《数据的分析》中考中总复习(知识点复习+题型分类练习)
- 格式:docx
- 大小:103.26 KB
- 文档页数:4
中考生物知识点复习题型三数据分析题1. (2016福州)(8分)连江官坞是我国重要的海带生产地。
海带的生长与其生活环境密切相关。
某科研小组在实验室做了两个实验(实验1和实验2),探究温度或二氧化碳对海带生长率(指实验前后,海带体内物质增加的比率)的影响。
请分析实验1数据(25 ℃时海带腐烂,所以生长率为负值),回答(1)~(3)题:第1题图1(1)实验1所要探究的问题是:_________________________________________________ ________________?(2)实验过程中除改变温度外,水体中二氧化碳含量等因素都应该保持一致,理由是________________________________________________________________________。
(3)海带生长率增长的最适温度范围是在______℃之间。
据此分析夏季高温不宜种植海带的原因是________________________。
请分析实验2数据,回答(4)~(5)题:第1题图2(4)水体中二氧化碳含量对海带生长率的影响,实际上是对海带利用二氧化碳合成________这一过程的影响。
(5)明明同学的结论是:水体中二氧化碳含量越高,海带的生长率越大。
你是否同意他的结论?________。
数据表明,当二氧化碳含量超过1 000 ppm时,海带生长率的增长将逐渐________(选填“加速”或“减缓”)。
(6)综合上述两个实验,说明环境与生物之间的关系是________________。
2.(5分)荒漠中有的植物种子粒大,有的植物种子粒小。
在荒漠生态系统中,大粒种子植物在与小粒种子植物的竞争中处于优势。
啮齿动物和蚂蚁都可以取食大粒种子和小粒种子。
啮齿动物更喜欢吃大粒种子、蚂蚁偏爱小粒种子。
科研人员在1974-1977年间,在A、B两个实验区域内进行了啮齿动物的有无对蚂蚁数量影响的相关研究。
湖南省2023年中考备考数学一轮复习数据的分析练习题一、单选题1.(2022·湖南长沙·统考一模)A,B,C,D,E五位同学依次围成一个圆圈做益智游戏,规则是:每个人心里先想好一个实数,并把这个数悄悄地告诉相邻的两个人,然后每个人把与自己相邻的两个人告诉自己的数的平均数报出来.若A,B,C,D,E五位同学报出来的数恰好分别是1,2,3,4,5,则D同学心里想的那个数是()A.-3B.4C.5D.92.(2022·湖南娄底·统考二模)甲,乙,丙三种糖果售价分别为每千克6元,7元,8元,若将甲种5kg,乙种10kg,丙种10kg混在一起,则售价应定为每千克()A.7.2元B.7元C.6.7元D..65元3.(2022·湖南株洲·统考中考真题)某路段的一台机动车雷达测速仪记录了一段时间内通过的机动车的车速数据如下:67、63、69、55、65,则该组数据的中位数为()A.63B.65C.66D.694.(2022·湖南湘潭·统考中考真题)“冰墩墩”是北京2022年冬季奥运会的吉祥物.该吉祥物以熊猫为原型进行设计创作,将熊猫形象与富有超能量的冰晶外壳相结合,体现了冬季冰雪运动和现代科技特点,冰墩墩玩具也很受欢迎.某玩具店一个星期销售冰墩墩玩具数量如下:则这个星期该玩具店销售冰墩墩玩具的平均数和中位数分别是()A.48,47B.50,47C.50,48D.48,505.(2022·湖南郴州·统考一模)疫情期间,某商店连续5天销售口罩的盒数分别为100,110,120,90,120,则这组数据的中位数是()A.90B.100C.110D.1206.(2022·湖南永州·统考二模)防晒衣的主要作用是阻隔太阳紫外线的直接照射,上图为某品牌防晒衣某~月的销量(单位:件)情况.这8个月销量(单位:件)的中位数是()分店2021年18A.1952B.2387C.2822D.29347.(2022·湖南邵阳·统考一模)《九章算术》是我国古代一部综合性数学经典著作.全书包括246个数学问题,按问题的特点分为九章.其中的“方程术”中明确引进了“负数”.这部著作说明我国是世界上最早使用负数的国家.现有一组负数分别为-1,-0.5,-2,-2.5,-5,-8,-4,-7,则这组负数的中位数为()A.-2.5B.-3.75C.-4D.-3.258.(2022·湖南娄底·统考一模)信息技术课上,在老师的指导下,小好同学训练打字速度(字/min),数据整理如下:15,17,23,15,17,17,19,21,21,18,对于这组数据,下列说法正确的是()A.众数是17B.众数是15C.中位数是17D.中位数是189.(2022·湖南永州·统考一模)某中学七(1)班的6位同学在课间体育活动时进行一分钟跳绳比赛,成绩(单位:个)如下:122,146,134,146,152,121.这组数据的众数和中位数分别是()A.152,134B.146,146C.146,140D.152,14010.(2022·湖南株洲·统考模拟预测)如图是小明某一天测得的7次体温情况的折线统计图,下列信息不正确的是()A.测得的最高体温为37.1℃B.前3次测得的体温在下降C.这组数据的众数是36.8D.这组数据的中位数是36.611.(2022·湖南常德·统考一模)某校男篮队员的年龄分布如表所示:对于不同的a,下列关于年龄的统计量不会发生改变的是()A.平均数,中位数B.众数,中位数C.众数,方差D.平均数,方差12.(2022·湖南长沙·统考中考真题)《义务教育课程标准(2022年版)》首次把学生学会炒菜纳入劳动教育课程,并做出明确规定.某班有7名学生已经学会炒的菜品的种数依次为:3,5,4,6,3,3,4,则这组数据的众数和中位数分别是()A.3,4B.4,3C.3,3D.4,413.(2022·湖南长沙·模拟预测)一组数据17,10,5,8,5,15的中位数和众数是()A.5,5B.8,5C.9,5D.10,514.(2022·湖南株洲·一模)一家鞋店在一段时间内销售了某款运动鞋30双,该款的各种尺码鞋销售量如图所示.鞋店决定在下一次进货时增加一些尺码为23.5cm的该款运动鞋,影响鞋店这一决策的统计量是()A.平均数B.中位数C.众数D.方差15.(2022·湖南永州·统考一模)某男子排球队20名队员的身高如下表:则此男子排球队20名队员的身高的众数和中位数分别是()A.186cm,186cm B.186cm,187cmC.208cm,188cm D.188cm,187cm16.(2022·湖南郴州·统考中考真题)某校举行“预防溺水,从我做起”演讲比赛,7位评委给选手甲的评分如下:90,93,88,93,85,92,95,则这组数据的众数和中位数分别是()A.95,92B.93,93C.93,92D.95,9317.(2022·湖南衡阳·统考中考真题)为贯彻落实教育部《关于全面加强新时代大中小学劳动教育的意见》精神,把劳动教育纳入人才培养全过程,某校组织学生周末赴劳动教育实践基地开展锄地、除草、剪枝、捉鱼、采摘五项实践活动,已知五个项目参与人数(单位:人)分别是:35,38,39,42,42,则这组数据的众数和中位数分别是( ) A .38,39B .35,38C .42,39D .42,3518.(2022·湖南岳阳·统考中考真题)某村通过直播带货对产出的稻虾米进行线上销售,连续7天的销量(单位:袋)分别为:105,103,105,110,108,105,108,这组数据的众数和中位数分别是( ) A .105,108B .105,105C .108,105D .108,10819.(2022·湖南娄底·统考中考真题)一个小组10名同学的出生年份(单位:月)如下表所示:这组数据(月份)的众数是( ) A .10B .8C .7D .620.(2022·湖南湘西·统考中考真题)“青年大学习”是共青团中央为组织引导广大青少年,深入学习贯彻习近平新时代中国特色社会主义思想的青年学习行动.某校为了解同学们某季度学习“青年大学习”的情况,从中随机抽取5位同学,经统计他们的学习时间(单位:分钟)分别为:78,80,85,90,80.则这组数据的众数为( ) A .78B .80C .85D .9021.(2022·湖南张家界·统考一模)某班七个兴趣小组人数分别为4,4,5,5,x ,6,7,已知这组数据的平均数是5,则这组数据的中位数和众数分别是( ) A .5,5B .5,4C .4,4D .4,522.(2022·湖南怀化·统考一模)某商店连续7天销售口罩的盒数分别为9,11,13,12,11,11,10.关于这组数据,以下结论错误的是( ) A .众数是11B .平均数是11C .中位数是12D .方差是10723.(2022·湖南长沙·模拟预测)下列命题为真命题的是( ) A .同旁内角互补B .三角形的外心是三条内角平分线的交点C .平行于同一条直线的两条直线平行D .若甲、乙两组数据中,20.8S =甲,21.4S =乙,则乙组数据较稳定24.(2022·湖南邵阳·统考三模)甲、乙、丙、丁四人10次随堂测验的成绩如图所示,从图中可以看出这10次测验平均成绩较高且较稳定的是()A.B.C.D.二、填空题25.(2022·湖南株洲·统考二模)为庆祝中国共产党建党一百周年,某校开展了主题为“我身边的共产党员”的演讲比赛.比赛从演讲内容、演讲技巧、演讲效果三个方面打分,最终得分按4:3:3的比例计算.若选手甲在演讲内容、演讲技巧、演讲效果三个方面的得分分别为95分、80分、90分,则选手甲的最终得分为________分.26.(2022·湖南常德·统考中考真题)今年4月23日是第27个世界读书日,某校举行了演讲大赛,演讲得分按“演讲内容”占40%、“语言表达”占40%、“形象风度”占10%、“整体效果”占10%进行计算,小芳这四项的得分依次为85,88,92,90,则她的最后得分是________分.27.(2022·湖南永州·统考二模)某中学规定学生的学期体育成绩满分为100,其中体育课外活动占30%,期末考试成绩占70%,小彤的这两项成绩依次是90,80.则小彤这学期的体育成绩是_________.28.(2022·湖南娄底·统考模拟预测)如图是张家界市某周每天最高气温的折线统计图,则这7天的最高气温的中位数是______℃.29.(2022·湖南永州·统考中考真题)“闪电足球队”参加市中小学生足球比赛,在五场小组赛中,该足球队的进球数分别为:2,0,1,2,3,则此组数据的众数是______.30.(2022·湖南邵阳·统考中考真题)某班50名同学的身高(单位:cm )如下表所示:则该班同学的身高的众数为_________.31.(2022·湖南郴州·统考中考真题)甲、乙两队参加“传承红色基因,推动绿色发展”为主题的合唱比赛,每队均由20名队员组成.其中两队队员的平均身高为160cm x x ==甲乙,身高的方差分别为210.5s =甲,2 1.2s =乙.如果单从队员的身高考虑,你认为演出形象效果较好的队是________.(填“甲队”或“乙队”)32.(2022·湖南郴州·统考一模)2021年我国全面实现小康社会.为比较甲、乙两村的收入水平,从这两村中各随机抽取20户,对其年收入情况进行调查.统计结果是两村每户年收入的平均数基本相同,方差分别是215s =甲,210s =乙,则年收入比较均衡的村是______.(填“甲”或“乙”)33.(2022·湖南永州·统考二模)为从甲、乙、丙三名射击运动员中选一人参加全运会,教练把他们的10次比赛成绩作了统计:甲、乙、丙的平均成绩均为9.5环,方差分别为2 1.12S =甲,2 2.42S =乙,23.68S =丙,则应该选______参加全运会(填“甲”或“乙”或“丙”).三、解答题34.(2022·湖南株洲·统考中考真题)某校组织了一次“校徽设计”竞赛活动,邀请5名老师作为专业评委,50名学生代表参与民主测评,且民主测评的结果无弃权票.某作品的评比数据统计如下:记“专业评委给分”的平均数为x.(1)求该作品在民主测评中得到“不赞成”的票数;(2)对于该作品,问x的值是多少?⨯-分;(3)记“民主测评得分”为y,“综合得分”为S,若规定:℃=y“赞成”的票数3⨯分+“不赞成”的票数()1℃0.70.3S x y=+.求该作品的“综合得分”S的值.35.(2022·湖南益阳·统考中考真题)为了加强心理健康教育,某校组织七年级(1)(2)两班学生进行了心理健康常识测试(分数为整数,满分为10分),已知两班学生人数相同,根据测试成绩绘制了如下所示的统计图.(1)求(2)班学生中测试成绩为10分的人数;(2)请确定下表中a,b,c的值(只要求写出求a的计算过程);(3)从上表中选择合适的统计量,说明哪个班的成绩更均匀.参考答案:1.D【分析】设报2的人心里想的数是x ,因为报2与报4的两个人报的平均数是3,则报4的人心里想的数应是6- x ,以此类推,最后建立方程,解方程即可. 【详解】如图所示设报2的人心里想的数是x ,因为报2与报4的两个人报的平均数是3,则报4的人心里想的数应是6- x ,以此类推:于是报1的人心里想的数是10-(6- x )=4 +x , 报3的人心里想的数是4-(4+x )=-x , 报5的人心里想的数是8-(-x )=8+x 报4的人心里想的数是2-(8+x )=-6- x , 于是得-6-x =x 解得:x =-3所以D 同学报4的人心里想的数应是: 6-x =6-(-3)= 9,答:D 同学心里想的数应是9. 故选:D【点睛】本题考查的知识点有平均数的相关计算及方程思想的运用.这道题题意理解起来比较容易,但从哪下手却不容易想到,一般地,当数字比较多时,方程是首选的方法,而且多设几个未数,把题中的等量关系全部展示出来,再结合题意进行整合,问题即可解决. 2.A【分析】平均数的计算方法是求出所有糖果的总钱数,然后除以糖果的总质量. 【详解】解:根据题意售价应该定为:657108107.251010⨯+⨯+⨯=++(元/千克),故选A .【点睛】本题考查的是加权平均数的求法.本题易出现的错误是求6、7、8这几个数的平均数,对平均数的理解不正确.3.B【分析】根据中位数的定义求解即可;【详解】解:将原数据排序为:55、63、65、67、69,所以中位数为:65,故选:B.【点睛】本题主要考查中位数的定义,掌握中位数的定义是解题的关键.4.C【分析】根据平均数和中位数的定义解答即可.【详解】这组数据的平均数是:(35+42+47+48+50+60+68)÷7=50;将数据按照从小到大依次排列:35,42,47,48,50,60,68处在中间位置的数是48,即中位数是48;故选:C.【点睛】此题考查了平均数和中位数的定义,解题的关键是把数据按照从小到大依次排列.5.C【分析】将这组数据从小到大重新排列,再根据中位数的定义求解即可.【详解】将这组数据从小到大重新排列为90,100,110,120,120℃这组数据的中位数为110,故选:C.【点睛】本题主要考查中位数,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.6.B【分析】根据销量折线图,结合中位数的定义直接求解.【详解】解:销量由小到大排列为:712,1433,1533,1952,2822,3046,4532,4844,℃中位数为:195228222=2387,故选:B.【点睛】此题考查的是平均数及中位数,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.也考查了折线图.7.D【分析】先把这一组数据从小到大排列,可得位于正中间的两个数为-4,-2.5,即可求解.【详解】解:把这一组数据从小到大排列为-8,-7,-5,-4,-2.5,-2,-1,-0.5,位于正中间的两个数为-4,-2.5,℃这组负数的中位数为()3.2524 2.5=--+-.故选:D【点睛】本题主要考查了求中位数,熟练掌握中位数是把一组数据按从大到小(或从小到大)的顺序排列,位于正中间的一个数或两个数的平均数是解题的关键.8.A【分析】根据中位数、众数的概念求解可得.【详解】解:以上数据重新排列为:15,15,17,17,17,18,19,21,21,23,∴众数为17、中位数为171817.52+=,故选:A.【点睛】本题考查的是众数和中位数的概念;熟练掌握中位数、众数的概念是解题的关键.9.C【分析】根据众数和中位数的定义求解即可.【详解】解:146出现了2次,出现的次数最多,∴这组数据的众数是146个;把这些数从小到大排列为:121,122,134,146,146,152,则中位数是1341461402+=(个).故选:C.【点睛】本题考查了众数和中位数的知识,属于基础题,掌握各知识点的定义是解答本题的关键.10.D【分析】根据折线图判断最高体温以及上升下降情况,根据众数、中位数的性质判断即可.【详解】解:A、由折线统计图可知,7次最高体温为37.1℃,A选项正确,不符合题意;B、由折线统计图可知,前3次体温在下降,B选项正确,不符合题意;C、由7组数据可知,众数为36.8,C选项正确,不符合题意;D、根据中位数定义可知,中位数为36.8,D选项错误,符合题意;故选:D.【点睛】本题主要考查折线统计图、众数以及中位数的定义,正确读懂统计图,正确理解众数、中位数定义是解题关键,注意必须从大到小或者从小到大排列后再求中位数.11.B【分析】根据频数分布表可得前两组的频数和为4,然后求得总人数,最后结合频数分布表即可确定中位数和众数.【详解】解:由表可知,年龄13-14岁的频数和为a+4﹣a=4,则总人数为:4+6=10,故该组数据的众数为15岁;将数据按大小排列后,第5个和第6个数据处于中间位置,则中位数为:15152+=15岁.即对于不同的a,关于年龄的统计量不会发生改变的是众数和中位数.故选:B.【点睛】本题主要考查频数分布表及统计量的选择,根据表中数据得出数据特点确定总人数是解答本题的关键.12.A【分析】根据众数及中位数的概念进行判断即可.【详解】3出现次数最多,∴众数是3;把这组数据从小到大排序为:3,3,3,4,4,5,6,∴4位于第四位,∴中位数为4;故选:A.【点睛】本题考查了众数及中位数的概念,一组数据中,出现次数最多的数为众数;按从小到大(或从大到小)顺序排列,处于中间位置的一个数(或两个数的平均数)为这组数据的中位数,熟练掌握这两个知识点是解题的关键.13.C【分析】本题考查统计的有关知识,找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【详解】这组数据按照从小到大的顺序排列为:5,5,8,10,15,17,因此中位数为:81092+=,众数为:5,故选:C.【点睛】本题考查了众数和中位数的知识,熟悉基础概念是解题的关键.14.C【分析】根据销售量统计图知,尺码为23.5cm的该款运动鞋销量最多,因而应多进些,这是众数的影响,因而可作出判断.【详解】由于尺码为23.5cm的该款运动鞋销量最多,因而影响鞋店这一决策的统计量是众数故选:C.【点睛】本题考查了众数这一统计量,一组数据中出现次数最多的数称为这组数据的众数,众数反映一组数据的集中趋势.15.B【分析】根据中位数就是把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数);众数是一组数据中出现次数最多的数据进行解答即可求出答案.【详解】解:根据表可知:186cm出现的次数最多,因而众数是186cm;℃共20个数,处于中间位置的是186cm和188cm,℃中位数是(186+188)÷2=187(cm).故选:B.【点睛】本题主要考查了众数以及中位数的定义,注意众数与中位数的单位与原数组中的数的单位相同,用到的知识点是众数以及中位数的定义,此题较简单,是一道基础题.16.C【分析】现将数列从小达到重新排列,再根据中位数和众数的定义求解即可.【详解】数列从小达到重新排列如下:85,88,90,92,93,93,95,中位数为:92,众数为:93,故选:C.【点睛】本题考查了中位数和众数的定义,理解中位数和众数的定义是解答本题的关键.17.C【分析】将这组数据重新排列,再根据众数和中位数的定义求解即可.【详解】解:℃42出现了2次,出现的次数最多,℃这组数据的众数是42;把这些数从小大排列为35,38,39,42,42,所以中位数是39,故选:C.【点睛】本题考查了众数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.18.B【分析】根据众数和中位数的定义求解即可.【详解】解:将这组数据重新排列为103,105,105,105,108,108,110,这组数据出现次数最多的是105,所以众数为105,最中间的数据是105,所以中位数是105,故选:B .【点睛】本题主要考查众数和中位数,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.19.B【分析】根据众数的定义判断得出答案.【详解】因为8月份出现了3次,次数最多,所以众数是8.故选:B .【点睛】本题主要考查了众数的判断,掌握定义是解题的关键.即一组数据中出现次数最多的数是众数.20.B【分析】一组数据中出现次数最多的数据叫做众数,根据概念解答即可.【详解】这组数据中80出现2次,出现的次数最多,所以这组数据的众数是80,故选:B .【点睛】本题主要考查众数,求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.21.B【分析】根据平均数求出x ,利用中位数和众数定义求出答案.【详解】解:℃()144556757x ++++++=,℃将数据由小到大重新排列为4,4,4,5,5,6,7,℃这组数据的中位数为5,众数为4,故选:B .【点睛】此题考查了已知数据的平均数求未知数的值,中位数的定义,众数的定义,正确掌握各定义是解题的关键.22.C【分析】根据中位数、众数、平均数、方差的计算方法分别求出结果再进行判断即可.【详解】解:将这7个数从小到大排列9,10,11,11,11,12,13,最中间的数为11,因此中位数为11, 出现次数最多的是11,因此众数是11,这7个数的平均数为9101111111213117++++++=, 方差为()()()()()222221911101111113121113117⎡⎤-+-+-⨯+-+-⎣⎦=107. 故选:C .【点睛】本题考查中位数、众数、平均数、方差,掌握对应的计算方法是解题的关键.23.C【分析】根据平行线的性质和判定,三角形的外心性质,方差一一判断即可.【详解】解:A 、两平行线被第三直线所截,同旁内角互补,原命题是假命题,不符合题意;B 、三角形的外心是三条边垂直平分线的交点,原命题是假命题,不符合题意;C 、平行于同一条直线的两条直线平行,是真命题,符合题意;D 、若甲、乙两组数据的平均数都是3,S 甲2=0.8,S 乙2=1.4,则甲组数据较稳定,原命题是假命题,不符合题意;故选:C .【点睛】考查了命题与定理的知识,解题的关键是根据平行线的性质和判定,三角形的外心性质,方差解答.24.B【分析】利用平均数和方差的意义进行判断.【详解】解:由折线统计图得:乙,丙的成绩在92附近波动,甲、丁 的成绩在91附近波动, ℃乙,丙的平均成绩高于甲、丁,由折线统计图得:丙成绩的波动幅度小于丁成绩的波动幅度,℃这四人中乙的平均成绩好又发挥稳定,【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,与平均值的离散程度越差,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了折线统计图.25.89【分析】根据题意及加权平均数可直接进行求解.【详解】解:由题意得:49538039089433⨯+⨯+⨯=++(分); 故答案为89.【点睛】本题主要考查加权平均数,熟练掌握加权平均数是解题的关键.26.87.4【分析】根据加权平均数的计算公式列式计算可得.【详解】解:根据题意得她的最后得分是为:8540%8840%9210%9010%87.4⨯+⨯+⨯+⨯= (分);故答案为:87.4.【点睛】本题考查的是加权平均数的求法,熟练掌握加权平均数的计算公式是解题的关键.27.83分.【分析】根据加权平均数的计算公式列出算式,再进行计算即可.【详解】解:根据题意得:90×30%+80×70%=83(分);答:小彤这学期的体育成绩是83分.故答案为:83分.【点睛】此题考查了加权平均数,掌握加权平均数的计算公式是本题的关键,是一道常考题. 28.26【分析】将7天的最高气温按从小到大排列以后根据中位数的定义求解即可.【详解】解:根据7天的最高气温折线统计图,将这7天的最高气温按从小到大排列为:20,22,24,26,28,28,30,故中位数为26℃.故答案为:26.【点睛】本题主要考查中位数的定义,将一组数据按照从小到大(或从大到小)的顺序排列,如果这组数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.29.2【分析】根据众数的定义(数据中出现的次数最多的数据)求解即可.【详解】解:2,0,1,2,3这组数据中2出现的次数最多为2次,∴众数为2,故答案为:2.【点睛】题目主要考查众数的求法,掌握众数的定义及计算方法是解题关键.30.160【分析】根据众数的定义求解.【详解】在这一组数据中160出现了10次,次数最多,故众数是160.故答案为:160.【点睛】此题考查了众数,解题的关键是掌握众数的定义.31.乙队【分析】根据方差的定义,方差越小数据越稳定,即可得出答案.【详解】℃160cm x x ==甲乙,210.5s =甲,2 1.2s =乙,℃2s >甲2s 乙,℃应该选乙队参赛;故答案为:乙队【点睛】本题考查了方差的意义,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.32.乙【分析】根据方差的意义,若两组数据的平均数相同,则方差小的更稳定,进行求解即可【详解】解:℃统计结果是两村每户年收入的平均数基本相同,方差分别是215s =甲,210s =乙,1015<℃收入比较均衡的村是乙故答案为:乙【点睛】本题考查了方差的意义,若两组数据的平均数相同,则方差小的更稳定,理解方差的意义是解题的关键.33.甲【分析】根据方差的意义可作出判断.【详解】解:℃甲、乙、丙的平均成绩均为9.5环,且2S <甲2S <乙2S 丙,℃应该选甲参加全运会.故答案为:甲.【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.34.(1)10张(2)90分(3)96分【分析】(1)用投票总数50减去投赞成票的张数40即可;(2)根据平均数公式求解即可;(3)根据所给计算方法代入数据计算即可.(1)解:50-40=10张;(2) 解:x =(88+87+94+91+90) ÷5=90分;(3) 解:=y 403⨯+10()1⨯-=110分;0.7900.311096S =⨯+⨯=分.【点睛】本题考查了统计的知识,熟练掌握及平均数的计算公式是解答本题的关键.35.(1)(2)班学生中测试成绩为10分的人数是6人(2)a ,b ,c 的值分别为8,9,8(3)(1)班成绩更均匀【分析】(1)根据条形图求出人数,根据扇形统计图求出所占百分比,即可得出结论;(2)根据(1)中数据分别计算a ,b ,c 的值即可;(3)根据方差越小,数据分布越均匀判断即可.。
数据分析知识点总复习含答案一、选择题1 . (11大连)某农科院对甲、乙两种甜玉米各用10块相同条件的试验田进行试验,得到两个品种每公顷产量的两组数据,其方差分别为S 甲2= 0.002、S 乙2= 0.03,贝y ()A. 甲比乙的产量稳定B. 乙比甲的产量稳定【解析】【分析】方差是刻画波动大小的一个重要的数字.与平均数一样,仍采用样本的波动大小去估计总体的波动大小的方法,方差越小则波动越小,稳定性也越好 .【详解】因为S 甲=0.002<s 乙=0.03, 所以,甲比乙的产量稳定. 故选A【点睛】本题考核知识点:方差 .解题关键点:理解方差意义2.某学校组织学生进行社会主义核心价值观的知识竞赛,进入决赛的共有 们的决赛成绩如下表所示:那么20名学生决赛成绩的众数和中位数分别是 (【分析】按照笔试与面试所占比例求出总成绩即可C.甲、乙的产量一样稳定【答案】A D .无法确定哪一品种的产量更稳定20名学生,他A . 85, 90【答案】B B . 85, 87.5C. 90, 85D . 95, 90【解析】试题解析:85分的有8人,人数最多,故众数为 处于中间位置的数为第 10、11两个数, 为85分,90分,中位数为87.5分. 故选B .85分;考点:1.众数;2.中位数3.某单位招考技术人员,考试分笔试和面试两部分,成绩,若小李笔试成绩为 80分,面试成绩为90分,则他的总成绩为(笔试成绩与面试成绩按6: 4记入总A . 84 分【答案】A【解析】 B . 85 分 C. 86 分D . 87 分80 — 10 故选A 【点睛】本题主要考查了加权平均数的计算,解题关键是正确理解题目含义4.在某次训练中,甲、乙两名射击运动员各射击 本次训练,有如下结论:①s | s 乙 ;②s 甲10发子弹的成绩统计图如图所示,对于 s乙;③甲的射击成绩比乙稳定;④乙的射击成绩比甲稳定.由统计图可知正确的结论是(■ - ~ -厲=■ = = =■'I■■■ ■ n*.■… 八〉‘乍忍■- :T -~........... T ■■L-——jl b ----- -----——L ——-------------------.—— ------------ 卜I 」耳环$ 67輻m “匸【分析】从折线图中得出甲乙的射击成绩,再利用方差的公式计算,即可得出答案. 【详解】由图中知,甲的成绩为 7, 7, 8, 9, 8, 9, 10, 9, 9, 9, 乙的成绩为8, 9,乙8, 10,乙9, 10, 7, 10,X 甲 = ( 7+7+8+9+8+9+10+9+9+9)十 10=8.5 X 乙 = ( 8+9+7+8+10+7+9+10+7+10) - 10=8.5甲的方差 S 甲 2=[2 ( 7-8.5) 2+2 X( 8-8.5) 2+ (10-8.5) 2+5 X( 9-8.5) 2] - 10=0.85 乙的方差 S 乙2=[3 ( 7-8.5) 2+2 X( 8-8.5) 2+2 X( 9-8.5) 2+3 X( 10-8.5) 2] - 10=1.45S 2甲 V S 2乙,•••甲的射击成绩比乙稳定; 故选:C. 【点睛】本题考查方差的定义与意义:一般地设n 个数据,X 1, X 2,…x 的平均数为X ,则方差S 2=~ [ ( x i - x ) 2+ ( x 2- x ) 2+…+ (X n -x ) 2],它反映了一组数据的波动大小,方差越大,波 n动性越大,反之也成立.A .①③ 【答案】C【解析】 B .①④C.②③D .②④【详解】根据题意, 按照笔试与面试所占比例求出总成绩:90 — 84 (分)10II in■ ,■甲5.对于一组统计数据:1 , 1, 4, 1, 3,下列说法中错误的是( A .中位数是1 B .众数是1 C.平均数是1.5D .方差是1.6【答案】C 【解析】 【分析】将数据从小到大排列,再根据中位数、众数、平均数及方差的定义依次计算可得答案. 【详解】解:将数据重新排列为:1、1、1、3、4, 则这组数据的中位数 1, A 选项正确; 众数是1 , B 选项正确;11134平均数为=2, C 选项错误;51方差为一X[ 1 - 2)2X 3+( 3- 2) 2+ (4 - 2) 2] = 1.6, D 选项正确;5故选:C. 【点睛】本题主要考查中位数、众数、平均数及方差,解题的关键是掌握中位数、众数、平均数及 方差的定义与计算公式.【分析】首先利用计算出前10次射击的平均数,再计算出方差,然后计算出再射击 和方差,进而可得答案. 【详解】前 10 次平均数:(6X 3+7X 1+8X 2+9X 1+10X^10= 8, 方差:S^=丄[(6 - 8)2X 3+( 7 - 8) 2+ (8 - 8)2X 2+(9 - 8) 2+3 X( 10-8)2] = 2.6,101、 1、 1、 3、 10次相比,小明12次射击的成绩A .平均数变大,方差不变 C. 平均数不变,方差变大【答案】D 【解析】 B. 平均数不变,方差不变 D .平均数不变,方差变小2次后的平均数6.小明参加射击比赛,10次射击的成绩如表:( )再射击 2 次后的平均数::(6X 3+7X 1+8X 2+9X 1 + 10X 3+7+312= 8, 方差:S^= —[( 6 - 8)2X 3+( 7 - 8) 2 X 2(8 - 8) 2X 2+(9 - 8) 2X 2+3 入 10- 8) 2]=-,123平均数不变,方差变小, 故选:D . 【点睛】1 - -S 2= — [ ( X 1- X ) 2+ (X 2 - X ) nA. 队员1【答案】B 【解析】 【分析】根据方差的意义先比较出 4名同学短道速滑成绩的稳定性,再根据平均数的意义即可求出 答案. 【详解】解:因为队员1和2的方差最小,所以这俩人的成绩较稳定, 但队员2平均数最小,所以成绩好,即队员 2成绩好又发挥稳定.故选B . 【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据 偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较 集中,各数据偏离平均数越小,即波动越小,数据越稳定.8.为了解我市初三女生的体能状况,从某校初三的甲、乙两班中各抽取 分钟跳绳次数测试,测试数据统计结果如下表.如果每分钟跳绳次数 么甲、乙两班的优秀率的关系是( )又发挥稳定的运动员参加比赛,应选择(此题主要考查了方差和平均数,关键是掌握方差计算公式:7. 2022年将在北京--张家口举办冬季奥运会,很多学校为此开设了相关的课程,下表 记录了某校4名同学短道速滑成绩的平均数X 和方差S 2,根据表中数据,要选一名成绩好27名女生进行一> 105次的为优秀,那【解析】9. 一组数据3、2、1、2、2的众数,中位数,方差分别是:(【解析】 【分析】根据众数,中位数,方差的定义计算即可 【详解】122 23 平均数为:52出现的次数最多,众数为: 中位数为:方差为: 故选:D【点睛】 本题考查了确定数据众数,中位数,方差的能力,解题的关键是熟悉它们的定义和计算方 法.10.在5轮 中国汉字听写大赛”选拔赛中,甲、乙两位同学的平均分都是90分,甲的成绩A .甲优V 乙优【答案】A C.甲优=乙优 D .无法比较【分析】根据中位数可得甲班优秀的人数最多有 13人,乙班优秀的人数最少有 14人,据此可得答案. 【详解:由表格可知,每班有 •••甲班的中位数是 104, •••甲班优秀的人数最多有 27人,则中位数是排序后第 14名学生的成绩,乙班的中位数是 106, 13人,乙班优秀的人数最少有 14人,••甲优v 乙优, 故选:A .【点睛】本题考查了中位数的应用,熟练掌握中位数的意义和求法是解题的关键.A . 2, 1, 2【答案】DB . 3, 2, 0.2C. 2, 1 , 0.4D . 2, 2, 0.4将这组数据重新由小到大排列为:1、2、2、2、30.4B .甲优 >乙优方差是15,乙的成绩的方差是 3,下列说法正确的是()A. 甲的成绩比乙的成绩稳定 C. 甲、乙两人的成绩一样稳定【答案】B 【解析】 【分析】根据方差的意义求解可得. 【详解】•.•乙的成绩方差V 甲成绩的方差, •••乙的成绩比甲的成绩稳定, 故选B. 【点睛】本题主要考查方差,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离 散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.2 4所以这组数据是:2, 2, 4, 8,则中位数是3.2•/ 2在这组数据中出现 2次,出现的次数最多,•••众数是故选A . 【点睛】本题考查了平均数、中位数和众数,平均数的计算方法是求出所有数据的和,然后除以数 据的总个数;据此先求得 X 的值,再将数据按从小到大排列,将中间的两个数求平均值即 可得到中位数,众数是出现次数最多的数.12.某中学为了了解同学们平均每月阅读课外书籍的情况,在某年级随机抽查了 学,结果如下表所示:B .乙的成绩比甲的成绩稳定 D .无法确定甲、乙的成绩谁更稳定11. 若数据4, X , 2, 8,的平均数是 A . 3 和 2B . 2 和 3【答案】A【解析】 4,则这组数据的中位数和众数是()C. 2 和 2D . 2 和 4【分析】根据平均数的计算公式先求出 X 的值,【详解】 再根据中位数和众数的概念进行求解即可.•••数据2,X , 4, 8的平均数是4,•••这组数的平均数为2 X 4 84,解得:x=2;420名同5 出现了6 次,出现的次数最多,则众数是故选 D . 【点睛】此题考查了中位数和众数,将一组数据从小到大(或从大到小)重新排列后,最中间的那 个数(或最中间两个数的平均数)叫做这组数据的中位数;众数是一组数据中出现次数最 多的数.答案】 D 解析】故选 D .14. 已知一组数据 a 2 , 4 2a , 6, 8 3a , 9,其中 a 为任意实数,若增加一个数据 5,则该组数据的方差一定()A.减小B .不变 【答案】 A 【解析】【分析】 先把原来数据的平均数算出来,再把方差算出来,接着把增加数据 来,从而可以算出方差,再把两数进行比较可得到答案 . 【详解】这些同学平均每月阅读课外书籍本数的中位数和众数为A . 5, 5 【答案】 D 【解析】 【分析】 根据中位数和众数的定义分别进行解答即可. 【详解】 把这组数据从小到大排列中间的两个数都是B .6,6( )C . 5, 6D .6,56,则这组数据的中位数是 6;5.13. 下列说法正确的是( ) 要调查人们对 “低碳生活 ”的了解程度,宜采用普查方式 一组数据: 3, 4, 必然事件的概率是 若甲组数据的方差 A .B .C .D .稳定4,6,8,5 的众数和中位数都是 3 100%,随机事件的概率是 50% S 甲2=0.128,乙组数据的方差是 S 乙2=0.036,则乙组数据比甲组数据A 、B 、C 、D 、故不宜采取普查方式,故 A 选项错误; 8, 5的众数是4,中位数是4.5,故B 选项错误; 100%,随机事件的概率是 50%,故C 选项错误;D 选项正确.由于涉及范围太广, 数据3, 4, 4, 6, 必然事件的概率是 方差反映了一组数据的波动情况,方差越小数据越稳定,故D .不确定C 增大 5 以后的平均数算出a 2 4 2a 6 8 3a 9 25= ------- 5 石 5,(a 25)2 (4 5)2 (2a 6 5)2 (8 3a 5)2 (9 5)2增加数据 5后的平均数 a24 2a 68 3a95305 (平均数没变化),5增加数据 5后的方差=2 5)2(4 5)2 (2a 6 5)2(8 3a 5)2(9 5)2 (5 5)262 2比较S 2, S 发现两式子分子相同,因此 S 2> S (两个正数分子相同,分母大的反而 小), 故答案为A.【点睛】 本题主要考查了方差的基本概念,熟记方差的公式是解本题的关键,要比较增加数据后的 方差的变化,可分别求出原来的方差和改变数据后的方差,再进行比较 . 15.某校为了解同学们课外阅读名著的情况,在八年级随机抽查了 表所示: 20名学生,调查结果如 关于这20名学生课外阅读名著的情况,下列说法错误的是 () A .中位数是10本的同学点70% 【答案】A B .平均数是10.25 C.众数是11 D .阅读量不低于10【解析】 【分析】根据中位数、平均数、众数的定义解答即可. 【详解】 解:A 、把这20名周学课外阅读经典名著的本书按从小到大的顺序排列,则中位数是 10+ 11 10.5,故本选项错误; B 、C 、 平均数是:(8 X 3+9 X 3+10 X 4+11 X 6+12->20=10.25此选项不符合题意;众数是11,此选项不符合题意; D 、 ,4 + 6 + 4 阅读量不低于10本的同学所占百分比为 _肓—X 100%=70%此选项不符合题意; 故选:A .【点睛】解:原来数据的平均数原来数据的方差=s2本题考查了平均数、众数和中位数,平均数平均数表示一组数据的平均程度•中位数是将 一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均 数)•众数是一组数据中出现次数最多的数. 16.立定跳远是体育中考选考项目之一,体育课上老师记录了某同学的一组立定跳远成绩 如表: 则下列关于这组数据的说法,正确的是( A .众数是2.3C.中位数是2.5 【答案】B 【解析】 B .平均数是2.4 D .方差是0.01 【分析】一组数据中出现次数最多的数据叫做众数;平均数是指在一组数据中所有数据之和再除以数据的个数•它是反映数据集中趋势的一项 指标;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中 间位置的数就是这组数据的中位数•如果这组数据的个数是偶数,则中间两个数据的平均 数就是这组数据的中位数; 一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差. 【详解】 这组数据中出现次数最多的是 2.4,众数是2.4,选项A 不符合题意; •••( 2.3+2.4+2.5+2.4+2.4) +5 =12+5 =2.4 •••这组数据的平均数是2.4, •••选项B 符合题意. 17.下列关于统计与概率的知识说法正确的是( ) 武大靖在2018年平昌冬奥会短道速滑 500米项目上获得金牌是必然事件 检测100只灯泡的质量情况适宜采用抽样调查 A .B . C.了解北京市人均月收入的大致情况,适宜采用全面普查 甲组数据的方差是 0.16,乙组数据的方差是 0.24,说明甲组数据的平均数大于乙组数D 据的平均数 【答案】B 【解析】 【分析】根据事件发生的可能性的大小,可判断A ,根据调查事物的特点,可判断B ;根据调查事物的特点,可判断 C;根据方差的性质,可判断 D . 【详解】解:A 、武大靖在2018年平昌冬奥会短道速滑 500米项目上可能获得获得金牌,也可能不 获得金牌,是随机事件,故 A 说法不正确;B 、 灯泡的调查具有破坏性,只能适合抽样调查,故检测抽样调查,故B 符合题意;C 、 了解北京市人均月收入的大致情况,调查范围广适合抽样调查,故C 说法错误;D 、 甲组数据的方差是 0.16,乙组数据的方差是 0.24,说明甲组数据的波动比乙组数据的波动小,不能说明平均数大于乙组数据的平均数,故 D 说法错误;故选B . 【点睛】本题考查随机事件及方差,解决本题需要正确理解必然事件、不可能事件、随机事件的概 念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不 发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事 件.方差越小波动越小.18. 一组数据:1、2、2、3,若添加一个数据 2,则发生变化的统计量是 ( )B.中位数C.众数 D .方差【详解】解:A .原来数据的平均数是 2,添加数字2后平均数仍为2,故A 与要求不符;B. 原来数据的中位数是 2,添加数字2后中位数仍为2,故B 与要求不符;C. 原来数据的众数是 2,添加数字2后众数仍为2,故C 与要求不符;2 2 2D. 原来数据的方差=一2 (2 2)__ =-,2故方差发生了变化. 故选D .19. 某班统计一次数学测验成绩的平均分与方差,计算完毕以后才发现有位同学的分数还 未登记,只好重新算一次.已知原平均分和原方差分别为100只灯泡的质量情况适宜采用A .平均数【答案】D 【解析】 42 2 2添加数字2后的方差=(1 2) 3 (22)(32)=^5s 2,新平均分和新方差分别【答案】 【解— 2为X1 , S1 ,若此同学的得分恰好为X,则()一 2 2 一 2 2A. X X1 , s S1B. X X1 , S S1— 2 2 — 2 2 C. X X1 , S S1 D. X X1 , s S1B【分析】根据平均数和方差的公式计算比较即可.【详解】设这个班有n 个同学,数据分别是a i ,a 2,…a …,a , 第i 个同学没登录, 第一次计算时总分是(n-1) x ,、、, 1方差是 s 2= ----- [(a 1-x)2+…(a 1 -x)2+(a i+1-x)2+…+(a- x)2] n 1第二次计算时,x = n 1 x x =x ,n方差 S 12=1[(a 1-x)2+^ (a 1 -x)2+(a i - x)2+(a i+1- x)2+^ +(a- x)2]= —_-n n 故 s 2 s 2, 故选B .【点睛】此题主要考查平均数和方差的计算,解题的关键是熟知其计算方法. 20.如图是根据我市某天七个整点时的气温绘制成的统计图,则这七个整点时气温的中位 数和众数分别是()温度f 口 A403020100 A .中位数31,众数是22 C. 中位数是26,众数是22【答案】C【解析】【分析】根据中位数,众数的定义即可判断.【详解】七个整点时数据为:22, 22, 23, 26, 28, 30, 31所以中位数为26,众数为22故选:C.【点睛】s 2, 2呂2$ 22 22 S0^ W 12^ im 时间B .中位数是22,众数是31D .中位数是22,众数是26此题考查中位数,众数的定义,解题关键在于看懂图中数据。
2022年中考数学专题《数据的整理与分析》复习试卷含答案解析一、选择题1.一组数据2,1,2,5,3,2的众数是()A.1B.2C.3D.5【答案】B【解析】:“2”出现3次,出现次数最多,∴众数是2.故答案为:B.【分析】一组数据中出现次数最多的数据是众数.这组数据中一共有6个数,数据“2”出现次数最多.2.为调查某大型企业员工对企业的满意程度,以下样本最具代表性的是()A.企业男员工B.企业年满50岁及以上的员工C.用企业人员名册,随机抽取三分之一的员工D.企业新进员工【答案】C【解析】A、调查对象只涉及到男性员工,选取的样本不具有代表性质;B、调查对象只涉及到即将退休的员工,选取的样本不具有代表性质;C、用企业人员名册,随机抽取三分之一的员工,选取的样本具有代表性;D调查对象只涉及到新进员工,选取的样本不具有代表性,故答案为:C.【分析】为调查某大型企业员工对企业的满意程度,那么做抽样调查的对象必须具有代表性而且调查对象的数量必须要达到一定的量,一个企业的所有员工中,它是包括男女老少,故可得出最具代表性样本。
3.若一组数据3、4、5、某、6、7的平均数是5,则某的值是()。
A.4B.5C.6D.7【答案】B【解析】:∵一组数据3、4、5、某、6、7的平均数是5,∴3+4+5+某+6+7=6某5,∴某=5.故答案为:B.【分析】根据平均数的定义和公式即可得出答案.4.下列说法正确的是()A.了解“孝感市初中生每天课外阅读书籍时间的情况”最适合的调查方式是全面调查B.甲乙两人跳绳各10次,其成绩的平均数相等,,则甲的成绩比乙稳定C.三张分别画有菱形,等边三角形,圆的卡片,从中随机抽取一张,恰好抽到中心对称图形卡片的概率是D.“任意画一个三角形,其内角和是”这一事件是不可能事件【答案】D【解析】:A、了解“孝感市初中生每天课外阅读书籍时间的情况”最适合的调查方式是抽样调查,不符合题意;B、甲乙两人跳绳各10次,其成绩的平均数相等,S甲2>S乙2,则乙的成绩比甲稳定,不符合题意;C、三张分别画有菱形,等边三角形,圆的卡片,从中随机抽取一张,恰好抽到中心对称图形卡片的概率是,不符合题意;D、“任意画一个三角形,其内角和是360°”这一事件是不可能事件,符合题意.故答案为:D.【分析】根据全面调查及抽样调查适用的条件;根据方差越大数据的波动越大;根据中心对称图形,轴对称图形的概念,三角形的内角和;一一判断即可。
一、选择题1.为了解某社区居民的用电情况,随机对该社区10户居民进行了调查,下表是这10户居民2014年4月份用电量的调查结果:那么关于这10户居民月用电量(单位:度),下列说法错误的是( ) A .中位数是55 B .众数是60C .平均数是54D .方差是29D解析:D 【分析】根据中位数、众数、平均数和方差的概念分别求得这组数据的中位数、众数、平均数和方差,即可判断四个选项的正确与否. 【详解】这组数据按照从小到大的顺序排列为:40,50,50,50,55,55,60,60,60,60, 则众数为:60,中位数为:55, 平均数为:405050505555606060606010++++++++++=54,方差为:22221(4054)3(5054)2(5554)4(6054)10⎡⎤-+⨯-+⨯-+⨯-⎣⎦=39. 故选D .2.如果将所给定的数据组中的每个数都减去一个非零常数,那么该数组的 ( ) A .平均数改变,方差不变 B .平均数改变,方差改变C .平均数不变,方差改变 D .平均数不变,方差不变A 解析:A 【解析】试题分析:根据平均数、方差的计算公式即可判断. 由题意得该数组的平均数改变,方差不变,故选A. 考点:本题考查的是平均数,方差点评:数学公式的计算与应用是初中数学学习中的一个基本能力,此类问题往往考查学生对数学公式的理解能力,难度不大.3.某校有21名同学们参加某比赛,预赛成绩各不同,要取前11名参加决赛,小颖已经知道了自己的成绩,她想知道自己能否进入决赛,只需要再知道这21名同学成绩的( ) A .最高分 B .中位数C .极差D .平均数B解析:B 【解析】共有21名学生参加预赛,取前11名,小颖知道了自己的成绩,我们把所有同学的成绩按大小顺序排列,第11名的成绩是这组数据的中位数,所以小颖知道这组数据的中位数,才能知道自己是否进入决赛.故选B .4.某校规定学生的学期数学成绩满分为100分,其中研究性学习成绩占40%,期末卷面成绩占60%,小明的两项成绩(百分制)依次是80分,90分,则小明这学期的数学成绩是( ) A .50分 B .82分C .84分D .86分D解析:D 【分析】计算出各项学习成绩的分数再相加即是数学成绩. 【详解】研究性学习成绩为:8040%32⨯=分 期末卷面成绩为:9060%54⨯=分 数学成绩为;325486+=分 故选:D 【点睛】本题考查了加权平均数的相关定义,解题的关键是根据加权平均数的相关定义计算. 5.一组数据中有m 个a ,n 个b ,k 个c ,那么这组数据的平均数为( ) A .3a b c++ B .3m n k++ C .3ma nb kc++D .ma nb kcm n k++++D解析:D 【分析】先求得这组数据的和和个数,再根据平均数的定义求解. 【详解】∵一组数据中有m 个a ,n 个b ,k 个c , ∴这组数据的和=ma+nb+kc ,数据的个数=m+n+k , ∴这组数据的平均数为:ma nb kcm n k++++.故选:D. 【点睛】考查了加权平均数的计算,解题关键是计算出这组数据的和和个数. 6.一次数学测试,某小组5名同学的成绩统计如下(有两个数据被遮盖):A .80,80B .81,80C .80,2D .81,2A解析:A 【分析】根据平均数的计算公式先求出丙的得分,再根据方差公式进行计算即可得出答案. 【详解】根据题意得:805(81778082)80⨯-+++=(分),则丙的得分是80分;众数是80,故选A.【点睛】考查了众数及平均数的定义,解题的关键是根据平均数求得丙的得分,难度不大.7.某校八年级(1)班全体学生进行了第一次体育中考模拟测试,成绩统计如下表:成绩(分) 24 25 26 27 28 29 30人数(人) 65 5 8 7 7 4根据上表中的信息判断,下列结论中错误的是( )A.该班一共有42名同学B.该班学生这次考试成绩的众数是8C.该班学生这次考试成绩的平均数是27D.该班学生这次考试成绩的中位数是27分B解析:B【解析】【分析】根据众数,中位数,平均数的定义解答.【详解】解:该班共有6+5+5+8+7+7+4=42(人),成绩27分的有8人,人数最多,众数为27;该班学生这次考试成绩的平均数是=142(24×6+25×5+26×5+27×8+28×7+29×7+30×4)=27,该班学生这次考试成绩的中位数是第21名和第22名成绩的平均数为27分,错误的为B,故选:B.【点睛】本题考查的是众数,中位数,平均数,熟练掌握众数,中位数,平均数的定义是解题的关键.8.为了比较甲乙两足球队的身高谁更整齐,分别量出每人身高,发现两队的平均身高一样,甲、乙两队的方差分别是1.7、2.4,则下列说法正确的是()A.甲、乙两队身高一样整齐B.甲队身高更整齐C.乙队身高更整齐D.无法确定甲、乙两队身高谁更整齐B解析:B【解析】【分析】根据方差的意义可作出判断,方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定. 【详解】∵S 2甲=1.7,S 2乙=2.4, ∴S 2甲<S 2乙, ∴甲队成员身高更整齐; 故选B. 【点睛】此题考查方差,掌握波动越小,数据越稳定是解题关键9.测试五位学生的“一分钟跳绳”成绩,得到五个各不相同的数据,在统计时出现了一处错误:将最高成绩写得更高了,则计算结果不受影响的是( ) A .中位数 B .平均数C .方差D .极差A解析:A 【分析】根据中位数的定义解答可得. 【详解】解:因为中位数是将数据按照大小顺序重新排列,代表了这组数据值大小的“中点”,不受极端值影响,所以将最高成绩写得更高了,计算结果不受影响的是中位数, 故选A . 【点睛】本题主要考查方差、极差、中位数和平均数,解题的关键是掌握中位数的定义.10.某中学九年级二班的8名女同学在一次仰卧起坐测试中的成绩如下(单位:个),135 138 142 144 140 147 145 145;则这组数据的中位数、平均数分别是( ) A .142,142 B .143,142C .143,143D .144,143B解析:B 【解析】 【分析】把数据从小到大排序,第4,5个数的平均数是中位数;根据平均数的公式求值. 【详解】 中位数:142144=1432+ 平均数:135138142144140147145145=1428+++++++故选B 【点睛】考核知识点:中位数,算术平均数.理解定义是关键.二、填空题11.已知一组样本数据1x ,2x ,3x ,⋅⋅⋅,n x 的平均数为2,方差为3,则数据12+5x ,22+5x ,325x +,⋅⋅⋅,2+5n x 的平均数为__________,方差为__________.912【分析】利用平均数求法和方差的方法分别列式求得平均数和方差得出答案即可【详解】∵x1x2…xn 的平均数为2∴x1+x2+…+xn=2n ∴=2×2+5=9∵原平均数为2新数据的平均数变为9则原来解析:9 12 【分析】利用平均数求法和方差的方法分别列式求得平均数和方差得出答案即可. 【详解】∵x 1、x 2、…x n 的平均数为2, ∴x 1+x 2+…+x n =2n , ∴12252525n x x x n++++⋯++ =2×2+5=9,∵原平均数为2,新数据的平均数变为9, 则原来的方差S 12=1n[(x 1-2)2+(x 2-2)2+…+(x n -2)2]=3, 现在的方差S 22=1n[(2x 1+5-9)2+(2x 2+5-9)2+…+(2x n +5-9)2] =1n[4(x 1-2)2+4(x 2-2)2+…+4(x n -2)2]=4×3=12. 故答案为:9,12. 【点睛】此题考查平均数与方差的意义,掌握平均数与方差的计算方法是解题的关键. 12.图中显示的是某商场日用品柜台10名售货员4月份完成销售额(单位:千元)的情况,根据统计图,我们可以计算出该柜台的人均销售额为___________千元.67【分析】首先根据题意求出销售额为5千元的人数由此进一步求出该柜台的人均销售额即可【详解】由题意得:销售额为5千元的人数为:(人)∴该柜台的人均销售额为:(千元)故答案为:【点睛】本题主要考查了平解析:6.7 【分析】首先根据题意求出销售额为5千元的人数,由此进一步求出该柜台的人均销售额即可. 【详解】 由题意得:销售额为5千元的人数为:1012214----=(人),∴该柜台的人均销售额为:()1324452812010 6.7⨯+⨯+⨯+⨯+⨯÷=(千元), 故答案为:6.7. 【点睛】本题主要考查了平均数的计算,熟练掌握相关概念是解题关键.13.有一组数据:1,3,5,3,若再添加一个数,所得的新一组数据与原数据的中位数,众数,平均数都没有发生变化,则添加的数为____.3【分析】依据定义和公式分别计算新旧两组数据的平均数中位数众数求解即可【详解】原数据的1335的平均数为=3中位数为=3众数为3;添加的数为3后新数据13335的平均数为=3中位数为3众数为3;故答解析:3. 【分析】依据定义和公式分别计算新旧两组数据的平均数、中位数、众数求解即可. 【详解】原数据的1、3、3、5的平均数为13354+++ =3,中位数为332+=3,众数为3;添加的数为3后,新数据1、3、3、3、5的平均数为133355++++ =3,中位数为3,众数为3; 故答案为:3. 【点睛】此题考查众数、中位数、平均数,熟练掌握相关概念和公式是解题的关键.14.已知一组数据-1,x ,0, 1,-2的平均数是0,这组数据的极差和标准差分别是 _____4【解析】试题解析:4 【解析】 试题∵x=0-(-1+0-2+1), 解得x=2,故极差为:2-(-2)=4, 则方差s 2=15[(-1-0)2+(2-0)2+(0-0)2+(1-0)2+(-2-0)2]=2,.15.若一组数据4,,5,,7,9x y 的平均数为6,众数为5,则这组数据的方差为__________.【分析】根据平均数的计算公式可得再根据众数是5所以可得xy中必须有一个5则另一个就是6通过方差的计算公式计算即可【详解】解:∵一组数据的平均数为6众数为5∴中至少有一个是5∵一组数据的平均数为6∴∴解析:83【分析】根据平均数的计算公式,可得11x y +=,再根据众数是5,所以可得x,y 中必须有一个5,则另一个就是6,通过方差的计算公式计算即可. 【详解】解:∵一组数据4,,5,,7,9x y 的平均数为6,众数为5, ∴,x y 中至少有一个是5,∵一组数据4,,5,,7,9x y 的平均数为6,∴()4579166x y +++++=, ∴11x y +=,∴,x y 中一个是5,另一个是6,∴这组数据的方差为()()()()()22222846256661[]676963-+-+-+-+-=; 故答案为83. 【点睛】本题是一道数据统计中的综合性题目,涉及知识点较多,应当熟练掌握,特别是记忆方差的计算公式.16.某校在“爱护地球,绿化祖国“的创建活动中,组织了100名学生开展植数造林活动,其植树情况整理如下表:则这100名学生所植树棵数的中位数为_____.5【解析】【分析】直接利用中位数定义求解【详解】第50个数和第55个数都是5所以这100名学生所植树棵数的中位数为5(棵)故答案为5【点睛】考查了中位数:将一组数据按照从小到大(或从大到小)的顺序排解析:5 【解析】 【分析】直接利用中位数定义求解. 【详解】第50个数和第55个数都是5,所以这100名学生所植树棵数的中位数为5(棵). 故答案为5.【点睛】考查了中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.17.已知一组数据5,10,15,x,9的平均数是8,那么这组数据的中位数是______.9【解析】【分析】根据平均数的定义先求出x的值再根据中位数的定义即可得出答案【详解】根据平均数的定义可知(5+10+15+x+9)÷5=8解得:x=1把这组数据从小到大的顺序排列为1591015处于解析:9【解析】【分析】根据平均数的定义先求出x的值,再根据中位数的定义即可得出答案.【详解】根据平均数的定义可知,(5+10+15+x+9)÷5=8,解得:x=1,把这组数据从小到大的顺序排列为1,5,9,10,15,处于中间位置的那个数是9,那么由中位数的定义可知,这组数据的中位数是9;故答案为9.【点睛】考查了中位数,掌握中位数的定义是本题的关键;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.18.已知一组数据的方差s2=14[(x1﹣6)2+(x2﹣6)2+(x3﹣6)2+(x4﹣6)2],那么这组数据的总和为_____.24【分析】根据方差公式S2=(x1﹣)2+(x2﹣)2+…+(xn ﹣)2中各个字母表示的意义得出这组数据的平均数是6数据个数是4从而得出这组数据的总和【详解】∵s2=(x1﹣6)2+(x2﹣6)2解析:24【分析】根据方差公式S2=1n[(x1﹣x)2+(x2﹣x)2+…+(x n﹣x)2]中各个字母表示的意义,得出这组数据的平均数是6,数据个数是4,从而得出这组数据的总和.【详解】∵s2=14[(x1﹣6)2+(x2﹣6)2+(x3﹣6)2+(x4﹣6)2],∴这组数据的平均数是6,数据个数是4,∴这组数据的总和为4×6=24.故答案为24.【点睛】本题考查了方差的定义:一般地设n 个数据,x 1,x 2,…x n 的平均数为x ,则方差S 2=1n[(x 1﹣x )2+(x 2﹣x )2+…+(x n ﹣x )2]. 19.已知x 1,x 2,x 3的平均数x =10,方差s 2=3,则2x 1,2x 2,2x 3的平均数为__________,方差为__________.2012【解析】∵=10∴=10设222的方差为则=2×10=20∵∴==4×3=12故答案为20;12点睛:本题考查了当数据加上一个数(或减去一个数)时方差不变即数据的波动情况不变平均数也加或减这解析:20 12 【解析】 ∵x =10, ∴1233x x x ++=10, 设21x ,22x ,23x 的方差为, 则1232223x x x y ++==2×10=20,∵22221231(10)(10)(10)3s x x x ⎡⎤=-+-++⎣⎦ , ∴22221231(2)(2)(2)S x y x y x y n '⎡⎤=-+-+-⎣'⎦ =132221234(10)4(10)4(10)x x x ⎡⎤-+-++⎣⎦ =4×3=12.故答案为20;12.点睛:本题考查了当数据加上一个数(或减去一个数)时,方差不变,即数据的波动情况不变,平均数也加或减这个数;当乘以一个数时,方差变成这个数的平方倍,平均数也乘以这个数.20.某校准备从甲、乙、丙、丁四个科创小组中选出一组,参加区青少年科技创新大赛,表格反映的是各组平时成绩的平均数x (单位:分)及方差S 2,如果要选出一个成绩较好且状态稳定的组去参赛,那么应选的组是_____.丙【分析】先比较平均数得到乙组和丙组成绩较好然后比较方差得到丙组的状态稳定于是可决定选丙组去参赛【详解】因为乙组丙组的平均数比甲组丁组大而丙组的方差比乙组的小所以丙组的成绩比较稳定所以丙组的成绩较好解析:丙【分析】先比较平均数得到乙组和丙组成绩较好,然后比较方差得到丙组的状态稳定,于是可决定选丙组去参赛.【详解】因为乙组、丙组的平均数比甲组、丁组大,而丙组的方差比乙组的小,所以丙组的成绩比较稳定,所以丙组的成绩较好且状态稳定,应选的组是丙组.故答案为丙.【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数的意义.三、解答题21.为了倡导“节约用水,从我做起”的活动,某市政府决定对市直机关500户家庭的用水情况作一次调查,调查小组随机抽查了其中100户家庭一年的月平均用水量(单位:吨).并将调查结果制成了如图所示的条形统计图.(1)这100个样本数据的平均数是、众数是和中位数是;(2)根据样本数据,估计该市直机关500户家庭中月平均用水量不超过12吨的约有多少户?解析:(1)11.6吨,11吨,11吨;(2)约有350户.【分析】(1)根据平均数的计算公式、众数与中位数的定义即可得;(2)先求出月平均用水量不超过12吨的户数占比,再乘以500即可得.【详解】(1)这100个样本数据的平均数是1020114012101320141011.6100⨯+⨯+⨯+⨯+⨯=(吨),因为11吨出现的次数最多,所以众数是11吨,由中位数的定义得:将这100个样本数据按从小到大进行排序后,第50个和第51个数据的平均数即为中位数,则中位数是1111112+=(吨),故答案为:11.6吨,11吨,11吨;(2)月平均用水量不超过12吨的户数占比为204010100%70% 100++⨯=,则70%500350⨯=(户),答:500户家庭中月平均用水量不超过12吨的约有350户.【点睛】本题考查了平均数的计算公式、众数与中位数的定义、用样本估计总体,熟练掌握数据分析的相关知识是解题关键.22.为了了解某学校八年级学生每周平均体育锻炼时间的情况,随机抽查了该年级的部分学生,对其每周锻炼时间进行统计,根据统计数据绘制成图1和图2两个不完整的统计图.请你根据统计图提供的信息,回答下列问题:(1)本次共抽取了学生人,并请将图1条形统计图补充完整;(2)这组数据的中位数是,求出这组数据的平均数;(3)若八年级有学生1800人,请你估计体育锻炼时间为3小时的学生有多少人?解析:(1)60;(2)中位数是3小时,平均数是2.75小时;(3)600.【分析】(1)根据统计图求出2小时人数所占百分比,再根据2小时的人数可以求得本次共抽取了学生多少人,阅读3小时的学生有多少人,从而可以将条形统计图补充完整;(2)根据统计图中的数据可以求得众数和平均数;(3)根据统计图中的数据可以求得课外阅读时间为3小时的学生有多少人.【详解】由扇形统计图知,2小时人数所占的百分比为90360︒⨯︒100%=25%,∴本次共抽取的学生人数为15÷25%=60(人),则3小时的人数为60﹣(10+15+10+5)=20(人),补全条形图如下:故答案为60;(2)这组数据的中位数是332+=3(小时),平均数为1102153204105560⨯+⨯+⨯+⨯+⨯=2.75(小时).故答案为中位数是3小时.平均数为2.75小时.(3)估计体育锻炼时间为3小时的学生有18002060⨯=600(人). 【点睛】本题考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.在“慈善一日捐”活动中,为了解某校学生的捐款情况,抽样调查了该校部分学生的捐款数(单位:元),并绘制成下面的统计图.(1)本次调查的样本容量是________,这组数据的众数为________元; (2)求这组数据的平均数;(3)该校共有600学生参与捐款,请你估计该校学生的捐款总数.解析:(1)30,10;(2)平均数为12元;(3)学生的捐款总数为7200元. 【分析】(1)由题意得出本次调查的样本容量是6118530+++=,由众数的定义即可得出结果;(2)由加权平均数公式即可得出结果; (3)由总人数乘以平均数即可得出答案. 【详解】(1)本次调查的样本容量是6118530+++=,这组数据的众数为10元; 故答案为30,10;(2)这组数据的平均数为6511108155201230⨯+⨯+⨯+⨯=(元);(3)估计该校学生的捐款总数为600127200⨯=(元). 【点睛】此题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.本题也考查了平均数、中位数、众数的定义以及利用样本估计总体的思想.24.为宣传6月6日世界海洋日,某校九年级举行了主题为“珍惜海洋资源,保护海洋生物多样性”的知识竞赛活动.为了解全年级500名学生此次竞赛成绩(百分制)的情况,随机抽取了部分参赛学生的成绩,整理并绘制出如下不完整的统计表(表1)和统计图(如图).表1知识竞赛成绩分组统计表 组别分数/分 频数A6070x ≤< aB7080x ≤< 10 C8090x ≤< 14 D90100x ≤<18请根据图表信息解答以下问题:(1)本次调查一共随机抽取了________个参赛学生的成绩,表1中a =________; (2)所抽取的参赛学生的成绩的中位数落在的“组别”是________;(3)请你估计,该校九年级竞赛成绩达到80分以上(含80分)的学生约多少人? 解析:(1)50; 8;(2)C 组;(3)320人 【分析】(1)利用统计表和扇形统计图中D 组的信息可得样本容量,从而得出表1中A 对应的人数;(2)成绩已经按照从小到大的顺序排列,找出最中间的2人,即第25和第26位,取二者的平均值即可;(3)先求出80分以上的比例,然后乘总人数可得. 【详解】解:(1)本次调查一共随机抽取学生:1836%50÷=(人),8a = (2)∵抽样了50人,则最中间的为第25和第26位的平均值第25位落在C 组,第26位落在C 组 ∴中位数落在C 组(3)该校九年级竞赛成绩达到80分以上(含80分)的学生有141850032050+⨯=(人) 【点睛】本题考查调查与统计,解题关键是结合残缺不全的统计表和扇形统计图,得出样本容量. 25.2020年拟继续举办丽水市中学生汉字听写、诗词诵写大赛.经过初赛、复赛,选出了两个代表队参加市内7月份的决赛.两个队各选出的5名选手的复赛成绩如图所示.(1)根据图示补全下表;平均数(分) 中位数(分) 众数(分)A 队83 85B 队95(2)结合两队成绩的平均数和中位数,分析哪个队的复赛成绩较好; (3)计算两队成绩的方差,并判断哪一个代表队选手成绩较为稳定.解析:(1)A 众数85,B 平均数83,中位数80;(2)A 队;(3)226A S =,2106B S =,A 队选手成绩较为稳定.【分析】(1)根据条形统计图即可求出A 队的众数,将B 队的分数从小到大排列即可求出B 队的中位数,然后根据平均数公式即可求出B 队的平均分; (2)结合两队成绩的平均数和中位数即可得出结论;(3)根据方差公式:()()()2222121n S x x x x x x n ⎡⎤=-+-++-⎢⎥⎣⎦计算出A 、B 两队的方差,从而得出结论. 【详解】解:()1由条形统计图可知:A 队的众数为85, 将B 队的分数从小到大排列为70,75,80,95,95 ∴B 队的中位数为80,B 队的平均分为(70+75+80+95+95)÷5=83 补全图表如下:()2两队成绩的平均分一样,但A 队成绩的中位数高,故A 队成绩较好()3()()()()()222222175838083858385839083265A S =⎡-+-+-+-+⎤⎦=⎣-, ()()()()()222222170839583958375838083106,5B S =-+-+-+-+-=⎡⎤⎣⎦∵26106<,因此A 队选手成绩较为稳定. 【点睛】此题考查的是平均数、众数、中位数和方差的意义和求法,掌握平均数、众数、中位数和方差的定义和公式是解决此题的关键.26.图甲和图乙分别是A ,B 两家酒店去年下半年的月营业额(单位:百万元)统计图.(1)求A 酒店12月份的营业额a 的值.(2)已知B 酒店去年下半年的月平均营业额为2.3百万元,求8月份的月营业额,并补全折线统计图.(3)完成下面的表格(单位:百万元)(4)综合以上分析,你认为哪一些数据更能较为准确的反映酒店的经营业绩?你认为哪家酒店的经营状况较好?请简述理由.解析:(1)4百万元;(2)3百万元,见解析;(3)2.5,见解析;(4)平均数,中位数反映酒店的经营业绩,A酒店的经营状况较好,见解析【分析】(1)想办法求出12月份的扇形图中的圆心角,构建方程即可解决问题;(2)根据平均数的定义即可解决问题;(3)根据平均数,中位数,众数的定义计算即可;(4)平均数,中位数反映酒店的经营业绩,A酒店的经营状况较好.【详解】解:(1)设7、8、9、10所占的圆心角为x.则有:2.4 2.2 2.2 1.2x+++=372,解得x=192°,∴12月份的圆心角为360°-192°-72°=96°,则有:a96=372,∴a=4百万元,(2)由题意,8月份的月营业额为3百万元.作图:(3)A酒店的平均数=3 2.4 2.2 2.2 1.246+++++=2.5,B酒店的中位数为1.9,众数为1.7,故答案为2.5,1.9,1.7.(4)平均数,中位数反映酒店的经营业绩,A酒店的经营状况较好.理由:平均数.中位数比较大.【点睛】此题考查折线统计图、扇形统计图、中位数、平均数、众数,解题的关键是熟练掌握基本知识.27.某班级从甲、乙两位同学中选派一人参加知识竞赛,老师对他们的五次模拟成绩(单位:分)进行了整理,并计算出甲成绩的平均数是80分,甲、乙成绩的方差分别是320,40,但绘制的统计图表尚不完整.甲、乙两人模拟成绩统计表第一次第二次第三次第四次第五次甲成绩901009050a乙成绩8070809080甲、乙两人模拟成绩折线图根据以上信息,请你解答下列问题:(1)a=(2)请完成图中表示甲成绩变化情况的折线;(3)求乙成绩的平均数;(4)从平均数和方差的角度分析,谁将被选中.解析:(1)70;(2)详见解析;(3)80;(4)乙将被选中,理由详见解析【分析】(1)根据平均数公式即可求得a的值;(2)根据(1)计算的结果即可作出折线图;(3)利用平均数公式即可秋求解;(4)首先比较平均数,选择平均数大的,若相同,则比较方差,选择方差小,比较稳定的.【详解】解:(1)根据题意得:901009050805a++++=,解得:a=70.(2)完成图中表示甲成绩变化情况的折线如图:(3)()乙1=8070809080=805x ++++, (4)甲乙成绩的平均数相同,乙的方差小于甲的方差,乙比甲稳定,所以乙将被选中. 【点睛】本题考查了折线图的意义和平均数的概念.平均数是指在一组数据中所有数据之和再除以数据的个数.平均数是表示一组数据集中趋势的量数,它是反映数据集中趋势的一项指标.解答平均数应用题的关键在于确定“总数量”以及和总数量对应的总份数.28.某学校八年级开展英语拼写大赛,一班和二班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩如图所示: (1)根据图示填写下表 班级 中位数(分) 众数(分)平均数(分)一班 85二班10085(2)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩比较好? (3)已知一班的复赛成绩的方差是70,请求出二班复试成绩的方差,并说明哪个班成绩比较稳定?解析:(1)85、85 80(2)一班成绩好些.因为两班平均数相等,一班的中位数高,所以一班成绩好些.(回答合理即可)(3)一班成绩较为稳定. 【分析】(1)观察图分别写出一班和二班5名选手的复赛成绩,然后根据中位数的定义和平均数的求法以及众数的定义求解即可;(2)在平均数相同的情况下,中位数高的成绩较好; (3)根据方差公式计算即可:S 2=()()()222121n x x x x x x n ⎡⎤-+--⎣⎦(可简单记忆为“等于差方的平均数”) 【详解】解:(1)由条形统计图可知一班5名选手的复赛成绩为:75、80、85、85、100, 二班5名选手的复赛成绩为:70、100、100、75、80, 一班的众数为85,一班的平均数为(75+80+85+85+100)÷5=85,二班的中位数是80;(2)一班成绩好些.因为两班平均数相等,一班的中位数高,所以一班成绩好些.(回答合理即可)(3)S二班2=()()()()() 22222 70851008510085758580851605-+-+-+-+-=因为S一班2=70则S一班2<S二班2,因此一班成绩较为稳定.【点睛】本题考查了中位数、众数以及平均数的求法,同时也考查了方差公式,解题的关键是牢记定义并能熟练运用公式.。
八年级数学《数据的分析》知识点归纳与经典例题【课标要求】知识与技能目标考点总体、个体、样本、样本容量平均数、众数、中位数极差、方差、标准差课标要求了解总体、个体、样本、样本容量等概念的意义理解平均数、加权平均数的意义,会求一组数据的平均数了解众数、中位数的作用会求一组数据的众数与中位数了解极差、方差和标准差的概念了解极差、方差和标准差的作用会求一组数据的极差、方差、标准差了解∨∨∨∨理解掌握∨∨∨灵活应用【知识梳理】1.解统计学的几个基本概念总体、个体、样本、样本容量是统计学中特有的规定,准确把握教材,明确所考查的对象是解决有关总体、个体、样本、样本容量问题的关键。
2.平均数当给出的一组数据,都在某一常数a上下波动时,一般选用简化平均数公式x=x'+a,其中a是取接近于这组数据平均数中比较“整”的数;•当所给一组数据中有重复多次出现的数据,常选用加权平均数公式。
3.众数与中位数平均数、众数、中位数都是用来描述数据集中趋势的量。
平均数的大小与每一个数据都有关,任何一个数的波动都会引起平均数的波动,当一组数据中有个数据太高或太低,用平均数来描述整体趋势则不合适,用中位数或众数则较合适。
中位数与数据排列有关,个别数据的波动对中位数没影响;当一组数据中不少数据多次重复出现时,可用众数来描述。
4.极差用一组数据中的最大值减去最小值所得的差来反映这组数据的变化范围,这种方法得到的差称为极差,极差=最大值-最小值。
5.方差与标准差用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差,计算公式是s2=1n[(x1-x)2+(x2-x)2+…+(x n-x)2];标准差=方差方差和标准差都是反映一组数据的波动大小的一个量,其值越大,波动越大,也越不稳定或不整齐。
【能力训练】一、填空题:1.甲、乙、丙三台包装机同时分装质量为400 克的茶叶.从它们各自分装的茶叶中分别 随机抽取了 10 盒,测得它们的实际质量的方差如下表所示:甲包装机乙包装机 丙包装机根据表中数据,可以认为三台包装机方差 7.9616.3231.96(克 2)中, 包装机包装的茶叶质量最稳 定。
数据的分析单元复习一、基本概念:1.总体、个体、样本及样本容量总体是指考察的对象的全体;个体是总体中的每一个考察的对象;样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分这四个概念时,首先找出考察的对象,从而找出总体、个体,再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.2.平均数:算数平均数:一组数据中,有n 个数据n x x x ,,, 21,则它们的算术平均数为 nx x x x n+++=213.中位数:将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数。
4.众数:一组数据中出现次数最多的数据就是这组数据的众数。
5.极差:一组数据中的最大数据与最小数据的差叫做这组数据的极差。
极差反映的是数据的变化范围。
代表的意义:平均数:反映了一组数据的平均大小,常用来一代表数据的总体 “平均水平”。
(受极端值影响) 中位数:像一条分界线,将数据分成前半部分和后半部分,因此用来代表一组数据的“中等水平”。
则N 为奇数时,N 为偶数时,众数:反映了出现次数最多的数据,用来代表一组数据的“多数水平”。
这三个统计量虽反映有所不同,但都可表示数据的集中趋势,都可作为数据一般水平的代表。
(中位数,众数不受极端值影响)6.方差:设有n 个数据n x x x ,,, 21,各数据与它们的平均数的差的平方分别是2221)()(x x x x --,,…,,, 2)(x x n -我们用它们的平均数,即用 ])()()[(1222212x x x x x x nS n -++-+-=来衡量这组数据的波动大小,并把它叫做这组数据的方差。
方差越大,数据的波动越大;方差越小,数据的波动越小,就越稳定。
二、方差、标准差的计算设有n 个数据n x x x ,,, 21,各数据与它们的平均数的差的平方分别是2221)()(x x x x --,,…,,, 2)(x x n -我们用它们的平均数,即用 ])()()[(1222212x x x x x x nS n -++-+-=来衡量这组数据的波动大小,并把它叫做这组数据的方差。
松阳中学八年级数学复习数据的分析知识点1.加平均数:若在一数字中,出次,出次,⋯ ,出次,那么叫做、、⋯、的加平均数。
其中,、、⋯ 、分是、、⋯、它的的理解 :反映了某个数据在整个数据中的重要程度。
的表示方法:比、百分比、数(人数、个数、次数等)。
2.中位数:将一数据按照由小到大(或由大到小)的序排列,如果数据的个数是奇数,于中位置的数就是数据的中位数;如果数据的个数是偶数,中两个数据的平均数就是数据的中位数。
3.众数:一数据中出次数最多的数据就是数据的众数。
4.平均数中位数众数的区与系相同点平均数、中位数和众数三个量的相同之主要表在:都是来描述数据集中的量;都可用来反映数据的一般水平;都可用来作一数据的代表。
不同点它之的区,主要表在以下方面。
1)、定不同平均数:一数据的和除以数据个数所得到的商叫数据的平均数。
中位数:将一数据按大小序排列,在最中位置的一个数叫做数据的中位数。
众数:在一数据中出次数最多的数叫做数据的众数。
2)、求法不同平均数:用所有数据相加的和除以数据的个数,需要算才得求出。
中位数:将数据按照从小到大或从大到小的序排列,如果数据个数是奇数,于最中位置的数就是数据的中位数;如果数据的个数是偶数,中两个数据的平均数是数据的中位数。
它的求出不需或只需的算。
众数:一数据中出次数最多的那个数,不必算就可求出。
3)、个数不同在一数据中,平均数和中位数都具有惟一性,但众数有不具有惟一性。
在一数据中,可能不止一个众数,也可能没有众数。
4)、代表不同平均数:反映了一数据的平均大小,常用来一代表数据的体“平均水平”。
中位数:像一条分界,将数据分成前半部分和后半部分,因此用来代表一数据的“中等水平”。
众数:反映了出次数最多的数据,用来代表一数据的“多数水平”。
三个量反映有所不同,但都可表示数据的集中,都可作数据一般水平的代表。
5)、特点不同平均数:与每一个数据都有关,其中任何数据的都会相引起平均数的。
2019 初三数学中考复习数据的收集、整理与分析专题复习练习1.下列调查中,最适宜采用普查方式的是( B )A.对我国初中学生视力状况的调查B.对量子科学通信卫星上某种零部件的调查C.对一批节能灯管使用寿命的调查D.对“最强大脑”节目收视率的调查2.为了解某市参加中考的25000名学生的身高情况,抽查了其中1200名学生的身高进行统计分析.下面叙述正确的是( B )A.25000名学生是总体B.1200名学生的身高是总体的一个样本C.每名学生是总体的一个个体D.以上调查是全面调查3.积极行动起来,共建节约型社会!我市某居民小区200户居民参加了节水行动,现统计了10户家庭一请你估计该200户家庭这个月节约用水的总量是( A )A.240吨 B.360吨 C.180吨 D.200吨4.某校规定学生的学期数学成绩满分为100分,其中研究性学习成绩占40%,期末卷面成绩占60%,小明的两项成绩(百分制)依次是80分,90分,则小明这学期的数学成绩是( D )A.80分 B.82分 C.84分 D.86分5则这12A.2,20岁 B.2,19岁 C.19岁,20岁 D.19岁,19岁6.如图是某市2019年四月每日的最低气温(℃)的统计图,则在四月份每日的最低气温这组数据中,中位数和众数分别是( A )A.14℃,14℃ B.15℃,15℃C.14℃,15℃ D.15℃,14℃7.学校射击队计划从甲、乙两人中选拔一人参加运动会射击比赛,在选拔过程中,每人射击10次,计请你根据上表中的数据选一人参加比赛,最适合的人选是__乙__.8.第十二届全国人大四次会议审议通过的《中华人民共和国慈善法》将于今年9月1日正式实施,为了了解居民对慈善法的知晓情况,某街道办从辖区居民中随机选取了部分居民进行调查,并将调查结果绘制成如图所示的扇形图.若该辖区约有居民9000人,则可以估计其中对慈善法“非常清楚”的居民约有__2700__人.9.“植树节”时,九年级(1)班6个小组的植树棵数分别是:5,7,3,x ,6,4.已知这组数据的众数是5,则该组数据的平均数是__5__.10.在一次数学测试中,某班50名学生的成绩分为六组,第一组到第四组的频数分别为6,8,9,12,第五组的频率是0.2,则第六组的频数是__5__.11.两组数据:3,a ,2b ,5与a ,6,b 的平均数都是6,若将这两组数据合并为一组数据,则这组新数据的中位数为__6__.12.某市开展“美丽自贡,创卫同行”活动,某校倡议学生利用双休日在“花海”参加义务劳动,为了解同学们劳动情况,学校随机调查了部分同学的劳动时间,并用得到的数据绘制了不完整的统计图,根据图中信息回答下列问题: (1)将条形统计图补充完整;(2)扇形图中的“1.5小时”部分圆心角是多少度? (3)求抽查的学生劳动时间的众数、中位数.解:(1)根据题意得:30÷30%=100(人),∴学生劳动时间为“1.5小时”的人数为100-(12+30+18)=40(人),补图略(2)根据题意得:40÷100×360°=144°,则扇形图中的“1.5小时”部分圆心角是144° (3)根据题意得:抽查的学生劳动时间的众数为1.5小时、中位数为1.5小时13.某中学开展以“我最喜爱的职业”为主题的调查活动,围绕“在演员、教师、医生、律师、公务员共五类职业中,你最喜爱哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)求在被调查的学生中,最喜爱教师职业的人数,并补全条形统计图;(3)若这个中学共有1500名学生,请你估计该中学最喜爱律师职业的学生有多少名?解:(1)12÷20%=60(名),共调查了60名学生 (2)最喜爱教师职业的人数为9人.补图略 (3)660×1500=150(名)答:该中学最喜爱律师职业的学生有150名 14. 某中学为了了解学生平均每天“诵读经典”的时间,在全校范围内随机抽查了部分学生进行调查统计,并将调查统计的结果分为:每天诵读时间t≤20分钟的学生记为A 类,20分钟<t≤40分钟的学生记为B 类,40分钟<t≤60分钟的学生记为C 类,t >60分钟的学生记为D 类四种.将收集的数据绘制成如下两幅不完整的统计图.请根据图中提供的信息,解答下列问题:(1)m=____%,n=____%,这次共抽查了____名学生进行调查统计.请补全上面的条形图;(2)这组数据的中位数在____类;(3)如果该校共有1200名学生,请你估计该校C类学生约有多少人?解:(1)26,14,50,由题意可得,C类的学生数为:50×20%=10,补图略(2)B(3)1200×20%=240(人),即该校C类学生约有240人2019-2020学年数学中考模拟试卷一、选择题1.如图,在长方形网格中,每个小长方形的长为2,宽为1,A、B两点在网格格点上,若点C也在网格格点上,以A、B、C为顶点的三角形面积为2,则满足条件的点C个数是()A.2 B.3C.4 D.52.如图,在平行四边形ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论①∠DCF=12∠BCD;②S△BEC=2S△CEF;③∠DFE=3∠AEF;④当∠AEF=54°时,则∠B=68°,中一定成立的是()A.①③B.②③④C.①④D.①③④3.一元二次方程2x2-4x+1=0的根的情况是()A.没有实数根B.只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根4.在平面直角坐标系中,点P(3,-5)关于原点对称的点的坐标是()A.(3,5) B.(3,-5) C.(-3,-5) D.(-3,5)5.若55+55+55+55+55=25n,则n的值为()A.10 B.6 C.5 D.36.计算﹣6+1的结果为()A.﹣5 B.5 C.﹣7 D.77.如图,将边长为10的正三角形OAB放置于平面直角坐标系xOy中,C是AB边上的动点(不与端点A,B重合),作CD⊥OB于点D,若点C,D都在双曲线y=kx上(k>0,x>0),则k的值为()A.B.C.9 D.8.如图,四边形ABCD是O的内接四边形,AB是O的直径,点E是DB延长线上的一点,且90DCE ∠=︒,DC 与AB 交于点G .当BA 平分DBC ∠时,BDDE的值为( )A .12B .13C D .29.如图,平行四边形ABCD 的对角线相交于点O ,且AD >AB ,过点O 作OE ⊥AC 交AD 于点E ,连接CE ,若平行四边形ABCD 的周长为20,则△CDE 的周长是( )A.10B.11C.12D.1310.如图,在△ABC 中,点D 在AB 边上,点E 在AC 边上DE ∥BC ,点B 、C 、F 在一条直线上,若∠ACF =140°,∠ADE =105°,则∠A 的大小为( )A .75°B .50°C .35°D .30°11.如图①,在菱形ABCD 中,动点P 从点B 出发,沿折线B→C→D→B 运动.设点P 经过的路程为x ,△ABP 的面积为y .把y 看作x 的函数,函数的图象如图②所示,则图②中的b 等于( )A .B .C .5D .412.已知m 2=|m|的估算正确的( ) A .2<|m|<3 B .3<|m|<4C .4<|m|<5D .5<|m|<6二、填空题13.如图,平面直角坐标系中,点A (0,-2),B (-1,0),C (-5,0),点D 从点B 出发,沿x 轴负方向运动到点C ,E 为AD 上方一点,若在运动过程中始终保持△AED ~△AOB ,则点E 运动的路径长为_______________14.如图,在ABC △中,,点D 在BC 上,且BD BA =,ABC ∠的平分线BE 交AD 于点E ,点F 是AC 的中点,连结EF .若四边形DCFE 和△BDE 的面积都为3,则△ABC 的面积为____.15.将抛物线y =x 2+2x+3向左平移2个单位长度,再向下平移3个单位长度,得到的抛物线的函数表达式为_____.16.如图,⊙O 上B 、D 两点位于弦AC 的两侧,AB BC =,若∠D =56°,则∠AOB =_____.17.如图,在△ABC 中,按以下步骤作图:①分别以点A 和点C 为圆心,以大于12AC 的长为半径作对弧,两弧相交于M 、N 两点;②作直线MN 交BC 于点D ,交AC 于E ,连接AD ,若AD=BD ,AB=6,则DE=_____.18.为了说明命题“等腰三角形腰上的高小于腰”是假命题,可以找的反例是_____. 三、解答题19.如图,小明在M 处用高1.5米(DM=1.5米)的测角仪测得学校旗杆AB 的顶端B 的仰角为32°,再向旗杆方向前进9米到F 处,又测得旗杆顶端B 的仰角为64°,请求出旗杆AB 的高度(sin64°≈0.9,cos64°≈0.4,tan64°≈2.1,结果保留整数).20.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,过点B 作AC 的平行线交DC 的延长线于点E . (1)求证:BD =BE ;(2)若BE =10,CE =6,连接OE ,求△ODE 的面积.21.某工厂计划生产A 、B 两种产品共60件,需购买甲、乙两种材料,生产一件A 产品需甲种材料4千克,乙种材料1千克;生产一件B 产品需甲、乙两种材料各3千克,经测算,购买甲、乙两种材料各1千克共需资金60元;购买甲种材料2千克和乙种材料3千克共需资金155元. (1)甲、乙两种材料每千克分别是多少元?(2)现工厂生产的B 产品不少于38件且不多于40件,若希望用于购买甲、乙两种材料的资金最少,应如何安排生产?最少购买资金是多少元?22.如图,点C 在⊙O 上,AB 为直径,BD 与过点C 的切线垂直于D ,BD 与⊙O 交于点E . (1)求证:BC 平分∠DBA ; (2)如果cos ∠ABD=12,OA=2,求DE 的长.23.先化简,再计算:2221222x x x x x x x--+--+,其中x 1. 24.九年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”“戏剧”“散文”“其他”四个类型,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图.根据图表提供的信息,解答下列问题:(1)九年级一班有多少名学生?(2)请补全频数分布表,并求出扇形统计图中“其他”类所占的百分比;(3)在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从以上四位同学中任意选出 2 名同学参加学校的戏剧兴趣小组,请用画树状图或列表法的方法,求选取的 2 人恰好是乙和丙的概率.25.为了解学生对博鳌论坛会的了解情况,某中学随机抽取了部分学生进行问卷调查,将调查结果记作“A 非常了解,B了解,C了解较少,D不了解.”四类分别统计,并绘制了下列两幅统计图(不完整).请根据图中信息,解答下列问题:(1)此次共调查了______名学生;扇形统计图中D所在的扇形的圆心角度数为______;(2)将条形统计图补充完整;(3)若该校共有1600名学生,请你估计对博鳌论坛会的了解情况为“非常了解”的学生约有多少人?【参考答案】***一、选择题二、填空题13.14.1015.y=(x+3)2﹣116.56°.17.318.因为等腰直角三角形的腰上的高等于腰,则可以找出该命题的反例,即为等腰直角三角形.三、解答题19.10米【解析】【分析】根据三角形的外角性质求出∠CBD,根据等腰三角形的判定定理求出BC,根据正弦的定义求出BE,计算即可.【详解】解:∠CBD=∠BCE-∠CDB=32°,∴∠CBD=∠CDB,∴CD=CB=9,在Rt△BCE中,sin∠BCE=BE BC,则BE=BC•sin∠BCE≈9×0.9=8.1,∴AB=BE+AE=8.1+1.5=9.6≈10,答:旗杆AB的高约为10米.【点睛】本题考查的是解直角三角形的应用-仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.20.(1)证明见解析(2)24【解析】【分析】(1)根据矩形的对角线相等可得AC=BD,对边平行可得AB∥CD,再求出四边形ABEC是平行四边形,根据平行四边形的对边相等可得AC=BE,从而得证;(2)如图,过点O作OF⊥CD于点F,根据平行四边形的性质得出AC=BE,求出OF和EF的长,从而求得三角形的面积即可.【详解】(1)证明:∵四边形ABCD是矩形,∴AC=BD,AB∥CD,又∵BE∥AC,∴四边形ABEC是平行四边形,∴AC=BE,∴BD=BE;(2)解:过点O作OF⊥CD于点F,∵由(1)知:四边形ABEC为平行四边形,∴AC=BE,∴BE=BD=10,∵△BCD≌△BCE,∴CD=CE=6,∵四边形ABCD是矩形,∴DO=OB,∠BCD=90°,∵OF⊥CD,∴OF∥BC,∴CF=DF=12CD=3,∴EF=6+3=9,在Rt△BCE中,由勾股定理可得BC=8,∵OB=OD,∴OF为△BCD的中位线,∴OF=12BC=4.∴△ODE的面积为12DE•OF=12×12×4=24.【点睛】本题考查了勾股定理,全等三角形的性质和判定,矩形的性质,平行四边形的性质和判定的应用,能综合运用知识点进行推理是解此题的关键,题目综合性比较强,难度偏大.21.(1)甲种材料每千克25元,乙种材料每千克35元;(2)生产A产品22件,B产品38件资金最少.最少9810元【解析】【分析】(1)设甲种材料每千克x元,乙种材料每千克y元,根据“购买甲、乙两种材料各1千克共需资金60元;购买甲种材料2千克和乙种材料3千克共需资金155元”列出二元一次方程组,求解即可.(2)设购买材料的资金为w元,生产B产品a件,根据题意列出w关于a的式子,整理可得W是a的一次函数,然后根据a的取值范围以及一次函数的性质可得结果.【详解】解:(1)设甲种材料每千克x元,乙种材料每千克y元,依题意得:60 23155 x yx y+=⎧⎨+=⎩,解得:2535 xy=⎧⎨=⎩;答:甲种材料每千克25元,乙种材料每千克35元.(2)设购买材料的资金为w元,生产B产品a件,则生产A产品(60﹣a)件.依题意得:()w42535(60a)325a335a45a8100=⨯+⨯-+⨯+⨯=+即W是a的一次函数,∵k=45>0,∴W随a增大而增大∵38≤a≤40∴当a=38时,w=45×38+8100=9810元,购买材料的资金最少;即生产A产品22件,B产品38件资金最少.最少9810元.【点睛】本题考查了二元一次方程组以及一次函数的应用,读懂题意,找到题中等量关系并列出式子是解题关键. 22.(1)证明见解析;(2)1.【解析】【分析】(1)如图1中,连接OC,由CD是⊙O的切线,推出OC⊥CD,由BD⊥CD,推出OC∥BD,推出∠OCB=∠CBD,由OC=OB,推出∠OCB=∠OBC,即可推出∠CBO=∠CBD;(2)如图2,连接AC、AE.易知四边形AEDC是直角梯形,求出CD、AE、BE长,则DE可求出.【详解】(1)证明:如图1中,连接OC,∵CD是⊙O的切线,∴OC⊥CD,∵BD⊥CD,∴OC∥BD,∴∠OCB=∠CBD,∵OC=OB,∴∠OCB=∠OBC,∴∠CBO=∠CBD,∴BC平分∠DBA;(2)解:如图连接AC、AE.∵cos∠ABD=12,∴∠ABD=60°,由(1)可知,∠ABC=∠CBD=30°,在Rt △ACB 中,∵∠ACB=90°,∠ABC=30°,AB=4,在Rt △ABE 中,∵∠AEB=90°,∠BAE=30°,AB=4,∴BE=12AB=2,,在Rt △CDB 中,∵∠D=90°,∠CBD=30°,∴CD=12BD=3, ∴DE=DB-BE=3-2=1. 【点睛】本题考查切线的性质、解直角三角形、角平分线的定义、解直角三角形等特殊角三角函数、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题.23.1x x-,【解析】 【分析】原式约分后,利用同分母分式的减法法则计算得到最简结果,将x 的值代入计算即可求出值. 【详解】 原式=(1)(2)12(1)1212(1)x x x x x x x x x x x x+-++-⋅-=-=-+,当x 时,2=. 【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键. 24.(1)40人;(2)15%;(3)16【解析】 【分析】(1)用散文的频数除以其频率即可求得样本总数; (2)根据其他类的频数和总人数求得其百分比即可;(3)画树状图得出所有等可能的情况数,找出恰好是丙与乙的情况,即可确定出所求概率. 【详解】解:(1)∵喜欢散文的有 10 人,频率为 0.25, ∴总人数=10÷0.25=40(人);(2)在扇形统计图中,“其他”类所占的百分比640×100%=15%,故答案为:15%;(3)画树状图,如图所示:所有等可能的情况有 12 种,其中恰好是丙与乙的情况有 2 种,∴P(丙和乙)=21 126.【点睛】本题考查了用列表法和树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比. 25.(1)120;54°;(2)补图见解析;(3) 400人.【解析】【分析】(1)由B类别人数及其所占百分比可得;用总人数乘以D类别人数占总人数的比例即可得;(2)先用总人数乘以C类别的百分比求得其人数,再根据各类别百分比之和等于总人数求得A的人数即可补全图形;(3)用总人数乘以样本中A类别的人数所占比例即可得.【详解】(1)本次调查的总人数为48÷40%=120(名),扇形统计图中D所在的扇形的圆心角为360°×18120=54°,故答案为:120;54°;(2)C类别人数为120×20%=24(人),则A类别人数为120﹣(48+24+18)=30(人),补全条形图如下:(3)估计对文明城市的了解情况为“非常了解”的学生的人数为1600×30120=400(人).答:该校对博鳌论坛会的了解情况为“非常了解”的学生约有400人.【点睛】此题主要考查了条形统计图和扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.2019-2020学年数学中考模拟试卷一、选择题1.用配方法把一元二次方程2x +6x+1=0,配成2()x p +=q 的形式,其结果是( ) A.2(3)x +=8B.2(3)x -=1C.2(3)x -=10D.2(3)x +=42.下列式子中,属于最简二次根式的是( )3.如图,直线y =kx+b 与y =mx+n 分别交x 轴于点A (﹣1,0),B (4,0),则函数y =(kx+b )(mx+n )中,当y <0时x 的取值范围是( )A.x >2B.0<x <4C.﹣1<x <4D.x <﹣1 或 x >44.我们探究得方程x+y =2的正整数解只有1组,方程x+y =3的正整数解只有2组,方程x+y =4的正整数解只有3组,……,那么方程x+y+z =10的正整数解得组数是( ) A .34B .35C .36D .375.下列图形中,可以看作中心对称图形的是( )A. B. C. D.6.如图,边长为正整数的正方形ABCD 被分成了四个小长方形且点E ,F ,G ,H 在同一直线上(点F 在线段EG 上),点E ,N ,H ,M 在正方形ABCD 的边上,长方形AEFM ,GNCH 的周长分别为6和10.则正方形ABCD 的边长的最小值为( )A .3B .4C .5D .不能确定7.如图,△ABC 中,AB =AC =2,BC =2,D 点是△ABC 所在平面上的一个动点,且∠BDC =60°,则△DBC 面积的最大值是( )A.3B.3C.D.28.我市某储运部紧急调拨一批物资,调进物资共用4小时,调进物资2小时后开始调出物资(调进物资与调出物资的速度均保持不变).储运部库存物资S (吨)与时间t (小时)之间的函数关系如图所示,这批物资从开始调进到全部调出需要的时间是( )A .4小时B .4.3小时C .4.4小时D .5小时9.半径为r 的圆的内接正六边形边长为( )A .1r 2B C .r D .2r10.如图,在△ABC 中,AC 和BC 的垂直平分线l 1和l 2分别交AB 于点D 、E ,若AD =3,DE =4,EB =5,则S △ABC 等于( )A .36B .24C .18D .1211.如图,四边形ABCD 内接于⊙O ,AB 是⊙O 的直径,若∠BAC =20°,则∠ADC 的度数是( )A .90°B .100°C .110°D .130°12.用直尺和圆规作Rt △ABC 斜边AB 上的高线CD ,甲、乙两人的作法如图:根据两人的作法可判断( )A .甲正确,乙错误B .乙正确,甲错误C .甲、乙均正确D .甲、乙均错误二、填空题13.若a ,b 都是实数,b ﹣2,则a b 的值为_____. 14.函数6xy x =-中,自变量x 的取值范围是_______.15.如果2(2+(a ,b 为有理数),那么a+b 等于_____.16.如图,四边形ABCD 是边长为6的正方形,点E 在边AB 上,BE =4,过点E 作EF ∥BC ,分别交BD ,CD 于点G ,F 两点,若M ,N 分别是DG ,CE 的中点,则MN 的长是_____.17.不等式组的解集是_____.18.已知直线m ∥n ,将一块直角三角板ABC (其中∠C =90°,∠BAC =30°)按如图所示方式放置,使A 、B 两点分别落在直线m 、n 上,若∠1=31°,则∠2的度数是_____.三、解答题19.如左图所示的晾衣架,支架主视图的基本图形是菱形,其示意图如右图,晾衣架伸缩时,点G 在射线DP 上滑动,∠CED 的大小也随之发生变化,已知每个菱形边长均等于20cm ,且AH =DE =EG =20cm .当∠CED 由60°变为120°时,点A 向左移动了多少厘米?(结果精确到0.1cm20.已知函数y =y 1+y 2,其中y 1与x 成反比例,y 2与x ﹣2成正比例,函数的自变量x 的取值范围是x≥12,且当x =1或x =4时,y 的值均为32. 请对该函数及其图象进行如下探究:(1)解析式探究:根据给定的条件,可以确定出该函数的解析式为: . (2)函数图象探究: ①根据解析式,补全下表:②根据表中数据,在如图所示的平面直角坐标系中描点,并画出函数图象.(3)结合画出的函数图象,解决问题:①当x=34,214,8时,函数值分别为y1,y2,y3,则y1,y2,y3的大小关系为:;(用“<”或“=”表示)②若直线y=k与该函数图象有两个交点,则k的取值范围是,此时,x的取值范围是.21.如图,双曲线y=kx(x>0)的图象经过点A(12,4),直线y=12x与双曲线交于B点,过A,B分别作y轴、x轴的垂线,两线交于P点,垂足分别为C,D.(1)求双曲线的解析式;(2)求证:△ABP∽△BOD.22.在直角坐标系中,我们把横、纵坐标都为整数的点称为整点.如图,已知整A(2,2),B(4,1),请在所给网格区域(含边界)上找到整点P.(1)画一个等腰三角形PAB,使点P的纵坐标比点A的横坐标大1.(2)若△PAB是直角三角形,则这样的点P共有________个.23.某校一课外小组准备进行“绿色环保”的宣传活动,需要印刷一批宣传单,学校附近有甲、乙两家印刷社,甲印刷社收费y(元)与印数x(张)的函数关系是:y=0.15x;乙印刷社收费y(元)与印数x (张)的函数关系如图所示:(1)写出乙印刷社的收费y(元)与印数x(张)之间的函数关系式;(2)若该小组在甲、乙两印刷社打印了相同数量的宣传单共用去70元,则共打印多少张宣传单?(3)活动结束后,市民反映良好,兴趣小组决定再加印1500张宣传单,若在甲、乙印刷社中选一家,兴趣小组应选择哪家印刷社比较划算?24.某公司要购买一种笔记本供员工学习时使用.在甲文具店不管一次购买多少本,每本价格为2元.在乙文具店购买同样的笔记本,一次购买数量不超过20时,每本价格为2.4元;一次购买数量超过20时,超过部分每本价格为1.8元.设在同一家文具店一次购买这种笔记本的数量为x(x为非负整数).(Ⅰ)根据题意,填写下表:(Ⅱ)设在甲文具店购买这种笔记本的付款金额为1y元,在乙文具店购买这种笔记本的付款金额为2y元,分别写出1y,2y关于x的函数关系式;x 时,在哪家文具店购买这种笔记本的花费少?请说明理由.(Ⅲ)当5025.某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元,调查表明:生产提高一个档次的蛋糕产品,该产品每件利润增加2元(1)若生产第五档次的蛋糕,该档次蛋糕每件利润为多少元?(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1024元,该烘焙店生产的是第几档次的产品?【参考答案】***一、选择题二、填空题13.414.x≠615.101617.﹣2≤x<718.29°三、解答题19.点A向左移动了约43.9cm【解析】【分析】分别求得当∠CED是60°和120°,两种情况下AD的长,求差即可. 【详解】根据题意得:AB=BC=CD,当∠CED=60°时,AD=3CD=60cm,当∠CED=120°时,过点E作EH⊥CD于H,则∠CEH=60°,CH=HD.在直角△CHE中,sin∠CEH=CH CE,∴CH=20•sin60°=20×2=cm),∴CD=,∴AD=cm).∴103.9﹣60=43.9(cm).即点A向左移动了约43.9cm;【点睛】本题考查了菱形的性质,当菱形的一个角是120°或60°时,连接菱形的较短的对角线,即可把菱形分成两个等边三角形.20.(1)2112y xx=+-;(2)①见解析;②见解析;(3)①y2<y1<y3;②1<k≤134,12≤x≤8.【解析】【分析】(1)根据题意设11k y x= ,y 2=k 2(x ﹣2),则12(2)k y k x x =+-,即可解答 (2)将表中数据代入2112y x x =+-,即可解答 (3)①由(2)中图象可得:(2,1)是图象上最低点,在该点左侧,y 随x 增大而减小;在该点右侧y 随x 增大而增大,即可解答 ②观察图象得:x≥12 ,图象最低点为(2,1),再代入即可 【详解】(1)设11k y x= ,y 2=k 2(x ﹣2),则12(2)k y k x x =+- , 由题意得:1212323242k k k k ⎧-=⎪⎪⎨⎪+=⎪⎩ ,解得:12212k k =⎧⎪⎨=⎪⎩, ∴该函数解析式为2112y x x =+- , 故答案为:2112y x x =+-, (2)①根据解析式,补全下表:②根据上表在平面直角坐标系中描点,画出图象.(3)①由(2)中图象可得:(2,1)是图象上最低点,在该点左侧,y 随x 增大而减小;在该点右侧y 随x 增大而增大,∴y 2<y 1<y 3,故答案为:y 2<y 1<y 3,②观察图象得:x≥12,图象最低点为(2,1),∴当直线y=k与该图象有两个交点时,1<k≤134,此时x的范围是:12≤x≤8.故答案为:1<k≤134,12≤x≤8.【点睛】此题考查待定系数法求反比例函数的解析式,列出方程式解题关键21.(1)2yx=;(2)详见解析;【解析】【分析】(1)将点A坐标代入反比例函数解析式中,即可得出结论;(2)先求出点B坐标,进而求出OD,BD,进而判断出AP BPBD OD=,即可得出结论.【详解】(1)∵点A(12,4)在双曲线y=2x上,∴k=12×4=2,∴双曲线的解析式为y=2x;(2)如图,由(1)知,双曲线的解析式为y=2x①,直线OB的解析式为y=12x②,连接①②解得,21xy=⎧⎨=⎩或21xy=-⎧⎨=-⎩(舍去),∴B(2,1),∴BD=1,OD=2,∵CP⊥y轴,PD⊥x轴,∴∠OCP=∠ODP=90°=∠COD,∴四边形OCPD是矩形,∴∠ODB=∠P=90°,CP=OD=2,PD=OC,∵A(12,4),∴OC=4,CA=12,∴AP=CP﹣AC=32,BP=PD﹣1=3,∴33,22 AP BPBD OD==,∴AP BP BD OD=,∵∠P=∠ODB=90°,∴△ABP∽△BOD.【点睛】此题是反比例函数综合题,主要考查了待定系数法,直线与双曲线的交点坐标的确定,相似三角形的判定和性质,判断出AP BPBD OD=,是解本题的关键.22.(1)详见解析;(2)5.【解析】【分析】(1)由点P的纵坐标比点A的横坐标大1知点P的纵坐标为3,再根据整点的概念与等腰三角形的定义作图即可得;(2)根据直角三角形的概念,结合整点概念作图可得.【详解】(1)如图所示,点P与点P'即为所求,(2)如图可知,这样的点P有5个.【点睛】本题主要考查作图-应用与设计作图,解题的关键是掌握等腰三角形的概念、直角三角形的判定与性质.23.(1)0.2(0500)0.150(50)x x y x x ⎧=⎨+>⎩剟;(2)共打印400张宣传单;(3)兴趣小组决定再加印1500张宣传单,兴趣小组应选择乙印刷社比较划算【解析】【分析】(1)分段函数:①0≤x≤500;②x>500;(2)根据函数关系是列方程即可解答;(3)根据两个函数关系是分类讨论,即可解答【详解】解:(1)当0≤x≤500,设y =k 1x ,由题意可知500k 1=100,解得k 1=0.2,即y =0.2x ;当x >500时,设y =k 2x+b ,根据题意得22500100700120k b k b +=⎧⎨+=⎩,2k 0.1b 50=⎧⎨=⎩解得,即y =0.1x+50, 故乙印刷社的收费y (元)与印数x (张)之间的函数关系式为:y =0.2(0500)0.150(50)x x x x <<⎧⎨+>⎩; (2)根据题意得:0.15x+0.2x =70,解得x =200,故共打印400张宣传单;(3)当0≤x≤500时,0.15x <0.20x ,选择甲印刷社;当x >500时,若0.15x <0.1x+50,解得:x <1000,即500<x <1000,选择甲印刷社划算;若0.15x =0.1x+50,解得:x =1000,即x =1000.选择两家印刷社一样划算若0.15x >0.1x+50,解得:x >1000,即x >1000,选择乙印刷社划算综上所述,0≤x<1000时选择甲印刷社划算,x =1000时选择两家印刷社一样划算,x >1000时选择乙印刷社划算.答:兴趣小组决定再加印1500张宣传单,兴趣小组应选择乙印刷社比较划算.【点睛】本题考查一次函数的应用及一元一次不等式的应用,将现实生活中的事件与数学思想联系起来,读懂题意,找出题目蕴含的数量关系解决问题.24.(Ⅰ)40,80;48,84;(Ⅱ)12y x =;当020x ≤≤时,2 2.4y x =;当20x >时,2 1.812y x =+.(Ⅲ)当5060x ≤<时,有0y <,在甲文具店购买这种笔记本的花费少;当60x >时,有0y >,在乙文具店购买这种笔记本的花费少.【解析】【分析】(Ⅰ)根据题意分别求出付款金额即可;(Ⅱ)根据题意可得y 1的解析式,分别讨论0x 20≤≤时和x>20时,根据题意可得y 2的解析式;(Ⅲ) 记12y y y =-,得出x>50时y 关于x 的解析式,根据一次函数的性质解答即可.【详解】(Ⅰ)20×2=40(元),40×2=80(元),2,4×20=48(元)2,4×20+1.8×(40-20)=84(元)故答案为:40,80;48,84.(Ⅱ)根据题意,得1y 2x =.当0x 20≤≤时,2y 2.4x =;当x 20>时,()2y 2.420 1.8x 20 1.8x 12=⨯+⨯-=+.(Ⅲ)当x 50≥时,记()12y y y 2x 1.8x 120.2x 12=-=-+=-.当y 0=时,即0.2x 120-=,得x 60=.∴当x 60=时,在这两家文具店购买这种笔记本的花费相同.∵0.20>,∴y 随x 的增大而增大.∴当50x 60≤<时,有y 0<,在甲文具店购买这种笔记本的花费少;当x 60>时,有y 0>,在乙文具店购买这种笔记本的花费少.【点睛】本题考查一次函数的实际应用,熟练掌握一次函数的性质是解题关键.25.(1该档次蛋糕每件利润为18元;(2)该烘焙店生产的是四档次的产品.【解析】【分析】(1)依题意可求出产品质量在第五档次的每件的利润.(2)设烘焙店生产的是第x 档次的产品,根据单件利润×销售数量=总利润,即可得出关于x 的一元二次方程,解之即可得出结论.【详解】(1)10+2×(5-1)=18(元).答:该档次蛋糕每件利润为18元.(2)设烘焙店生产的是第x 档次的产品,根据题意得:[10+2(x -1)]×[76-4(x -1)]=1024,。
中考试题数据的分析知识点: 总体、个体、样本、样本容量、平均数、众数、中位数、方差总体、个体、样本、样本容量是统计学中特有的规定,准确把握教材,明确所考查的对象 是解决有关总体、个体、样本、样本容量冋题的关键。
例题C . 20名运动员是所抽取的一个样本D .样本容量是201. 加权平均数:当给出的一组数据,都在 某一常数a 上下波动时,一般选用简化 平均数 公式--■ 「,其中a 是取接近于这组数据平均数中比较“整”的数 ;?当所给一组数据中有重复多次出现的数据,常选用加权平均数公式。
例题(1 ) 2、4、7、9、11、13.这几个数的平均数是 __________ (2 ) 一组数据同时减去 80,所得新的一组数据的平均数为2.3,?那么原数据的平均数 ____________ ;(3 ) 8个数的平均数是12, 4个数的平均为18,则这12个数的平均数为 ______________ ;2. 中位数:将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇 数,则处于中间位置的数就是这组数据的中位数 (median);如果数据的个数是偶数,则中间 两个数据的平均数就是这组数据的中位数。
例题(1 )某小组在一次测试中的成绩为:86,92,84,92,85,85,86,94,92,83,则这个小组本次测试成绩的中位数是( ) A . 85B. 86C. 92D. 87.9(2)将9个数据从小到大排列后,第 ____________ 个数是这组数据的中位数3. 众数:一组数据中出现次数最多的数据就是这组数据的众数( mode例题(1) 一个射手连续射靶 22次,其中3次射中10环,7次射中9环,9次射中8环,3次射中7环.则射中环数的中位数和众数分别为()A . 8,9B . 8,8C . 8. 5,8D . 8. 5,9(2)数据按从小到大排列为 1,2,4,X ,6,9,这组数据的中位数为 5,那么这组数据的众数是( )A : 4B : 5C : 5.5D: 61为了了解参加某运动会的说,下面说法正确的是(200名运动员的年龄情况,从中抽查了 )20名运动员的年龄,就这个问题来A . 200名运动员是总体B .每个运动员是总体24.方差:各个数据与平均数之差的平方的平均数,记作 S .用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差,计算公式 是S 2=ll [(X 1-)2+(X 2- )2+…+(X n -・-)];方差是反映一组数据的波动大小的一个量,其值越 大,波动越大,也越不稳定或不整齐。