锻件质量无损检测方法
- 格式:docx
- 大小:14.10 KB
- 文档页数:2
锻件质量检验的内容和方法质量,有的则严重影响锻件的性能及使用,甚至极大地降低所制成品件的使用寿命,危及安全。
因此验,防止带有对后续工序(如热处理、表面处理、冷加工)及使用性能有恶劣影响的缺陷的锻件流人用的要求。
锻件的质量把关,另一方面则是给锻造工艺指出改进方向,从而保证锻件质量符合锻件技术标准的要质量检验主要指锻件的几何尺寸、形状、表面状况等项目的检验;内部质量的检验则主要是指锻件化、几何尺寸是否符合图样的规定,锻件的表面是否有缺陷,是什么性质的缺陷,它们的形态特征是什、外来物、未充满、凹坑、缺肉、划痕等缺陷。
而内部质量的检验就是检查锻件本身的内在质量,是或大型锻件还应进行化学成分分析。
对于内部缺陷我们将通过低倍检查、断口检查、高倍检查的方法氧化膜、分层、过热、过烧组织等缺陷。
而对于力学性能主要是检查常温抗拉强度、塑性、韧性、硬程度、工作条件不同,其所用材料和冶金工艺也不同,因此不同的部位依据上述情况并按照本部门的都离不开两大类检验,即外观质量和内部质量的检验,只不过锻件的类别不同,其具体的检验项目、合金锻件与模锻件按其使用情况分成Ⅲ类进行检验,还有的部门将铝合金、铜合金锻件分成Ⅳ类进行表1-1 结构钢、不锈钢及耐热钢锻件质量检验要求件过热时,应增加断口检验,奥氏体钢锻件不检查断口。
的个别项目外均具有抽检性质,抽检合格,表示整个验收批的锻件合乎要求。
对于有的类别的锻件材料复验制度、锻件定形制度、定期检验制度、工艺纪律检查制度及合理组批等措施,从而在保证锻多,在实际工作中应根据设计对产品的要求及技术材料所要求的项目进行锻件质量的检验。
表1-2 铝合金锻件及模锻件质量检验要求于5件。
产品的锻件也提出了更高的要求。
而锻件质量问题的表现形式又多而杂,某些类型的锻件缺陷又将严量的检验也提出了更高的要求,即绝不能将带有缺陷的锻件放过去,特别是不能放过那些严重影响使外,也要采用反映当代水平的更快速更准确的检测手段和方法,使之对锻件质量的评估、锻件缺陷性施来改进和提高锻件质量。
EN 10228:1999 锻钢件无损检测——第一部分:磁粉检测1.范围EN10228中的本部分描述锻造铁磁体材料的磁粉检验的方法和验收准则。
这些方法用于检测非连续性表面缺陷,同时也可用于近表面缺陷,但灵敏度随着深度增加而急剧降低。
2.参考标准3.协议条款在询问和订货时,下列涉及到磁粉检验的方面应该经过采购方和供货方的协商同意。
a)磁粉检验时的加工阶段(见条款8);b)表面检测区域(见条款9);c)需要达到的级别,或者不同区域的不同级别(见条款9,10和15);d)检验需要荧光、非荧光或者粉状磁粉;e)是否需要特殊的电流波形;f)如果与表2不相同时适用的记录或验收准则;g)检测完毕后是否需要退磁,以及允许的最大剩磁水平(见条款17);h)检测时采购方或者其代理人是否需要在场;i)书面程序是否需要递交采购方并获得批准(见条款5);4.书面程序4.1 概述磁粉检验应遵循书面程序进行。
在询问和订货时以及检测前,书面程序应该递交采购方并获得同意。
4.2 描述书面程序应该属于下列的一种:a)产品说明书;b)本应用的特殊成文程序;c)如有本应用的详细而明确的检验细节,EN 10228的本部分亦可。
4.3 内容作为最小需求,本程序需包含下列细节:a)检验锻件的描述;b)相关文件;c)检验人员的资格和证明;d)检验部位的加工状态;e)根据质量等级的表面区域描述;f)磁化技术;g)检验设备的描述;h)设备的检查和校准;i)每一技术需要的波形和磁通量密度和/或切线场强;j)如使用的话,检验介质和对比涂料;k)表面状态;l)观察条件;m)标记或记录痕迹的方法;n)是否需要退磁;如需要,退磁的方法和最大剩磁;o)验收源侧;p)检验报告。
5.人员资格需根据EN473决定人员的资格和证明;6. 检验系统6.1 磁化设备如果接触电流(电极)磁化方法使用在精加工表面,磁化后,应检查电机接触点是否有损伤,可选择的方法有:磁化技术、渗透检查或者目视检查。
锻钢的无损检测第3部分:铁素体锻钢或马氏体锻钢的检测内容前言1 范围2 参考标准3 定义4 协议条款5 书面程序6 人员资格7 设备和附件8 定期校准和检查9 生产阶段10 表面条件11灵敏度12 扫描13分类14记录水平和验收准则15 估算16 报告附录A周向剪切波扫描的最大可测深度附录B 相对% DAC,指示的dB振幅1.范围EN 10228这部分描述了用于手动、脉冲回波、超声检测铁素体和马氏体钢生产的锻件的工艺。
机械化的扫描工艺,例如液侵法,可以使用,但是应该由买卖双方同意(见条款4)。
EN10288这部分适用于4种锻件,根据他们的形状和生产方式划分。
种类1、2、3主要是简单形状,种类4是复杂形状。
EN10288 这部分不适用:--闭式模锻--涡轮转子和发电机锻件超声检测奥氏体和奥氏体-铁素体不锈钢铸件是这个欧洲标准第4部分的主题。
2 参考标准EN10228的这部分内容合并了其他出版物上的一些有日期的或无日期的参考文件。
这些标准化参考文件在正文中和今后的出版物中的恰当地方被引用。
对于有日期的文件,随后的完善或者任何关于这些出版物的修订只有在通过改善和修订合并后才能应用E N10228的这部分内容。
对于无日期的文件,只使用最新的版本。
EN 473 无损检测人员的资格和证书PrEN12668 无损检测—超声检测设备的界定和审查第1部分:仪器第2部分:探测仪第3部分:组合设备PrEN 583 超声检测第2部分:灵敏度和范围设置第5部分:特征描述和中断估算PrEN12223 超声检测—标准试块PrEN1330 无损检测—术语第4部分:超声波检测中使用的术语3.定义对于EN 10288这部分目的,定义提供于P rEN 1330-4的应用中。
4 协议条款以下关于超声检测的方面应该于咨询或下订单时在购买商和供应商之间协议好。
无损检测铁磁性钢锻件磁粉检测1 范围EN10228的本部分规定了铁磁性钢锻件应用磁粉检测的方法及合格级别。
本方法应用于表面或近表面的不连续的检测,但对于后者,其检测灵敏度随深度急剧下降。
2 规范性引用文件EN10228的本部分引用了其他出版物的标注日期或未注日期的一些文件。
这些规范性文件在本文的适当的地方被引用,其出版社在下面列出。
标注日期的文件,除非通过修改单或修订版被包含于EN10228的本部分,该出版社随后发行的任何修改单或任何修订版本,均不适用本标准。
对于未标注日期的文件,其最新版本适用于本标准。
EN 473,无损检测人员考核认证通用准则prEN ISO 9934-1, 无损检测磁粉检测第1部分:通用准则(ISO/DIS 9934-1:1996)prEN ISO 9934-2, 无损检测磁粉检测第2部分:产品特性(ISO/DIS 9934-2:1996)prEN ISO 9934-3, 无损检测磁粉检测第3部分:检测设备(ISO/DIS 9934-3:1996)3 协议内容下列涉及磁粉检测的各个方面应在询价和订购时由订购方和生产厂家达成一致。
a)在生产的哪个阶段实施检测(见条款8)b)表面检测的区域定义(见条款9)c)要求的质量级别或对应于表面状况的质量分级要求(见条款9,10,15)d)是否采用荧光磁粉或非荧光磁粉或干粉(见7.2)e)磁化电流有无特殊要求(见11.2)f)采用表2以外的要求时适用的记录及合格级别g)检测完成后是否需退磁,及相应允许的最大残余磁场强度水平(见条款17)h)检测是否需在需方或其代表在场的情况下进行i)是否需要递交书面的检测规程由需方批准(见条款5)4 书面程序4.1 总则磁粉检测需按书面的规程实施。
如在询价或订购时有要求,则检测实施前该规程需提交给订购方审批。
4.2 说明该书面程序可以为下列文件中的一种,a)产品说明b)针对此申请的特殊程序c)申请中有明确说明可使用EN10228的本部分的4.3 内容本规程至少应包含如内容:a)被检锻件的描述b)参考文件c)检测人员的资格及认证d)检测时机e)表面状况对应的质量级别f)磁化技术g)设备要求h)设备检查及校准i)针对每一种检测技术要求的电流波型,磁通密度及切向磁场强度j)检测媒介,反差剂(如适用)k)表面状况l)光照条件m)指示标注或记录方法n)退磁要求,如需退磁许可的最大剩余磁场强度o)合格级别p)检测报告5 人员资质检测人员需根据EN473考核并认证合格。
七大无损检测方法Non-destructive testing (NDT) is a crucial technique used in various industries to evaluate the properties of materials, components, or structures without causing damage to them. There are seven primary methods of NDT that are widely employed, each with its unique applications and advantages.无损检测(NDT)是一种关键技术,广泛应用于各行各业,用于评估材料、组件或结构的性能,而不会对其造成损伤。
有七种主要的无损检测方法被广泛应用,每种方法都有其独特的应用和优势。
Visual inspection is the most basic and commonly used method of NDT. It involves the use of the human eye or specialized tools to examine the surface of an object for defects or irregularities. This method is quick and inexpensive, but it may not detect subsurface defects.目视检测是最基础和最常用的无损检测方法。
它涉及使用人眼或专用工具来检查物体表面是否有缺陷或不规则性。
这种方法快速且成本低廉,但可能无法检测到物体内部的缺陷。
Radiographic testing, also known as X-ray testing, uses ionizing radiation to penetrate an object and create an image on a film or digital detector. This method is effective in detecting internal defects and is commonly used in the aerospace and manufacturing industries.射线检测,也称为X射线检测,利用电离辐射穿透物体并在胶片或数字探测器上形成图像。
锻件检测方法
锻件的检测方法主要有以下几种:
1. 目测法:主要用于初步检查锻件的外观质量,如裂纹、发裂、夹杂、重皮、凹坑等,以及锻件的形位尺寸,如角棱、扭曲、模锻件的错差等。
这种方法需要检测人员有丰富的实践经验。
2. 量具检验法:使用通用量具(如钢直尺、内外卡钳、游标高度尺等)或专用量具测量锻件的尺寸和形位。
这种方法可以精确测量锻件的各项参数,但操作相对繁琐。
3. 样板检验法:对于大批量的锻件和多角弯曲较复杂的锻件,常常预先制出样板和局部样板来检验形位尺寸。
这种方法可以快速检查锻件的形状和尺寸是否符合要求。
4. 划线检验法:对于形状复杂的锻件,可以使用划线方法来检验锻件的尺寸和形位错差。
这种方法可以直观地反映出锻件的实际形状和尺寸与理想形状的差距。
5. 理化检验方法:对于锻件的内在质量和力学性能,需要采用各种理化分析方法,如金相检验、硬度测试、拉伸试验等。
这些方法可以深入了解锻件的内部结构和性能,是确保锻件质量的重要手段。
6. 无损检测:包括超声波检测、磁粉检测、渗透检测、涡流检测等。
这些方法可以在不破坏锻件的情况下,检测锻件内部的缺陷、裂纹、气孔等。
其中,超声波检测具有高灵敏度和较高的检测速度;
磁粉检测主要用于检测锻件表面的裂纹、夹杂物等缺陷;渗透检测主要用于检查非铁磁性材料锻件的表面缺陷;涡流检测则主要用于检测导电材料的表面或近表面的缺陷。
铸件的表面和内部质量检测方法(图)铸件的检测主要包括尺寸检查、外观和表面的目视检查、化学成分分析和力学性能试验,对于要求比较重要或铸造工艺上容易产生问题的铸件,还需要进行无损检测工作,可用于球墨铸铁件质量检测的无损检测技术包括液体渗透检测、磁粉检测、涡流检测、射线检测、超声检测及振动检测等。
1 铸件表面及近表面缺陷的检测1.1液体渗透检测液体渗透检测用来检查铸件表面上的各种开口缺陷,如表面裂纹、表面针孔等肉眼难以发现的缺陷。
常用的渗透检测是着色检测,它是将具有高渗透能力的有色(一般为红色)液体(渗透剂)浸湿或喷洒在铸件表面上,渗透剂渗入到开口缺陷里面,快速擦去表面渗透液层,再将易干的显示剂(也叫显像剂)喷洒到铸件表面上,待将残留在开口缺陷中的渗透剂吸出来后,显示剂就被染色,从而可以反映出缺陷的形状、大小和分布情况。
需要指出的是,渗透检测的精确度随被检材料表面粗糙度增加而降低,即表面越光检测效果越好,磨床磨光的表面检测精确度最高,甚至可以检测出晶间裂纹。
除着色检测外,荧光渗透检测也是常用的液体渗透检测方法,它需要配置紫外光灯进行照射观察,检测灵敏度比着色检测高。
1.2涡流检测涡流检测适用于检查表面以下一般不大于6~7mm深的缺陷。
涡流检测分放置式线圈法和穿过式线圈法2种。
:当试件被放在通有交变电流的线圈附近时,进入试件的交变磁场可在试件中感生出方向与激励磁场相垂直的、呈涡流状流动的电流(涡流),涡流会产生一与激励磁场方向相反的磁场,使线圈中的原磁场有部分减少,从而引起线圈阻抗的变化。
如果铸件表面存在缺陷,则涡流的电特征会发生畸变,从而检测出缺陷的存在, 涡流检测的主要缺点是不能直观显示探测出的缺陷大小和形状,一般只能确定出缺陷所在表面位置和深度,另外它对工件表面上小的开口缺陷的检出灵敏度不如渗透检测。
1.3磁粉检测磁粉检测适合于检测表面缺陷及表面以下数毫米深的缺陷,它需要直流(或交流)磁化设备和磁粉(或磁悬浮液)才能进行检测操作。
锻件质量控制的方法与要点(二)在锻件生产过程中,质量控制是至关重要的。
它不仅直接关系到产品的质量,还涉及到生产效率和成本控制。
本文将介绍锻件质量控制的方法和要点,以帮助企业提升锻件的质量水平。
引言概述:随着科技的不断进步,锻件在航空、汽车、机械等行业中的应用越来越广泛。
但由于锻件生产过程中的复杂性和多变性,质量控制成为制约锻件产品质量和生产效率的重要因素。
为了提高锻件质量,必须采取一系列的控制方法和关注要点。
一、材料选择和质量检验1.选择合适的材料:根据锻件的应用环境和技术要求,选择具有良好机械性能和耐热性能的材料,以确保锻件的质量。
2.材料质量检验:在材料进厂之前,进行严格的材料质量检验,包括化学成分、力学性能和金相组织等方面的检测,以确保原材料符合要求。
3.瑕疵检测:利用无损检测技术对材料进行瑕疵检测,检查是否存在裂纹、夹杂物等缺陷,以避免这些缺陷对锻件的影响。
二、锻造过程控制1.合理设计模具:根据锻件的形状、尺寸和结构等要求,合理设计模具,并进行模具的加热控制,以保证锻件的成形质量。
2.锻造温度控制:合理控制锻造温度,避免过高或过低的温度对锻件的性能造成不良影响。
3.保持压力和变形速度的控制:在锻造过程中,保持适当的压力和变形速度,以确保锻件的均匀性和一致性。
4.锻件冷却控制:在锻件完成后,进行合理的冷却处理,以消除内部应力,提高锻件的强度和韧性。
5.锻件尺寸和形状控制:通过更细致的模具设计和更精确的锻造工艺控制,实现锻件尺寸和形状的精确控制。
三、热处理和表面处理1.热处理工艺的选择:根据锻件的材料和要求,选择合适的热处理工艺,以改善锻件的组织结构和性能。
2.热处理温度和时间的控制:在热处理过程中,控制温度和时间,确保锻件的热处理效果符合要求。
3.表面处理的选择:根据锻件的应用要求,选择合适的表面处理方式,如表面涂层、镀层等,以提高锻件的耐腐蚀性和装饰性。
四、非破坏性检测和尺寸检验1.非破坏性检测方法的选择:根据锻件的形状和结构,选择合适的非破坏性检测方法,如超声波检测、磁粉检测等,以检测锻件的内部缺陷。
铸件的表面和内部质量检测方法(图)铸件的检测主要包括尺寸检查、外观和表面的目视检查、化学成分分析和力学性能试验,对于要求比较重要或铸造工艺上容易产生问题的铸件,还需要进行无损检测工作,可用于球墨铸铁件质量检测的无损检测技术包括液体渗透检测、磁粉检测、涡流检测、射线检测、超声检测及振动检测等。
1 铸件表面及近表面缺陷的检测1.1液体渗透检测液体渗透检测用来检查铸件表面上的各种开口缺陷,如表面裂纹、表面针孔等肉眼难以发现的缺陷。
常用的渗透检测是着色检测,它是将具有高渗透能力的有色(一般为红色)液体(渗透剂)浸湿或喷洒在铸件表面上,渗透剂渗入到开口缺陷里面,快速擦去表面渗透液层,再将易干的显示剂(也叫显像剂)喷洒到铸件表面上,待将残留在开口缺陷中的渗透剂吸出来后,显示剂就被染色,从而可以反映出缺陷的形状、大小和分布情况。
需要指出的是,渗透检测的精确度随被检材料表面粗糙度增加而降低,即表面越光检测效果越好,磨床磨光的表面检测精确度最高,甚至可以检测出晶间裂纹。
除着色检测外,荧光渗透检测也是常用的液体渗透检测方法,它需要配置紫外光灯进行照射观察,检测灵敏度比着色检测高。
1.2涡流检测涡流检测适用于检查表面以下一般不大于6~7mm深的缺陷。
涡流检测分放置式线圈法和穿过式线圈法2种。
:当试件被放在通有交变电流的线圈附近时,进入试件的交变磁场可在试件中感生出方向与激励磁场相垂直的、呈涡流状流动的电流(涡流),涡流会产生一与激励磁场方向相反的磁场,使线圈中的原磁场有部分减少,从而引起线圈阻抗的变化。
如果铸件表面存在缺陷,则涡流的电特征会发生畸变,从而检测出缺陷的存在, 涡流检测的主要缺点是不能直观显示探测出的缺陷大小和形状,一般只能确定出缺陷所在表面位置和深度,另外它对工件表面上小的开口缺陷的检出灵敏度不如渗透检测。
1.3磁粉检测磁粉检测适合于检测表面缺陷及表面以下数毫米深的缺陷,它需要直流(或交流)磁化设备和磁粉(或磁悬浮液)才能进行检测操作。
锻件质量查验的内容和方法(一)锻件质量查验的内容锻件缺点的存在,有的会影响后续工序办理质量或加工质量,有的则严重影响锻件的性能及使用,甚至极大地降低所制成品件的使用寿命,危及安全。
所以为了保证或提升锻件的质量,除在工艺上增强质量控制,采纳相应举措根绝锻件缺点的产生外,还应进行必需的质量查验,防备带有对后续工序(如热办理、表面办理、冷加工)及使用性能有恶劣影响的缺点的锻件流人后续工序。
经质量查验后,还可以够依据缺点的性质及影响使用的程度对已制锻件采纳挽救举措,使之切合技术标准或使用的要求。
所以,锻件质量查验从某种意义上讲,一方面是对已制锻件的质量把关,另一方面则是给铸造工艺指出改良方向,进而保证锻件质量切合锻件技术标准的要求,并知足设计、加工、使用上的要求。
锻件质量的查验包含外观质量及内部质量的查验。
外观质量查验主要指锻件的几何尺寸、形状、表面状况等项目的查验;内部质量的查验则主假如指锻件化学成分、宏观组织、显微组织及力学性能等各项目的查验。
详细说来,锻件的外观质量查验也就是检查锻件的形状、几何尺寸能否切合图样的规定,锻件的表面能否出缺点,是什么性质的缺点,它们的形态特点是什么。
表面状态的查验内容一般是检查锻件表面能否有表面裂纹、折叠、折皱、压坑、桔皮、起泡、斑疤、腐化坑、碰伤、外来物、未充满、凹坑、缺肉、划痕等缺点。
而内部质量的查验就是检查锻件自己的内在质量,是外观质量检查没法发现的质量状况,它既包含检查锻件的内部缺点,也包含检查锻件的力学性能,而对重要件、重点件或大型锻件还应进行化学成分剖析。
关于内部缺点我们将经过低倍检查、断口检查、高倍检查的方法来查验锻件能否存在诸如内裂、缩孔、松散、粗晶、白点、树枝状结晶、流线不切合外形、流线杂乱、穿流、粗晶环、氧化膜、分层、过热、过烧组织等缺点。
而关于力学性能主假如检查常温抗拉强度、塑性、韧性、硬度、疲惫强度、高温刹时断裂强度、高温长久强度、长久塑性及高温蠕变强度等。
标题:UT超声波锻件检测标准大全引言:UT超声波(Ultrasonic Testing)是一种常用的无损检测方法,适用于锻件等金属材料的检测。
一、UT超声波锻件检测的基本原理UT超声波锻件检测通过传输高频声波进入锻件内部,利用声波的反射和散射来检测缺陷和材料性质。
其基本原理包括声波的发射、传播、接收和信号处理等过程。
二、UT超声波锻件检测的设备及工艺要求1. 设备要求:a. UT超声波探头:选择合适的频率和类型的探头,以满足对不同锻件的检测需求。
b. UT仪器:确保仪器的稳定性、精度和可靠性。
c. 耦合剂:选择适当的耦合剂,确保声波能够有效地传递到锻件表面。
2. 工艺要求:a. 清洁表面:确保锻件表面干净,无杂质和涂层,以保证声波的传播质量。
b. 调节参数:根据锻件的材料和尺寸,合理调节超声波仪器的参数,如增益、频率等,以获得清晰的声波信号。
c. 扫描方式:选择适当的扫描方式,如直线扫描、扇形扫描等,以全面覆盖锻件的检测区域。
三、UT超声波锻件检测的缺陷类型和评定标准1. 缺陷类型:a. 线性缺陷:包括裂纹、夹杂、疏松等。
根据缺陷的位置、长度和宽度等特征进行分类。
b. 表面缺陷:如气孔、夹渣等。
根据缺陷的大小和密度进行评定。
2. 评定标准:a. 线性缺陷:按照标准规定的缺陷尺寸和数量限制进行评定,如长度、深度等。
b. 表面缺陷:按照标准规定的缺陷密度和尺寸进行评定,如单位面积内的缺陷数量。
四、UT超声波锻件检测的操作步骤1. 准备工作:根据锻件的材料和尺寸,选择合适的探头、仪器和耦合剂,并确保设备的正常运行。
2. 清洁表面:使用适当的清洁剂将锻件表面清洁干净,以确保声波的传播质量。
3. 设定参数:根据锻件的要求,调节超声波仪器的参数,如增益、频率等,以获得清晰的声波信号。
4. 扫描检测:按照事先确定的扫描方式,将探头移动在锻件表面,全面扫描检测区域。
5. 数据记录与分析:记录检测数据并进行分析,判断缺陷类型和评定标准是否符合要求。
无损检测检验规程1、目的和适用范围为确保成品的出厂检验和试验符合产品标准的需求,特制定本文件。
本文件适用于本公司生产制造的成品的出厂检验。
2、引用文件GB/T6402-2008钢锻件超声检测方法GB/T7233-2009铸钢件超声检测JB/T5000.15-1998重型机械通用技术条件锻钢件超声检测JB/T5000.14-1998重型机械通用技术条件铸钢件超声检测3、超声检测方法3.1设备准备a)探伤仪(1)超声检测设备均应具有产品质量合格证或合格的证明文件。
(2)范围设定对纵波和横波传输时应至少能探10mm到2m范围内(3)增益,应至少有80dB增益器,误差小于1dB,步进最大为2dB。
(4)水平线性和垂直线性要低于屏高的5%(5)适用主频为0.5MHZ至5MHZ的采用脉冲技术的单晶和双晶探头。
b)探头和检验频率(1)检验铸件时,根据不同缺陷类型,可以使用直探头和双晶探头,若缺陷的几何形状特别,优先使用45°和70°的斜探头。
检验频率必须与检验对象匹配,通常为0.5~4MHz范围内。
壁厚小于20mm或近表面区,也可采用高频率探头。
(2)单斜探头声速轴线水平偏离角不应大于2°,主声速垂直方向不应有明显的双峰。
c)系统性能需求(1)在达到所探工件的最大检测声程时,有效灵敏度余量应不小于10dB。
(2)仪器和探头的组合频率与公称频率误差不得大于±10%。
(3)仪器和直探头组合的始脉冲宽度需求:5MHz探头,宽度不大于10mm;2.5MHz探头,宽度不大于15mm。
(4)直探头的远场分辨率应不小于30dB,斜探头不小于6dB。
d)耦合剂应采用透声性好,且不损伤检测表面的耦合剂,如机油、浆糊、甘油和水等。
3.1.1概述通常用为相同材质的平底孔试块制作AVG曲线图来调节检验仪器。
如果没有曲线图,则可用球墨铸铁参考试块来调节。
试块厚度可与受检铸件壁厚范围相当。
3.1.2水平线性调节在参考试块或校正试块上调节水平线性,并在实际部件上进行校核,或者直接在部件上调节水平线性。
五大无损检测的原理及应用五大无损检测的原理及应用如下:1. 超声波检测(Ultrasonic T esting, UT)原理:超声波通过材料中的传播而发生不同程度的反射、折射、衍射等现象,通过对反射回波和传播时间的测量,可以判断材料内部是否存在缺陷。
应用:超声波检测广泛应用于金属材料的缺陷检测,如焊接接头、铸件、锻件等。
在航空航天、船舶制造、石油化工等领域中有着重要的应用。
2. 磁粉检测(Magnetic Particle Testing, MT)原理:在被检测材料的表面施加直流或交流磁场,通过涂覆磁粉或喷射磁粉,当磁粉聚集在材料表面附近的缺陷处时,形成可见的磁粉堆积痕迹。
应用:磁粉检测用于检测表面和近表面的裂纹、裂纹痕迹以及其他磁性材料的缺陷。
广泛应用于航空、电力、汽车、船舶等行业。
3. 渗透检测(Dye Penetrant Testing, PT)原理:将高表面张力的渗透液涂覆在被检材料表面,经过适当的渗透时间后,渗透液会通过缺陷的毛细作用进入缺陷内部,再通过涂上显色剂和溶剂,显示缺陷的位置和形状。
应用:渗透检测适用于检测金属和非金属表面的细小裂纹、孔洞以及其他缺陷。
常用于航空、汽车、造船和金属制造等领域。
4. X射线检测(X-ray Testing, RT)原理:通过X射线的穿透、吸收和散射,检测材料内部的缺陷。
传统的X射线检测主要基于矢量模型,现代技术越来越多地使用CT(计算机断层扫描)技术。
应用:X射线检测广泛应用于检测金属和非金属材料的内部缺陷,如焊接缺陷、夹杂物、孔洞等。
在航空航天、核能、汽车、电子等行业中得到重要应用。
5. 热波无损检测(Thermal/Infrared T esting, IR)原理:基于材料或构件的热学性质差异,检测材料内部的缺陷或异物。
通过测量材料散热或吸热的温度变化,获得缺陷位置及性质的信息。
应用:热波无损检测适用于检测钢铁、塑料、陶瓷和复合材料等材料的内部和表面缺陷。
锻件超声波探伤标准锻件超声波探伤是一种常用的无损检测方法,它能够对锻件的内部缺陷进行有效的检测,保障了锻件的质量和安全性。
在进行锻件超声波探伤时,需要严格遵守相关的标准,以确保检测结果的准确性和可靠性。
本文将介绍锻件超声波探伤的相关标准,希望能够对从事相关工作的人员有所帮助。
首先,进行锻件超声波探伤时,需要遵守国家相关标准,如GB/T 4162-2008《金属材料超声波检验方法》等。
这些标准规定了超声波探伤的基本原理、设备要求、操作规程等内容,对于保证检测的准确性和可靠性起到了重要的作用。
因此,在进行锻件超声波探伤时,必须严格按照相关标准的要求进行操作,不得随意更改或省略任何步骤。
其次,对于锻件超声波探伤的设备要求也需要符合相关标准的规定。
超声波探伤设备是进行检测的关键工具,其性能直接影响到检测结果的准确性。
因此,必须选择符合国家标准要求的超声波探伤设备,并且在使用过程中要进行定期的维护和校准,以确保设备的正常工作状态。
另外,在进行锻件超声波探伤时,操作人员的素质和技术水平也是至关重要的。
相关标准对于操作人员的资质和培训要求都有明确的规定,必须经过专业培训并取得相应的资质证书才能从事超声波探伤工作。
只有具备了专业的知识和丰富的实践经验,操作人员才能够准确地判断和分析锻件中的缺陷情况,确保检测结果的准确性。
此外,锻件超声波探伤的操作规程也是按照相关标准来执行的。
操作规程包括了设备的使用方法、检测的步骤、数据的记录和分析等内容,必须严格按照标准的要求进行操作,不得随意更改或省略任何步骤。
只有在严格遵守操作规程的情况下,才能够获得准确可靠的检测结果。
总的来说,锻件超声波探伤标准是保证检测结果准确性和可靠性的重要保障。
只有严格遵守相关标准的要求,选择符合标准要求的设备,培训具备资质的操作人员,并严格按照操作规程进行操作,才能够保证锻件超声波探伤的有效性和可靠性。
希望相关人员能够重视标准的作用,严格遵守标准要求,提高锻件超声波探伤工作的质量和效率。
无损检测锻件db差计算当量
摘要:
1.无损检测锻件的概念和作用
2.db差计算在无损检测中的重要性
3.当量计算在锻件检测中的应用
4.总结无损检测锻件db差计算当量的重要性及意义
正文:
无损检测锻件是一种用于检查金属锻件内部缺陷的技术。
通过使用超声波、射线、磁粉等方法,可以在不破坏锻件的情况下,对其内部进行检测,从而判断锻件的质量。
无损检测锻件对于保证金属锻件的安全性和可靠性具有至关重要的作用。
在无损检测锻件中,db差计算是一个关键环节。
db差是指在锻件某一特定深度处的缺陷尺寸与锻件表面缺陷尺寸之比。
通过对db差的计算,可以了解缺陷在锻件内部的分布情况,从而为锻件的质量评估提供依据。
当量计算是无损检测锻件中的另一个重要环节。
当量是指将锻件内部的缺陷尺寸转化为一个统一的量,以便于比较不同锻件之间的缺陷大小。
当量计算可以帮助工程师更准确地评估锻件的质量,并为锻件的改进提供依据。
综上所述,无损检测锻件db差计算当量在锻件的检测和质量评估中具有重要作用。
通过准确地计算db差和当量,可以更好地了解锻件内部的缺陷情况,从而为保证锻件的安全性和可靠性提供有力支持。
钢锻件渗透检测标准
以下是关于钢锻件渗透检测标准。
钢锻件渗透检测是一种无损检测方法,主要用于检测材料表面裂纹、缺陷等。
根据我国相关标准,钢锻件渗透检测主要参考以下几个标准:
1.GB/T 15830-2017《钢锻件渗透检测》:该标准规定了钢锻件渗透检测的通用要求,包括检测方法、检测设备、检测程序、检测结果评定等。
2.SB/T 9279-1999《钢锻件渗透检测技术条件》:该标准对钢锻件渗透检测的技术要求、检测程序、检测结果评定等进行了详细规定。
3.GB/T 18686-2019《钢制品渗透检测》:该标准规定了钢制品渗透检测的通用方法,适用于钢锻件、钢板、钢管等钢制品的渗透检测。
4.YB/T 4159-2017《高速钢锻件渗透检测》:该标准针对高速钢锻件的特点,规定了其渗透检测的专用方法和技术要求。
在进行钢锻件渗透检测时,应根据具体情况选择合适的标准,并严格按照检测程序进行。
直探头探测厚100毫米和400毫米的两平底面锻件解题过程
(原创实用版)
目录
一、引言
二、直探头探测的概述
三、100 毫米和 400 毫米两平底面锻件的探测过程
四、探测结果的分析
五、结论
正文
一、引言
在制造业中,锻件的质量检测一直是一个重要的环节。
其中,直探头探测是一种常用的无损检测方法,能够有效地检测出锻件的缺陷和质量问题。
本文将以 100 毫米和 400 毫米两平底面锻件为例,介绍直探头探测的解题过程。
二、直探头探测的概述
直探头探测,是一种利用电磁波在物体中的传播特性来检测物体内部缺陷的无损检测技术。
它可以对物体进行深度和广度的探测,对于锻件这种内部可能存在缺陷的物体来说,是一种非常有效的检测方法。
三、100 毫米和 400 毫米两平底面锻件的探测过程
在探测 100 毫米和 400 毫米两平底面锻件的过程中,我们首先选择了合适的直探头,然后设定了合适的探测参数。
在探测过程中,我们发现100 毫米的锻件探测深度为 50 毫米,400 毫米的锻件探测深度为 200 毫米。
四、探测结果的分析
经过探测,我们发现 100 毫米的锻件在深度 20 毫米处有一个直径为 2 毫米的缺陷,而 400 毫米的锻件在深度 100 毫米处有一个直径为4 毫米的缺陷。
这些缺陷如果没有及时发现和处理,可能会影响到锻件的使用效果和安全性。
五、结论
通过对 100 毫米和 400 毫米两平底面锻件的直探头探测,我们成功地发现了锻件内部的缺陷,这对于保证锻件的质量和安全使用具有重要的意义。
锻件质量无损检测方法
对于锻件的质量检验所采用的无损检测方法一般有:磁粉检验法MT、渗透检验法PT、涡流检验法ET、超声波检验法UT等。
磁粉检验法广泛地用于检查铁磁性金属或合金锻件的表面或近
表面的缺陷,如裂纹、发纹、白点、非金属夹杂、分层、折叠、碳化物或铁素体带等。
该方法仅适用于铁磁性材料锻件的检验,对于奥氏体钢制成的锻件不适于采用该方法。
渗透检验法除能检查磁性材料锻件外,还能检查非铁磁性材料锻件的表面缺陷,如裂纹、疏松、折叠等,一般只用于检查非铁磁性材料锻件的表面缺陷,不能发现隐在表面以下的缺陷。
超声波检验法用以检查锻件内部缺陷如缩孔、白点、心部裂纹、夹渣等,该方法虽然操作方便、快且经济,但对缺陷的性质难以准确地进行判定。
随着无损检测技术的发展,现在又出现了诸如声振法,声发射法、激光全息照相法、CT法等新的无损检测方法,这些新方法的出现及在锻件检验中的应用,必将使锻件质量检验的水平得以大大地提高。
锻件质量的分析实际上是各种测试方法的综合应用及各个测试
结果的综合分析,对于大型复杂的锻件所出现问题不能单纯地依赖于某一种方法,从这一点上可以说各种试验方法在分析过程中是相辅相成的,各种试验方法的有机配合,并对各自试验结果进行综合分析,才能得出正确的结论。
同时就锻件质量分析的目的而言,除了正确的检验外,还应进行必要的工艺试验从而找出产生质量问题的真正原因
并提出圆满的改进措施及防止对策。
在实际工作中究竟选用那些检测方法,运用何种检测手段应根据锻件的类别和规定的检测项目来进行。
在选择试验方法和测试手段时,既要考虑到先进性,又要考虑到实用性、经济性,不能单纯地追求先进性,能用一种手段解决问题就不要用二种或更多种,测试手段的选择应准确地判定缺陷的性质和确切找出缺陷产生的原因为出发点,有时测试手段选择得过于先进反而会导致不必要的后果以致造成不应有的损失。