3.1-液压缸的分类和特点
- 格式:ppt
- 大小:4.10 MB
- 文档页数:85
液压缸公差配合-概述说明以及解释1.引言1.1 概述液压缸是一种常用的液压传动元件,广泛应用于工业自动化领域。
作为液压系统的关键组成部分,液压缸的性能直接影响到系统的运行效率和稳定性。
液压缸是通过液压能将液体的压力能转化为机械能,实现线性运动的装置。
它由一个活塞和一个活塞杆组成,其中活塞杆与活塞形成一个密封腔,液体的压力作用在活塞上,从而推动活塞杆实现线性运动。
液压缸常用于各种机械设备中,如起重机、挖掘机、冲床等。
在液压缸的制造过程中,涉及到公差配合的概念和应用。
公差配合指的是由于制造和装配过程中的误差,活塞与活塞杆之间存在一定的间隙或间隔。
合理的公差配合可以确保液压缸的密封性能和运动精度。
液压缸的公差配合对其性能有着重要的影响。
如果公差配合过紧,会增加液压缸的摩擦阻力,导致能源的浪费和机械部件的磨损加剧;而公差配合过松,则会降低液压缸的稳定性和运动精度。
因此,优化公差配合是提高液压缸性能的关键。
为了优化公差配合并提高液压缸性能,可以采取一些方法和应用。
例如,通过合理设计和选择材料,控制液压缸的生产制造过程,以减小公差配合误差;利用现代制造技术,如数控加工和精密测量,提高公差配合的精度和一致性;采用合适的密封结构和材料,确保液压缸的密封性能。
综上所述,液压缸公差配合是确保液压缸性能的重要因素。
合理的公差配合可以提高液压缸的运动精度和密封性能,从而保证系统的稳定性和效率。
通过优化公差配合的方法和应用,可以进一步提高液压缸的性能和可靠性。
json"1.2文章结构":{"本文将分为三个部分:引言、正文和结论。
在引言部分,将对液压缸公差配合的概念和意义进行介绍,以及本文的目的和结构进行阐述。
在正文部分,将介绍液压缸的工作原理和公差配合的概念与意义,讨论两者之间的关系以及对液压缸性能的影响。
在结论部分,将总结公差配合对液压缸性能的影响,提出优化公差配合的方法和应用,以期对液压缸设计和生产提供参考。
毕业设计(论文)外文资料翻译系部:机械工程系专业:机械工程及自动化姓名:学号:外文出处:HYDRAULICS ANDPNEUMATICS TRANSMISSIONPage38--44附件: 1.外文资料翻译译文;2.外文原文。
指导教师评语:该同学查阅大量资料,完成翻译。
译文正确地表达了原文的意义、概念描述符合汉语的习惯,语句通畅,层次很清晰。
成绩评定为优。
签名:年月日附件1:外文资料翻译译文液压缸3.1 液压缸的分类及基本计算液压缸是液压传动系统中应用最多的执行元件,它将油液的压力能转换为机械能,实现往复直线运动或摆动,输出力或扭矩;其作用方式可分为单作用式和双作用式两种,单作用式液压缸只能实现单用运动,即压力油只是通向液压缸的一腔,而反方向运动则必须依靠外力来实现,如复位弹簧力,自重或其它外部作用;双作用式液压缸在两个方向上的运动都由油压力推动来实现,可实现双向运动。
液压缸可以看作是直线马达(或摆动马达),其单位位移排量即为液压缸的有效面积A ,当液压缸的回油压力为零且不计损失时,输出速度v 等于输入注量q 除以排量A,输出推力F 等于输入压力p 乘以排量A,即输入液压功率pq 等于输入机械功率Fv 。
液压缸有多种结构,但根据其具体结构特点可分为活塞式、柱塞式和摆动式三类基本形式,除此以外,还有在基本形式上发展起来各种特殊用途的组合液压缸,下面分别予以介绍。
3.1.1 活塞式液压缸活塞式液压缸可分为双杆式和单杆式两种结构形式,其安装方式有缸筒固定和活塞杆固定两种形式。
3.1.1.1 双杆活塞式液压缸图3.1所示为双杆活塞式液压缸的工作原理图,活塞两侧都有活塞杆伸出。
当两活塞杆直径相同,供油压力和流量不变时,活塞式液压缸在两个方向上的运动速度和推力都相等,即 )(422d D q A q v v -==πηην (3.1) ηπm p p d D F ))((42122--= (3.2)图3.1 双杆活塞式液压缸式中 v----液压缸的运动速度)/(s m ;F ----液压缸的推力)(N ;νη----液压缸的容积效率;m η----液压缸的机械效率;q ----液压缸的流量)/(3s m ;A ----液压缸的有效工作面积)(2m ;p 1----进油压力)(Pa ;2p ----回油压力)(Pa ; D ----活塞直径)(m ;d ----活塞杆直径)(m 。
油缸的分类全文共四篇示例,供读者参考第一篇示例:油缸是工业中常见的一种容器,用来存放各种液体物质,特别是液体石油和石油制品。
根据不同的使用场景和功能需求,油缸可以分为不同的类型,包括密封式油缸、液压油缸、气动油缸、液压缸、气缸等等。
下面将详细介绍各种类型的油缸。
1. 密封式油缸密封式油缸是一种具有密封性能的油缸,主要用于液压系统中传递压力和控制流体的流动。
密封式油缸通常由缸体、活塞、密封件和各种配件组成,通过液压压力的作用使活塞在缸体内做往复运动,实现工作机构的动作。
密封式油缸广泛应用于各种机械设备、建筑工程、冶金工业等领域。
2. 液压油缸液压油缸是一种通过液压油流动产生的动力来驱动活塞运动的油缸。
液压油缸具有体积小、力矩大、动作灵活的特点,通常用于重型机械设备、船舶、航空航天等各种领域。
液压油缸根据不同的工作原理和结构形式可分为单作用液压油缸、双作用液压油缸、薄膜液压油缸等。
3. 气动油缸气动油缸是一种通过气压来驱动活塞运动的油缸,常用于气动系统中。
气动油缸具有响应速度快、噪音小、清洁卫生等特点,广泛应用于汽车制造、食品加工、包装机械等行业。
根据工作方式和结构形式,气动油缸可分为单作用气动油缸、双作用气动油缸、气垫气动油缸等。
总结而言,油缸是一种用来储存液体物质并实现机械传动的重要设备,不同类型的油缸在不同的场景和需求中发挥着重要作用。
通过对各种类型油缸的了解和选择,可以更好地满足工程装置的要求,提高工作效率和质量。
希望本文能够帮助读者更好地了解油缸的分类和应用。
第二篇示例:一、按照结构分类1. 液压缸:液压缸通常由缸体、活塞、活塞杆、密封件等部件组成,利用液压系统的压力将液体压入缸体,推动活塞运动实现工作。
液压缸结构简单、安装方便,广泛应用于各类液压设备中。
2. 风缸:风缸是一种利用气体来推动活塞运动的元件,通常用于一些要求在恶劣环境下工作、并且需要高温或防爆的场合。
3. 柱塞油缸:柱塞油缸的活塞为柱塞状,常用于一些工作压力较高、要求稳定性好的场合,其推力大,工作效率高。
毕业设计液压缸的设计摘要将液压缸提供的液压能重新转换成机械能的装置称为执行元件。
执行元件是直接做功者,从能量转换的观点看,它与液压泵的作用是相反的。
根据能量转换的形式,执行元件可分为两类三种:液压马达、液压缸、和摆动液压马达,后者也可称摆动液压缸。
液压马达是作连续旋转运动并输出转矩的液压执行元件;而液压缸是作往复直线运动并输出力的液压执行元件。
而此说明书是针对液压缸的工作环境和工作要求来确定液压缸的工作压力和承载能力,来确定其缸筒内径、壁厚和活塞杆的直径。
再根据液压缸的零部件的工作要求确定零件的工艺,根据零件的精度要求确定零件的加工方法,并生成工艺卡片,完成零件的加工。
关键字:液压缸、机械能、转矩、执行元件目录摘要 (I)第1章绪论 (1)第2章液压传动系统的执行元件——液压缸 (2)2.1 液压缸的类型及结构形式 (2)2.2 液压缸的组成 (4)第3章液压缸的设计 (10)3.1 简介 (10)3.2 液压缸的设计 (10)3.2.1 缸筒的设计 (12)3.2.2 活塞杆的设计 (14)结论 (18)参考文献 (19)致谢 (20)第1章绪论液压传动是研究以有压流体(液体)为传动介质来实现各种机械的传动控制的学科。
液压传动是根据流体力学的基本原理,利用流体的压力能进行能量的传递和控制各种机械零部件运动。
目前,液压技术已广泛应用于各个工业领域的技术装备上,例如机械制造、工程、建筑、矿山、冶金、船舶等机械,上至航空、航天工业,下至地矿、海洋开发工程,几乎无处不见液压技术的踪迹。
液压技术的应用领域大致上可以归纳为以下几个主要方面:(1)各种举升、搬运作业。
尤其在行走机械和较大驱动功率的场合,液压传动已经成为一种主要方式。
如起重机、起锚机等。
(2)各种需要作用力大的推、挤、挖掘等作业装置。
例如,各种液压机、塑料注射成型机等。
(3)高响应、高精度的控制。
飞机和导弹的姿态控制等装置。
(4)多种工作程序组合的自动操作与控制。
液压缸的设计计算规目录:一、液压缸的基本参数1、液压缸径及活塞杆外径尺寸系列2、液压缸行程系列(GB2349-1980)二、液压缸类型及安装方式1、液压缸类型2、液压缸安装方式三、液压缸的主要零件的结构、材料、及技术要求1、缸体2、缸盖(导向套)3、缸体及联接形式4、活塞头5、活寒杆6、活塞杆的密封和防尘7、缓冲装置8、排气装置9、液压缸的安装联接部分(GB/T2878)四、液压缸的设计计算1、液压缸的设计计算部骤2、液压缸性能参数计算3、液压缸几何尺寸计算4、液压缸结构参数计算5、液压缸的联接计算一、液压缸的基本参数1.1液压缸径及活塞杆外径尺寸系列1.1.1液压缸径系列(GB/T2348-1993)8 10 12 16 20 25 3240 50 63 80 (90) 100 (110)125 (140) 160 (180) 200 220 (250)(280) 320 (360) 400 450 500括号为优先选取尺寸1.1.2活塞杆外径尺寸系列(GB/T2348-1993)4 5 6 8 10 12 14 16 1820 22 25 28 32 36 40 45 5056 63 70 80 90 100 110 125 140160 180 200 220 250 280 320 360活塞杆连接螺纹型式按细牙,规格和长度查有关资料。
1.2液压缸的行程系列(GB2349-1980)1.2.1第一系列25 50 80 100 125 160 200 250 320 400500 630 800 1000 1250 1600 2000 2500 3200 40001.2.1第二系列40 63 90 110 140 180 220 280 360 450550 700 900 1100 1400 1800 2200 2800 3600二、液压缸的类型和安装办法2.1液压缸的类型对江东机械公司而言2.1.1双作用式活塞式液压缸2.1.2单作用式柱塞式液压缸2.2液压缸的安装方式对江东机械公司而言2.2.1对柱塞式头部法兰2.2.2对活塞式螺纹联接在梁上三、液压缸主要零件的结构、材料、技术要求3.1缸体3.1.1缸体材料A焊接缸头缸底等,采用35钢粗加工后调质 [σ]=110MPa B一般情况采用45钢 HB241-285 [σ]=120MPa C铸钢采用ZG310-57 [σ]=100MPaD球墨铸铁(江东厂采用)QT50-7 [σ]=80-90MPa E无缝纲管调质(35号 45号) [σ]=110MPa 3.1.2缸体技术要求A径 H8 H9 精度粗糙度(垳磨)B径圆度 9-11级圆柱度 8级3.2缸盖(导向套)3.2.1缸盖材料A可选35,45号锻钢B可选用ZG35,ZG45铸钢C可选用HT200 HT300 HT350铸铁D当缸盖又是导向导时选铸铁3.2.2缸盖技术要求A直径d(同缸径)等各种回转面(不含密封圈)圆柱度按 9 、10 、11 级精度B外圆同轴度公差0.03mmC与油缸的配合端面⊥按7级D导向面表面粗糙度3.2.3联接形式多种可按图133.2.4活塞头(耐磨)A材料灰铸铁HT200 HT300 钢35 、45B技术要求外径D(缸径)与孔D1↗按7、8级外径D的圆柱度 9、10、11级端面与孔D1的⊥按7级C活塞头与活塞杆的联接方式按图3形式D活塞头与缸径的密封方式柱寒缸 40MPa以下V型组合移动部分活塞缸 32MPa以下用Yx型移动部分静止部分 32MPa以下用“O“型3.2.5 活塞杆A端部结构按江东厂常用结构图17、18B活塞杆结构空心杆实心杆C材料实心杆35、45钢空心杆35、45无缝缸管D技术要求粗加工后调质HB229-285可高频淬火HRC45-55外圆圆度公差按9、10、11级精度圆柱度按8级两外圆↗为0.01mm端面⊥按7级工作表面粗糙度 <(江东镀铬深度0.05mm)渡后抛光3.2.6活塞杆的导向、密封、和防尘A导向套结构图9(江东常用)导向杆材料可用铸铁、球铁导向套技术要求径H8/f8、H8/f9表面粗糙度B活塞杆的密封与防尘柱塞缸V型组合移动部分活塞缸Yx 移动部分“O”型(静止密封)防尘,毛毡圈(江东常用)3.2.7液压缸缓冲装置多路节流形式缓冲参考教科书3.2.8排气装置采用排气螺钉3.2.9液压缸的安装联接部分的型式及尺寸可用螺纹联接(细牙)油口部位可用法兰压板联接油口部位液压缸安装可按图84液压缸的设计计算4.1液压缸的设计计算部骤4.1.1根据主机的运动要求定缸的类型选择安装方式4.1.2根据主机的动力分析和运动分析确定液压缸的主要性能参数和主要尺寸如推力速度作用时间径行程杆径注:负载决定了压力。
液压机的工作原理、特点与分类1. 工作原理液压机是一种利用液体的压力传递力量和能量的机械装置。
其工作原理基于帕斯卡定律,即在一个封闭容器中,液体传递的压力是均匀的。
液压机由液压元件、执行元件和控制元件组成。
液压机的液压元件包括液压泵、阀门、液压管道等。
液压泵将机械能转化为液压能,通过阀门控制液体的流动路径和流量,而液压管道则将液体传递到执行元件。
液压机的执行元件主要有液压缸和液压马达。
液压缸是将液体能量转化为机械能的装置,通过液压缸可以产生线性运动。
液压马达则将液体能量转化为旋转能量,通过液压马达可以产生旋转运动。
液压机的控制元件包括液压阀和电气控制器。
液压阀用于控制液体的流动和压力,电气控制器则可以实现液压机的自动化控制。
2. 特点液压机具有以下几个特点:2.1. 压力大、稳定液压机利用液体的压力传递力量,相比于其他传动方式,具有更大的压力输出能力。
液压机的压力稳定性也较高,可以实现恒定的压力输出,并且可以根据需要进行调节。
2.2. 力量可调通过调节液压机的液体流量和压力,可以实现不同的力量输出。
这使得液压机在适应不同工况和加工要求时具有较大的灵活性。
2.3. 具有冲击力液压机在工作过程中具有冲击力,可以实现较高的加工效率。
冲击力的产生主要是由于液体在执行元件内瞬间流速的改变。
2.4. 动作平稳、精度高液压机在工作过程中动作平稳,震动较小,从而减小了加工对工件的影响。
液压机的工作精度较高,可以满足一些对加工精度要求较高的应用。
3. 分类根据液压机的结构和用途的不同,可以将液压机分为以下几类:3.1. 液压压力机液压压力机是最常见的液压机之一,主要用于压制金属材料的成形,例如冲压、弯曲、拉伸等。
液压压力机具有压力大、力量可调和加工精度高等特点。
3.2. 液压剪板机液压剪板机主要用于切割金属板材,可以实现高效、精准的切割。
液压剪板机通常由液压缸、刀片和工作台等部件组成,通过液压缸对刀片施加一定的压力来完成切割操作。
第四章 液压缸第一节 液压缸的分类和特点液压缸按结构特点的不同可分为活塞缸、柱塞缸和摆动缸三类。
按作用方式不同,可分为单作用式和双作用式两种。
1.活塞式液压缸 活塞式液压缸根据其使用要求不同可分为双杆式和单杆式两种。
(1)双杆式活塞缸。
活塞两端都有一根直径相等的活塞杆伸出的液压缸称为双杆式活塞缸,它一般由缸体、缸盖、活塞、活塞杆和密封件等零件构成。
根据安装方式不同可分为缸筒固定式和活塞杆固定式两种。
如图4-5(a)所示的为缸筒固定式的双杆活塞缸。
它的进、出口布置在缸筒两端,活塞通过活塞杆带动工作台移动,当活塞的有效行程为l 时,整个工作台的运动范围为3l ,所以机床占地面积大,一般适用于小型机床,当工作台行程要求较长时,可采用图4-5(b)所示的活塞杆固定的形式,这时,缸体与工作台相连,活塞杆通过支架固定在机床上,动力由缸体传出。
这种安装形式中,工作台的移动范围只等于液压缸有效行程l 的两倍(2l),因此占地面积小。
进出油口可以设置在固定不动的空心的活塞杆的两端,但必须使用软管连接。
由于双杆活塞缸两端的活塞杆直径通常是相等的,因此它左、右两腔的有效面积也相等,当分别向左、右腔输入相同压力和相同流量的油液时,液压缸左、右两个方向的推力和速度相等。
当活塞的直径为D ,活塞杆的直径为d ,液压缸进、出油腔的压力为p 1和p 2,输入流量为q 时,双杆活塞缸的推力F 和速度v 为:F=A(p 1-p 2)=π (D 2-d 2) (p 1-p 2) /4 (4-18)v=q/A=4q/π(D 2-d 2) (4-19)式中:A 为活塞的有效工作面积。
双杆活塞缸在工作时,设计成一个活塞杆是受拉的,而另一个活塞杆不受力,因此这种液压缸的活塞杆可以做得细些。
(2)单杆式活塞缸。
如图4-6所示,活塞只有一端带活塞杆,单杆液压缸也有缸体固定和活塞杆固定两种形式,但它们的工作台移动范围都是活塞有效行程的两倍。
图4-6单杆式活塞缸由于液压缸两腔的有效工作面积不等,因此它在两个方向上的输出推力和速度也不等,其值分别为:F 1=(p 1A 1-p 2A 2)=π[(p 1-p 2)D 2-p 2d 2]/4 (4-20)F 1=(p 1A 1-p 2A 2)=π[(p 1-p 2)D 2-p 2d 2 ]/4 (4-21)v 1=q/A 1=4q/πD 2 (4-22)v 2=q/A 2=4q/π(D 2-d 2) (4-23)由式(4-20)~式(4-23)可知,由于A 1>A 2,所以F 1>F 2,v 1<v 2。
油缸管的分类一、油缸管的概述油缸管是一种通过液压力来实现机械动作的装置。
它由油缸和连接油缸的管路组成,广泛应用于工程机械、冶金设备、航空航天等领域。
油缸管的分类主要根据其形式、结构和工作方式进行划分。
二、按照形式分类2.1 单向缸管单向缸管是指油缸和管路中的液压流动方向只能单向流动的油缸管。
它由进油口、油管和排油口组成。
这种油缸管常用于单向液压缸的工作系统,比如开合循环系统。
2.2 双向缸管双向缸管是指油缸和管路中的液压流动方向可以双向流动的油缸管。
它由进油口、排油口和油管组成。
双向缸管可实现油缸在正反两个方向上的运动,常见于液压升降系统和顺序控制系统。
2.3 多向缸管多向缸管是指油缸和管路中的液压流动方向可以多向流动的油缸管。
它由进油口、排油口和多条油管组成。
多向缸管常用于双作用液压缸的工作系统,可以实现多个执行器的联动控制。
三、按照结构分类3.1 钢管缸管钢管缸管是由高强度钢管制成的油缸管,具有较好的耐压性和耐腐蚀性。
钢管缸管适用于工作压力较高的场合,如钢铁冶金设备。
3.2 软管缸管软管缸管是由橡胶或塑料制成的油缸管,具有较好的柔韧性和耐磨性。
软管缸管适用于工作压力较低、工作环境复杂的场合,如农业机械和挖掘机。
3.3 组合缸管组合缸管是由钢管和软管组合而成的油缸管,结合了钢管和软管的优点。
组合缸管适用于工作压力和工作环境较为复杂的场合,如工程机械。
四、按照工作方式分类4.1 液压缸管液压缸管是指通过液压缸驱动实现机械运动的油缸管。
它通过液压力将液体驱动缸体的活塞运动,从而产生机械效果。
液压缸管广泛应用于升降、推拉、转动等机械运动。
4.2 液力缸管液力缸管是指利用液力传动来实现机械运动的油缸管。
它通过液力的传递来驱动缸体的活塞运动,从而实现机械效果。
液力缸管常用于大功率的机械设备,如船舶和起重机。
4.3 气缸管气缸管是指利用气压来实现机械运动的油缸管。
它通过气压的力量将气体驱动缸体的活塞运动,从而产生机械效果。