿命进行跟踪调查,结果如下:(单位:年)甲:4,6,6,6,8,9,12,13.乙:3,3,4,7,9,10,11,12.丙:3,4,5,6,8,8,8,10.三个厂家在广告中都称该产品的使用寿命是8年.请根据结果判断,厂家在广告中分别运用了平均数、众数、中位数中的哪一种集中趋势的特征数:甲:平均数,乙:中位数,丙:众数.三.解答题15.某校要从八年级甲、乙两个班中各选取10名女同学组成礼仪队,选取的两个班女生的身高如下(单位:cm):甲班:168 167 170 165 168 166 171 168 167 170乙班:165 167 169 170 165 168 170 171 168 167(1)补充完成下面的统计分析表:(2)根据如表,请选择一个合适的统计量作为选择标准,说明哪一个班能被选取.解:(1)甲班的方差=1/10×[(168﹣168)2+(167﹣168)2+(170﹣168)2+…+(170﹣168)2]=3.2;乙班的中位数为168;补全表格如下:(2)选择方差做标准,∵甲班方差<乙班方差,∴甲班可能被选取.16.某酒店共有6名员工,所有员工的工资如下表所示:(1)酒店所有员工的平均月工资是多少元?(2)平均月工资能准确反映该酒店员工工资的一般水平吗?若能,请说明理由;若不能,如何才能较准确地反映该酒店员工工资的一般水平?谈谈你的看法.解:(1)平均月工资=(4000+600+900+500+500+400)÷6=1150(元),(2)∵能达到这个工资水平的只有1人,∴平均月工资不能准确反映该酒店员工工资的一般水平,这组数据的众数是500元,才能较准确地反映该酒店员工工资的一般水平,原因是它符合多数人的工资水平.17.在洋浦一新开业的以经营男式皮鞋为主的鞋店当服务员的阿丽是个做事善于观察的小姑娘,上班一段时间后,她发现各种尺码的男式皮鞋销量并不均衡,于是她把这个发现记录下来交给了她的老板:你认为这个销售记录对老板管理鞋店生意有用吗?如果你认为有用,请说明你的理由,并请你帮这个老板策划一下如何利用这些信息?解:这个销售记录对老板有用,∵众数体现数据的最集中的一点,这样可以确定进货的数量,∴鞋店老板最喜欢的是众数.∴建议老板进货时多进41号的男鞋.18.在八次数学测试中,甲、乙两人的成绩如下:甲:89,93,88,91,94,90,88,87乙:92,90,85,93,95,86,87,92请你从下列角度比较两人成绩的情况,并说明理由:(1)分别计算两人的极差;并说明谁的成绩变化范围大;(2)根据平均数来判断两人的成绩谁优谁次;(3)根据众数来判断两人的成绩谁优谁次;解:(1)甲的极差为:94﹣87=7分乙的极差为:95﹣85=10∴乙的变化范围大;∴乙的变化范围大.89,93,88,91,94,90,88,87 乙:92,90,85,93,95,86,87,92(2)甲的平均数为:(89+93+88+91+94+90+88+87)÷8=90,乙的平均数为:(92+90+85+93+95+86+87+92)÷8=90,∴两人的成绩相当;(3)甲的众数为88,乙的众数为92,∴从众数的角度看乙的成绩稍好;。
中考数学复习《数据的分析》专项提升训练题-附答案学校:班级:姓名:考号:一、选择题1.在端午节到来之前,儿童福利院对全体小朋友爱吃哪几种粽子作调查,以决定最终买哪种粽子.下面的调查数据中最值得关注的是()A.方差B.平均数C.中位数D.众数2.甲、乙、丙、丁四名运动员进行百米测试,每人5次测试成绩的平均数都是13.4秒,方差分别为S甲2=0.73,S乙2=0.75,S丙2=0.69,S丁2=0.68,则这四名运动员百米成绩最稳定的是()A.甲B.乙C.丙D.丁3.某中学举办了以“放歌新时代奋进新征程”为主题的知识竞答比赛(共10道题,每题1分).已知选取了10名学生的成绩,且10名学生成绩的中位数和众数相同,但在记录时遗漏了一名学生的成绩.如图是参赛9名学生的成绩,则这10名学生成绩的中位数是()A.7 B.7.5 C.8 D.94.2022年2月,第24届冬季奥林匹克运动会在北京举行.某校八年级(1)班在班会课开展了冬奥会知识小竞赛,10位同学在这个知识竞赛中的成绩统计结果如表所示,则这10位同学的平均成成绩7 8 9 10人数 1 4 3 2A.8 B.8.5 C.8.6 D.95.两组数据-2,m,2n,9,12与3m,7,的平均数都是5,若将这两组数据合并为一组新数据,则这组新数据的众数是()A.B.7 C.2 D.96.坚定不移听党话,跟党走,让红色基因、革命薪火代代传承.某校组织开展“从小学党史,永远跟党走”系列的知识竞赛,培育孩子们的爱党、爱国情怀.下表是该学校学习小组知识竞赛的成绩统计表:成绩86 90 98 100人数 1 3 x 1已知该学习小组本次知识竞赛的平均分是94.6分,那么表中的x的值是()A.4 B.5 C.6 D.77.骐骥中学规定,学生的学期体育成绩满分为100,其中体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%.若嘉淇同学的三项成绩(百分制)依次是96分,92分,97分,则嘉淇这学期的体育成绩是()A.95分B.95.1分C.95.2分D.95.3分8.在凤凰山教育共同体数学学科节中,为展现数学的魅力,M老师组织了一个数学沉浸式互动游戏:随机请A,B,C,D,E五位同学依次围成一个圆圈,每个人心里先想好一个实数,并把这个数悄悄的告诉相邻的两个人,然后每个人把与自己相邻的两个人告诉自己的数的平均数报出来.若A,B,C,D,E五位同学报出来的数恰好分别是1,2,3,4,5,则D同学心里想的那个数是()A.B.C.5 D.9二、填空题9.一组数据:1,2,1,0,2,a,若它们的众数为1,则这组数据的平均数为.10.某中学规定学生的学期体育总评成绩满分为100分,其中平时成绩占20%,期中考试成绩占30%,期末考试成绩占50%,小彤的三项成绩依次为95,90,88,则小彤这学期的体育总评成绩为。
2022年中考数学专题:数据分析(二)1."杂交水稻之父"袁隆平培育的超级杂交稻在全世界推广种植.某种植户为了考察所种植的杂交水稻苗的长势,从稻田中随机抽取9株水稻苗,测得苗高(单位: cm) 分别是:22,23,24,23,24,25,26,23,25.则这组数据的众数和中位数分别是 ( ) A . 24,25B . 23,23C . 23,24D . 24,242.某班15名男生引体向上成绩如表:则这组数据的众数和中位数分别是 ( ) A . 10,7B . 10,10C . 7,10D . 7,123.某校为了解学生的睡眠情况,随机调查部分学生一周平均每天的睡时间,统计结果如表: 这些学生睡眠时间的众数、中位数是 ( )A . 众数是11,中位数是8.5B . 众数是9,中位数是8.5C . 众数是9,中位数是9D . 众数是10,中位数是94.甲、乙两人进行飞镖比赛,每人各投6次,他们的成绩如下表(单位:环):如果两人的比赛成绩的中位数相同,那么乙的第三次成绩 x 是 ( ) A . 6环B . 7环C . 8环D . 9环5.下列说法正确的是 ( )A . 一个不透明的口袋中有3个白球和2个红球(每个球除颜色外都相同),则从中任意摸出一个球是红球的概率为 23B.一个抽奖活动的中奖概率为12,则抽奖2次就必有1次中奖C.统计甲,乙两名同学在若干次检测中的数学成绩发现:x甲=x乙,S甲2>S乙2,说明甲的数学成绩比乙的数学成绩稳定D.要了解一个班有多少同学知道"杂交水稻之父"袁隆平的事迹,宜采用普查的调查方式6.为了落实"作业、睡眠、手机、读物、体质"等五项管理要求,了解学生的睡眠状况,调查了一个班50名学生每天的睡眠时间,绘成睡眠时间频数分布直方图如图所示,则所调查学生睡眠时间的众数,中位数分别为()A.7ℎ,7ℎB.8ℎ,7.5ℎC.7ℎ,7.5ℎD.8ℎ,8ℎ7.下列说法正确的是()A.角平分线上的点到角两边的距离相等B.平行四边形既是轴对称图形,又是中心对称图形C.在代数式1a,2x,xπ,985,4a+2b,13+y中,1a,xπ,4a+2b是分式D.若一组数据2、3、x、1、5的平均数是3,则这组数据的中位数是4 8.一组数据:2,4,4,4,6,若去掉一个数据4,则下列统计量中发生变化的是()A.众数B.中位数C.平均数D.方差9.在2021年初中毕业生体育测试中,某校随机抽取了10名男生的引体向上成绩,将这组数据整理后制成如下统计表:成绩(次)12 11 10 9人数(名 1 3 4 2)关于这组数据的结论不正确的是()A.中位数是10.5 B.平均数是10.3 C.众数是10 D.方差是0.81 10.有6位同学一次数学测验分数分别是:125,130,130,132,140,145,则这组数据的中位数是()A.130 B.132 C.131 D.14011.某中学规定学生的学期体育成绩满分为100,其中体育课外活动占30%,期末考试成绩占70%,小彤的这两项成绩依次是90,80.则小彤这学期的体育成绩是.12.从−1,1,2中任取两个不同的数作积,则所得积的中位数是.213.开学前,根据学校防疫要求,小芸同学连续14天进行了体温测量,结果统计如表:体温(°C)36.3 36.4 36.5 36.6 36.7 36.82 3 3 4 1 1天数(天)这14天中,小芸体温的众数是°C.14.为庆祝建党100周年,某校举行“庆百年红歌大赛”.七年级5个班得分分别为85,90,88,95,92,则5个班得分的中位数为分.15.如图是根据甲、乙两人5次射击的成绩(环数)制作的折线统计图.你认为谁的成绩较为稳定?(填"甲"或"乙" )16.甲、乙两人在相同条件下进行射击练习,每人10次射击成绩的平均数都是8环,方差分别为S甲2=1.4,S乙2=0.6,则两人射击成绩比较稳定的是(填“甲”或“乙” ).17.如图是张家界市某周每天最高气温的折线统计图,则这7天的最高气温的中位数是°C.18.中药是以我国传统医药理论为指导,经过采集、炮制、制剂而得到的药物.在一个时间段,某中药房的黄芪、焦山楂、当归三种中药的销售单价和销售额情况如表:中药黄芪焦山楂当归销售单价(单位:80 60 90元/千克)销售额(单位:元)120 120 360则在这个时间段,该中药房的这三种中药的平均销售量为千克.19.已知一组数据0,1,x,3,6的平均数是y,则y关于x的函数解析式是.20.在某次体育测试中,甲、乙两班成绩的平均数、中位数、方差如下表所示,规定学生个人成绩大于90分为优秀,则甲、乙两班中优秀人数更多的是班.人数平均数中位数方差甲班45 82 91 19.3乙班45 87 89 5.821.为落实湖南省共青团“青年大学习”的号召,某校团委针对该校学生每周参加“青年大学习”的时间(单位:ℎ)进行了随机抽样调查,并将获得的数据绘制成如下统计表和如图所示的统计图,请根据图表中的信息回答下列问题.周学习时间频数频率0⩽t<1 5 0.051⩽t<220 0.202⩽t<3a0.353⩽t<425 m4⩽t⩽515 0.15(1)求统计表中a,m的值.(2)甲同学说“我的周学习时间是此次抽样调查所得数据的中位数”.求甲同学的周学习时间在哪个范围内.(3)已知该校学生约有2000人,试估计该校学生每周参加“青年大学习”的时间不少于3ℎ的人数.22.某校要从甲,乙两名学生中挑选一名学生参加数学竞赛,在最近的8次选拔赛中,他们的成绩(成绩均为整数,单位:分)如下:甲:92,95,96,88,92,98,99,100乙:100,87,92,93,9■,95,97,98由于保存不当,学生乙有一次成绩的个位数字模糊不清,(1)求甲成绩的平均数和中位数;(2)求事件“甲成绩的平均数大于乙成绩的平均数”的概率;(3)当甲成绩的平均数与乙成绩的平均数相等时,请用方差大小说明应选哪个学生参加数学竞赛.23.2021年是中国共产党建党100周年,某校开展了全校教师学习党史活动并进行了党史知识竞赛,从七、八年级中各随机抽取了20名教师,统计这部分教师的竞赛成绩(竞赛成绩均为整数,满分为10分,9分及以上为优秀).相关数据统计、整理如下:抽取七年级教师的竞赛成绩(单位:分):6,7,7,8,8,8,8,8,8,8,8,9,9,9,9,10,10,10,10,10.七八年级教师竞赛成绩统计表年级七年级八年级平均数8.5 8.5中位数a9众数8 b优秀率45%55%根据以上信息,解答下列问题:(1)填空:a=,b=;(2)估计该校七年级120名教师中竞赛成绩达到8分及以上的人数;(3)根据以上数据分析,从一个方面评价两个年级教师学习党史的竞赛成绩谁更优异.24.垃圾的分类回收不仅能够减少环境污染、美化家园,甚至能够变废为宝、节约资源.为增强学生垃圾分类意识,推动垃圾分类进校园,某中学组织全校1565名学生参加了“垃圾分类知识竞赛”(满分为100分).该校数学兴趣小组为了解全校学生竞赛分数情况,采用简单随机抽样的方法(即每名学生的竞赛分数被抽到的可能性相等的抽样方法)抽取部分学生的竞赛分数进行调查分析.(1)以下三种抽样调查方案:方案一:从七年级、八年级、九年级中指定部分学生的竞赛分数作为样本;方案二:从七年级、八年级中随机抽取部分男生的竞赛分数以及在九年级中随机抽取部分女生的竞赛分数作为样本;方案三:从全校1565名学生的竞赛分数中随机抽取部分学生的竞赛分数作为样本.其中抽取的样本最具有代表性和广泛性的一种抽样调查方案是(填写“方案一”、“方案二”或“方案三” );(2)该校数学兴趣小组根据简单随机抽样方法获得的样本,绘制出如下统计表(90分及以上为“优秀”,60分及以上为“及格”,学生竞赛分数记为x分)样本容量平均分及格率优秀率最高分最低分100 83.59 95%40%100 52分数段50⩽x<6060⩽x<7070⩽x<8080⩽x<9090⩽x⩽100频数 5 7 18 30 40结合上述信息解答下列问题:①样本数据的中位数所在分数段为;②全校1565名学生,估计竞赛分数达到“优秀”的学生有人.25.某中学九年级举办中华优秀传统文化知识竞赛.用简单随机抽样的方法,从该年级全体600名学生中抽取20名,其竞赛成绩如图:(1)求这20名学生成绩的众数,中位数和平均数;(2)若规定成绩大于或等于90分为优秀等级,试估计该年级获优秀等级的学生人数.26.国家规定“中小学生每天在校体育活动时间不低于1ℎ”.为此,某市就“每天在校体育活动时间”的问题随机调查了辖区内部分初中学生,根据调查结果绘制成的统计图(部分)如图所示,其中分组情况是:A组:t<0.5ℎB组:0.5ℎ⩽t<1ℎC组:1ℎ⩽t<1.5ℎD组:t⩾1.5ℎ请根据上述信息解答下列问题:(1)本次调查的人数是人;(2)请根据题中的信息补全频数分布直方图;(3)D组对应扇形的圆心角为°;(4)本次调查数据的中位数落在组内;(5)若该市辖区约有80000名初中学生,请估计其中达到国家规定体育活动时间的学生人数约有多少.27.2020年我国是全球主要经济体中唯一实现经济正增长的国家,各行各业蓬勃发展,其中快递业务保持着较快的增长.给出了快递业务的有关数据信息.2016−2017年快递业务量增长速度统计表年龄2016 2017 2018 2019 2020增长速度51.4%28.0%26.6%25.3%31.2%×100%说明:增长速度计算办法为:增长速度=本年业务量−去年业务量去年业务量根据图中信息,解答下列问题:(1)2016−2020年快递业务量最多年份的业务量是亿件.(2)2016−2020年快递业务量增长速度的中位数是.(3)下列推断合理的是(填序号).①因为2016−2019年快递业务量的增长速度逐年下降,所以预估2021年的快递业务量应低于2020年的快递业务量;②因为2016−2020年快递业务量每年的增长速度均在25%以上.所以预估2021年快递业务量应在833.6×(1+25%)=1042亿件以上.28.某市体育中考自选项目有乒乓球、篮球和羽毛球,每个考生任选一项作为自选考试项目.(1)求考生小红和小强自选项目相同的概率;(2)除自选项目之外,长跑和掷实心球为必考项目.小红和小强的体育中考各项成绩(百分制)的统计图表如下:考生自选项目长跑掷实心球小红95 90 95小强90 95 95①补全条形统计图.②如果体育中考按自选项目占50%、长跑占30%、掷实心球占20%计算成绩(百分制),分别计算小红和小强的体育中考成绩.29.为了倡导“节约用水,从我做起”,某市政府决定对该市直属机关200户家庭用水情况进行调查.市政府调查小组随机抽查了其中部分家庭一年的月平均用水量(单位:吨),调查中发现,每户家庭月平均用水量在3~7吨范围内,并将调查结果制成了如下尚不完整的统计表:月平均用水量(吨)3 4 5 6 7频数(户4 a9 10 7数)频率0.08 0.40 b c0.14请根据统计表中提供的信息解答下列问题:(1)填空:a=,b=,c=.(2)这些家庭中月平均用水量数据的平均数是,众数是,中位数是.(3)根据样本数据,估计该市直属机关200户家庭中月平均用水量不超过5吨的约有多少户?(4)市政府决定从月平均用水量最省的甲、乙、丙、丁四户家庭中,选取两户进行“节水”经验分享.请用列表或画树状图的方法,求出恰好选到甲、丙两户的概率,并列出所有等可能的结果.30.为了庆祝中国共产党建党100周年,某校开展了学党史知识竞赛.参加知识竞赛的学生分为甲乙两组,每组学生均为20名,赛后根据竞赛成绩得到尚不完整的统计图表(如图),已知竞赛成绩满分为100分,统计表中a,b满足b=2a.请根据所给信息,解答下列问题:甲组20名学生竞赛成绩统计表成绩(分70 80 90 100)人数 3 a b 5(1)求统计表中a,b的值;(2)小明按以下方法计算甲组20名学生竞赛成绩的平均分是:(70+80+ 90+100)÷4=85(分).根据所学统计知识判断小明的计算是否正确,若不正确,请写出正确的算式并计算出结果;(3)如果依据平均成绩确定竞赛结果,那么竞赛成绩较好的是哪个组?请说明理由.参考答案1.C[※解析※]将这组数据从小到大重新排列,求出中位数,再找出出现次数最多的数就是众数.解:将这组数据从小到大重新排列为22,23,23,23,24,24,25,25,26,∴这组数据的众数为23cm,中位数为24cm,2.C[※解析※]分别根据中位数与众数的定义确定众数和中位数即可解决问题.解:7出现的次数最多,出现了5次,所以众数为7;第8个数是10,所以中位数为10.3.B[※解析※]根据众数和中位数的定义即可求解.解:抽查学生的人数为:6+9+11+4=30(人),这30名学生的睡眠时间出现次数最多的是9小时,共出现11次,因此众数是9,将这30名学生的睡眠时间从小到大排列,处在中间位置的两个数的平均数为8+9=8.5,因此中位数是8.5,24.B5.D[※解析※]根据概率的求法、调查方式的选择、方差的意义及概率的意义逐项判断后即可确定正确的选项.解:A、一个不透明的口袋中有3个白球和2个红球(每个球除颜色外都相同),则从中任意摸出一个球是红球的概率为25,故原命题错误,不符合题意;B、一个抽奖活动的中奖概率为12,则抽奖2次可能有1次中奖,也可能不中奖或全中奖,故原命题错误,不符合题意;C、统计甲,乙两名同学在若干次检测中的数学成绩发现:x甲=x乙,S甲2>S乙2,说明甲的数学成绩不如乙的数学成绩稳定,故原命题错误,不符合题意;D、要了解一个班有多少同学知道“杂交水稻之父”袁隆平的事迹,宜采用普查的调查方式,正确,符合题意,6.C[※解析※]根据众数以及中位数的概念分别分析求出即可.解:∵7ℎ出现了19次,出现的次数最多,∴所调查学生睡眠时间的众数是7ℎ;∵共有50名学生,中位数是第25、26个数的平均数,∴所调查学生睡眠时间的中位数是7+82=7.5(ℎ).7.A[※解析※]根据角平分线的性质,平行四边形的对称性,分式的定义,平均数,中位数的性质分别进行判断即可.解:A、根据角平分线性质可得:角平分线上的点到角两边的距离相等,故正确,符合题意.B、平行四边形不是轴对称图形,但是中心对称图形,故错误,不符合题意.C、代数式1a ,2x,xπ,985,4a+2b,13+y中,1a,4a+2b是分式,故错误,不符合题意.D、一组数据2、3、x、1、5的平均数是3,则x=4,这组数据的中位数是3,故错误,不符合题意.8.D[※解析※]去掉一个数据4后根据众数、中位数、平均数及方差可直接进行排除选项.×(2+4+4+4+6)=4,中位数为4,众原数据2,4,4,4,6的平均数为15数为4,×[(2−4)2+(4−4)2×3+(6−4)2]=1.6;方差为15×(2+4+6+4)=4,中位数为4,众数为新数据的2,4,4,6的平均数为144,×[(2−4)2+(4−4)2×2+(6−4)2]=2;方差为149.A[※解析※]先根据中位数,平均数,众数,方差的性质分别计算出结果,再判断即可.解:根据题目给出的数据,可得:=10(分),中位数是10+102=10.3,平均数为:12×1+11×3+10×4+9×21+3+4+2∵10出现了4次,出现的次数最多,∴众数是10;[(12−10.3)2+3×(11−10.3)2+4×(10−10.3)2+2×(9−10.3)2]=方差是:1100.81.这组数据的结论不正确的是A.10.C[※解析※]这组数据从小到大排列处在中间位置的两个数为30,132,它们的的平均数为130+1322=131,11.83[※解析※]根据加权平均数的计算公式列出算式,再进行计算即可. 解:小彤这学期的体育成绩是 90×30%+80×70%=83,12. −12[※解析※]分别把 −1, 12,2中任取两个不同的数相乘,求出积,然后将所得的积从小到大排列,根据中位数的意义求解即可.解:从 −1, 12,2中任取两个不同的数作积,有以下几种情况:−1×12=−12, −1×2=−2, 12×2=1, 将所得的积将从小到大排列为 −2, −12,1, 处在中间位置的数是 −12,因此中位数是 −12,13.36.6[※解析※]根据众数的定义找出出现次数最多的数据. 36.6出现的次数最多有4次,所以众数是36.6.14.90[※解析※]将这组数据重新排列,再根据中位数的定义求解即可. 解:将这5个班的得分重新排列为85、88、90、92、95,∴5个班得分的中位数为90分,15.甲[※解析※]方差小的较稳定,分别求出甲、乙方差,即可得到答案. 解:甲的平均成绩为 x 甲=7+6+9+6+75=7,乙的平均成绩为 x 乙=5+9+6+7+85=7,∴甲的方差为 s 甲2=1.2,乙的方差为 s 乙2=2,∵s 甲2<s 乙2,∴甲的成绩较稳定.16.乙[※解析※]根据方差的意义:方差越小,数据越稳定,即可得出答案.∵S 甲2=1.4, S 乙2=0.6, ∴S 甲2>S 乙2,∴两人射击成绩比较稳定的是乙.17.26[※解析※]根据中位数的定义先把数据排序,再确定中位数.解:根据7天的最高气温折线统计图,将这7天的最高气温按大小排列为:20,22,24,26,28,28,30,故中位数为 26°C ,18.2.5[※解析※]根据销售量 =销售额 ÷销售单价,分别求出黄芪、焦山楂、当归三种中药的销售量,再求出三种中药销量的算术平均数即可得出结论.解:黄芪的销售量为120÷80=1.5(千克),焦山楂的销售量为120÷60=2(千克),当归的销售量为360÷90=4(千克).=2.5(千克).该中药房的这三种中药的平均销售量为 1.5+2+43+219.y=x5[※解析※]根据平均数的公式直接列式即可得到函数解析式.解:根据题意得:y=(0+1+x+3+6)÷5+2.=x520.甲[※解析※]根据中位数的意义分别求出两个班中优秀人数的多少解决问题.解:∵甲班的中位数为91分,乙班的中位数为89分,∴甲班的中位数大于乙班的中位数,∴甲、乙两班中优秀人数更多的是甲班,21.(1)a=35,m=0.25;(2)甲同学的周学习时间在2⩽t<3范围内;(3)800人.[※解析※](1)根据周学习时间在0⩽t<1的频数及频率求出样本容量,再由频率=频数÷样本容量求解即可求出答案;(2)根据中位数的定义即可解决问题;(3)用总人数乘以样本中3⩽t<4、4⩽t⩽5的频率和,结果就是该校学生每周参加“青年大学习”的时间不少于3ℎ的人数.解:(1)∵样本容量为5÷0.05=100,∴a =100×0.35=35, m =25÷100=0.25;(2) ∵一共有100个数据,其中位数是第50、51个数据的平均数,而这2个数据均落在 2⩽t <3范围内,∴甲同学的周学习时间在 2⩽t <3范围内;(3)估计该校学生每周参加“青年大学习”的时间不少于 3ℎ的人数为2000×(0.25+0.15)=800(人 ).22.(1)平均数为95分,中位数为95.5分;(2) 45; (3)甲;[※解析※](1)甲成绩的平均数为: (88+92+92+95+96+98+99+100)÷8=95, 将甲成绩从小到大排列处在中间位置的两个数的平均数为 95+962=95.5,因此中位数是95.5,答:甲成绩的平均数为95,中位数是95.5;(2)设模糊不清的数的各位数字为 a ,则 a 为0至9的整数,也就是模糊不清的数共10种可能的结果,当甲成绩的平均数大于乙成绩的平均数时,有 95>87+92+93+95+97+98+100+90+a8,即 95>752+a 8,解得 a <8,共有8种不同的结果,所以“甲成绩的平均数大于乙成绩的平均数”的概率为 810=45; (3)当甲成绩的平均数与乙成绩的平均数相等时, 即752+a 8=95,解得 a =8, 所以甲的方差为:S 甲2=18[(88−95)2+(92−95)2×2+(96−95)2+(98−95)2+(99−95)2+(100−95)2]=14.75,乙的方差为:S 乙2=18[(87−95)2+(92−95)2+(93−95)2+(97−95)2+(98−95)2×2+(100−95)2]=15.5,∵S 甲2<S 乙2,∴甲的成绩更稳定,所以应选择甲同学参加数学竞赛.23.(1)8;9;(2)102人; (3)见解析[※解析※](1)根据中位数定义、众数的定义即可找到 a 、 b 的值. (2)计算出成绩达到8分及以上的人数的频率即可求解. (3)根据优秀率进行评价即可.解:(1) ∵七年级教师的竞赛成绩:6,7,7,8,8,8,8,8,8,8,8,9,9,9,9,10,10,10,10,10.∴中位数 a =8.根据扇形统计图可知 D 类是最多的,故 b =9. 故答案为:8;9.(2)该校七年级120名教师中竞赛成绩达到8分及以上的人数估计为 =1720×100%×120=102(人 ).(3)根据表中可得,七八年级的优秀率分别是: 45%、 55%.故八年级的教师学习党史的竞赛成绩更优异.24.(1)方案三;(2)① 80⩽x <90;②626.[※解析※](1)根据抽样的代表性、普遍性和可操作性可知,方案三符合题意; (2)①根据样本的中位数,估计总体中位数所在的范围;②根据样本中“优秀”人数占调查人数的百分比即可估计总体1565人的相同百分比40%是“优秀”,列式计算即可.解:(1)根据抽样的代表性、普遍性和可操作性可得,方案三:从全校1565名学生的竞赛分数中随机抽取部分学生的竞赛分数作为样本进行调查分析,是最符合题意的.(2)①样本总数为:5+7+18+30+40=100(人),成绩从小到大排列后,处在中间位置的两个数都在80⩽x<90,因此中位数在80⩽x<90组中;=626(人),②由题意得,1565×4010025.(1)众数:90,中位数:90,平均数:90.5;(2)450人[※解析※](1)由列表中90分对应的人数最多,因此这组数据的众数应该是90,由于人数总和是20人为偶数,将数据从小到大排列后,第10个和第11个数据都是90分,因此这组数据的中位数应该是90,=90.5;平均数是:80×2+85×3+90×8+95×5+100×22+3+8+5+2(2)根据题意得:600×8+5+2=450(人),20答:估计该年级获优秀等级的学生人数是450人.26.(1)400;(2)见解析;(3)36;(4)C;(5)56000.[※解析※](1)用A组的人数除以百分比即可求出总人数;(2)用总人数减去已知组的人数即可求出C组人数;(3)先求出D组所占的百分比,再乘360°即可;(4)看第200个和第201个数据所在的组即可求出中位数所在的组;(5)用该市辖区初中学生总人数乘优秀人数的百分比即可估算出全市优秀的人数.解:(1)∵A组有40人,占10%,=400(人),∴总人数为4010%(2)C组的人数为400−40−80−40=240(人),统计图如下:×100%=10%,(3)D组所占的百分比为40400∴D组所对的圆心角为360°×10%=36°,(4)中位数为第200个数据和第201个数据的平均数,都在C组,∴中位数在C组,×100%=70%,(5)优秀人数所占的百分比为280400∴全市优秀人数大约为80000×70%=56000(人).27.(1)833.6;(2)28.0%;(3)②.[※解析※](1)根据2016−2020年快递业务量统计图可得答案;(2)根据中位数的意义,将2016−2020年快递业务量增长速度从小到大排列找出中间位置的一个数即可;(3)利用业务量的增长速度率估计2021年的业务量即可.解:(1)由2016−2020年快递业务量统计图可知,2020年的快递业务量最多是833.6亿件,(2)将2016−2020年快递业务量增长速度从小到大排列处在中间位置的一个数是28.0%,因此中位数是28.0%,(3)① 2016−2019年快递业务量的增长速度下降,并不能说明快递业务量下降,而业务量也在增长,只是增长的速度没有那么快,因此①不正确;②因为2016−2020年快递业务量每年的增长速度均在25%以上.所以预估2021年快递业务量应在833.6×(1+25%)=1042亿件以上,因此②正确;28.(1)13;(2)①见解析;②小红的体育中考成绩为93.5分,小强的体育中考成绩为92.5分.[※解析※](1)将乒乓球、篮球和羽毛球分别记作A、B、C,列表得出所有等可能结果,再从中找到符合条件的结果数,继而根据概率公式计算可得答案;(2)①根据表格中的数据即可补全条形图;②根据加权平均数的定义列式计算即可.解:(1)将乒乓球、篮球和羽毛球分别记作A、B、C,列表如下:由表可知共有9种等可能结果,其中小红和小强自选项目相同的有3种结果,所以小红和小强自选项目相同的概率为39=13;(2)①补全条形统计图如下:②小红的体育中考成绩为95×50%+90×30%+95×20%=93.5(分),小强的体育中考成绩为90×50%+95×30%+95×20%=92.5(分).29.(1)20,0.18,0.20;(2)4.92,4,5;(3)132户;(4)见解析[※解析※](1)求出抽查的户数,即可解决问题;(2)由平均数、众数、中位数的定义求解即可;(3)由总户数乘以月平均用水量不超过5吨的户数所占的比例即可;(4)画出树状图,看共有几种等可能的结果,列举出来,恰好选到甲、丙两户的结果有几种,再由概率公式求解即可.解:(1)抽查的户数为:4÷0.08=50(户),∴a=50×0.40=20,b=9÷50=0.18,c=10÷50=0.20,故答案为:20,0.18,0.20;=4.92(吨(2)这些家庭中月平均用水量数据的平均数=3×4+4×20+5×9+6×10+7×750),=5(吨),众数是4吨,中位数为5+52故答案为:4.92,4,5;(3)∵4+20+9=33(户),∴估计该市直属机关200户家庭中月平均用水量不超过5吨的约有:200×3350= 132(户);(4)画树状图如图:共有12种等可能的结果,恰好选到甲、丙两户的结果有2种,∴恰好选到甲、丙两户的概率为212=16,所有等可能的结果分别为(甲,乙)、(甲,丙)、(甲,丁)、(乙,甲)、(乙,丙)、(乙,丁)、(丙,甲)、(丙,乙)、(丙,丁)、(丁,甲)、(丁,乙)、(丁,丙).30.(1)a=4,b=8;(2)小明的计算不正确,正确的计算为:70×3+80×4+90×8+100×520=87.5(分);(3)竞赛成绩较好的是甲组.[※解析※](1)根据每组学生均为20名求出a,b的和,由b=2a即可求解;(2)先判断小明的计算是不是正确,再根据加权平均数的计算方法可以解答本题;(3)计算乙组20名学生竞赛成绩的平均分,比较即可得出答案.解:(1)∵每组学生均为20名,∴a+b=20−3−5=12(名),∵b=2a,∴a=4,b=8;(2)小明的计算不正确,正确的计算为:70×3+80×4+90×8+100×520=87.5(分);(3)竞赛成绩较好的是甲组,理由:乙组20名学生竞赛成绩的平均分:100×360−90−90−144360+90×90360+80×90360+70×144360=10+22.5+20+28=80.5(分),80.5<87.5,∴竞赛成绩较好的是甲组.。
数据的分析要点一:平均数、中位数、众数一、选择题1.(2010·上海中考)某市五月份连续五天的日最高气温分别为23、20、20、21、26(单位:°C),这组数据的中位数和众数分别是()A. 22°C,26°CB. 22°C,20°CC. 21°C,26°CD. 21°C,20°C 【解析】选D.把这5个数据按大小顺序排列起来后,最中间的是21,所以这组数据的中位数是21.这组数据的中20出现2次是出现次数最多的,所以这组数据的众数是20. 2.(2009·泸州中考)在一次青年歌手大奖赛上,七位评委为某位歌手打出的分数如下:,,,,,,,去掉一个最高分和一个最低分后,所剩数据的平均数是()A. B.9.3 C. D.【解析】选D 根据要求去掉、两个数据,因此数据的平均数为数据:、、、、的平均数即:;3.(2009·内江中考)今年我国发现的首例甲型H1N1流感确诊病例在成都某医院隔离观察,要掌握他在一周内的体温是否稳定,则医生需了解这位病人7天体温的()A.众数 B.方差 C.平均数 D.频数【解析】选B 反映数据的波动大小的量为数据的方差,因此选B;4.(2009·齐齐哈尔市中考)一组数据4,5,6,7,7,8的中位数和众数分别是()A.7,7 B.7,6.5 C.,7 D.,7【解析】选D 数据组中出现次数最多的数为7,中位数为6、7的平均数即;5.(2010·潼南中考)数据 14 ,10 ,12, 13, 11 的中位数是()A.14 B.12 C.13 D.11【解析】选B,先把所有的数从小到大排列起来,10,11,12,13,14,中间的一个为12 6.(2009·南宁中考)(2009威海)某公司员工的月工资如下表:则这组数据的平均数、众数、中位数分别为()A.2200元 1800元 1600元B.2000元 1600元 1800元C.2200元 1600元 1800元D.1600元 1800元 1900元【解析】选C 由图表信息知:1600元出现的次数最多,因此1600元是数据的众数;将数据按大小排列后可以得到数据的中位数为1800元;平均数为2200元;7、(2009·仙桃中考)为了参加市中学生篮球运动会,一支校篮球队准备购买10双运动鞋,各种尺码的统计如下表所示,则这10双运动鞋尺码的众数和中位数分别为().A、 26B、26 25.5C、26 26D、【解析】选D 因为25有2个,有4个,26有2个,有1个,27有1个所以为此数据组的众数;将数据按大小排列为:25、25、、、、、26、26、、27;所以数据的中间两个数为、,所以数据的中位数为;8、(2009·烟台中考)某校初一年级有六个班,一次测试后,分别求得各个班级学生成绩的平均数,它们不完全相同,下列说法正确的是()A.全年级学生的平均成绩一定在这六个平均成绩的最小值与最大值之间B.将六个平均成绩之和除以6,就得到全年级学生的平均成绩C.这六个平均成绩的中位数就是全年级学生的平均成绩D.这六个平均成绩的众数不可能是全年级学生的平均成绩【解析】选A 根据平均数的计算方法可知全年级学生的平均成绩一定在六个平均成绩的最小值和最大值之间;9、(2009·遂宁中考)“只要人人都献出一点爱,世界将变成美好的人间”.在今年的慈善一日捐活动中,济南市某中学八年级三班50名学生自发组织献爱心捐款活动.班长将捐款情况进行了统计,并绘制成了统计图.根据右图提供的信息,捐款金额..的众数和中位数分别是()A.20、20 B.30、20 C.30、30 D.20、30【解析】选C 由统计图可知30的个数最多,因此数据的众数为30,此数组数据的个数为50,将数据按大小排列后中间的两个数为30、30,所以中位数为30;10、(2009·泰安中考)某校为了了解七年级学生的身高情况(单位:cm,精确到1cm),抽查了部分学生,将所得数据处理后分成七组(每组只含最低值,不含最高值),并制成下列两个图表(部分):根据以上信息可知,样本的中位数落在().(A)第二组(B)第三组(C)第四组(D)第五组【解析】选C.有统计图和表知:样本数=12÷12%=100,第三小组人数=100×18%=18,第五十和第五十一个数位于第四小组.11、(2008·南平中考)小丽家下个月的开支预算如图所示.如果用于教育的支出是150元,则她家下个月的总支出为()A.625元B.652元C.750元D.800元答案:选C二、填空题12、(2010·眉山中考)某班一个小组七名同学在为地震灾区“爱心捐助”活动中,捐款数额分别为10,30,40,50,15,20,50(单位:元).这组数据的中位数是__________(元).【解析】:把这一组数据从小到大排列后,最中间的一个数为30,所以中位数为30(元)答案:3013、改革开放后,我市农村居民人均消费水平大幅度提升.下表是2004年至2009年我市农村居民人均食品消费支出的统计表(单位:元).则这几年我市农村居民人均食品消费支出的中位数是元,极差是元.【解析】中位数=225602048=2304,极差=2786-1674=1112.答案:2304,111214、(2009·牡丹江中考)已知三个不相等的正整数的平均数、中位数都是3,则这三个数分别为.【解析】因为三个不相等的正整数的中位数是3,所以三个数中有一个小于3,而另一个大于3,又因为平均数为3,所以数组为1,3,5或2,3,4;答案:1,3,5或2,3,4;三、解答题15、(2009·黄石中考)振兴中华某班的学生对本校学生会倡导的“抗震救灾,众志成城”自愿捐款活动进行抽样调查,得到一组学生捐款情况的数据,并绘制成统计图(如图),图中从左到右各矩形的高度之比为3:4:5:8:6,又知此次调查中捐款25元和30元的学生一共42人。
(1)他们一共调查了多少人(2)这组数据的众数、中位数各是多少 (3)若该校共有1560名学生,估计全校学生共捐款多少元【解析】:(1)由题意可设,各组人数分别为3x ,4x ,5x ,8x ,6x 则8x+6x=42 ∴x=3 ∴3x +4x+5x+8x+6x=26x=78人 即调查了78人。
(2)众数是25,中位数是25。
(3)(3×3×10+4×3×15+5×3×20+8×3×25+6×3×30)781560=34200元 16、(2008·佳木斯中考)三名大学生竞选系学生会主席,他们的笔试成绩和口试成绩(单位:分)分别用了两种方式进行了统计,如表一和图一:(1)请将表一和图一中的空缺部分补充完整.(2)竞选的最后一个程序是由本系的300名学生进行投票,三位候选人的得票情况如图二(没有弃权票,每名学生只能推荐一人),请计算每人的得票数. (3)若每票计1分,系里将笔试、口试、得票三项测试得分按的比例确定个人成绩,请计算三位候选人的最后成绩,并根据成绩判断谁能当选. 【解析】(1)90;补充后的图如下(2)A : B : C :(3)A :(分)B :(分)C :(分)B 当选17、(2010·威海中考)某校为了解学生“体育大课间”的锻炼效果,中考体育测试结束后,随机从学校720名考生中抽取部分学生的体育测试成绩绘制了条形统计图.试根据统计图提供的信息,回答下列问题: )共抽取了 名学生的体育测试成绩进行统计.(2)随机抽取的这部分学生中男生体育成绩的平均数是 ,众数是 ;女生体0246810121416男生人数女生人数23人数 0 2 4 6 12 8 10 14 22x252627282930分数育成绩的中位数是 .(3)若将不低于27分的成绩评为优秀,估计这720名考生中,成绩为优秀的学生大约是多少 【解析】﹙1﹚80; ﹙2﹚, 27, 27; ﹙3﹚396804472080231227720=⨯=+++⨯﹙人﹚17、(2008 日照中考) 振兴中学某班的学生对本校学生会倡导的“抗震救灾,众志成城”自愿捐款活动进行抽样调查,得到了一组学生捐款情况的数据.下图是根据这组数据绘制的统计图,图中从左到右各长方形的高度之比为3︰4︰5︰8︰6,又知此次调查中捐款25元和30元的学生一共42人. (1)他们一共调查了多少人(2)这组数据的众数、中位数各是多少(3)若该校共有1560名学生,估计全校学生捐款多少元【解析】(1)设捐款30元的有6x 人,则8x +6x =42. ∴ x =3.∴ 捐款人数共有:3x +4x +5x +8x +6x =78(人).(2)由图象可知:众数为25(元);由于本组数据的个数为78,按大小顺序排列处于中间位置的两个数都是25(元),故中位数为25(元).(3)34200781560)30362538203515341033(=⨯⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯(元). 18、(2008·沈阳中考)在学校组织的“喜迎奥运,知荣明耻,文明出行”的知识竞赛中,每班参加比赛的人数相同,成绩分为A B C D ,,,四个等级,其中相应等级的得分依次记为100分,90分,80分,70分,学校将某年级的一班和二班的成绩整理并绘制成如下的统计图:/元请你根据以上提供的信息解答下列问题:(1)此次竞赛中二班成绩在C 级以上(包括C 级)的人数为 ; (2)请你将表格补充完整:(3)请从下列不同角度对这次竞赛成绩的结果进行分析: ①从平均数和中位数的角度来比较一班和二班的成绩; ②从平均数和众数的角度来比较一班和二班的成绩;③从B 级以上(包括B 级)的人数的角度来比较一班和二班的成绩. 【解析】(1)21(2)一班众数为90,二班中位数为80(3)①从平均数的角度看两班成绩一样,从中位数的角度看一班比二班的成绩好,所以一班成绩好;②从平均数的角度看两班成绩一样,从众数的角度看二班比一班的成绩好,所以二班成绩好; ③从B 级以上(包括B级)的人数的角度看,一班人数是18人,二班人数是 要点二:频数、频率的意义及应用一、选择题1.(2009·宜宾中考)已知数据:23231-,,,,π.其中无理数出现的频率为( ) A. 20% B. 40% C. 60% D. 80%【解析】选C 因为数据23231-,,,,ππ三个,所以数据中的无理数出现的频率为60%;2.(2009·包头中考)某校为了了解九年级学生的体能情况,随机抽查了其中的30名学生,一班竞赛成绩统计图 二班竞赛成绩统计图测试了1分钟仰卧起座的次数,并绘制成如图所示的频数分布直方图,请根据图示计算,仰卧起座次数在15~20次之间的频率是( ) A .B .0.17C .D .【解析】选A 本题属于统计内容,考查分析频数分布直方图和频率的求法。