2021高二数学会考专题辅导练习:专题九 三角函数
- 格式:docx
- 大小:121.30 KB
- 文档页数:4
高二数学三角函数试题答案及解析1.已知函数(1)求函数的最小正周期和单调递减区间;(6分);(2)在中,分别是角A、B、C的对边,若,求面积的最大值.(6分)【答案】(1),;(2)【解析】(1)一般的,求三角函数的最值、周期、单调区间、对称性等性质问题,都要将三角函数化为形式,再求解;(2)由利用三角函数求性质出角C,再利用余弦定理结合基本不等式,求出ab的最大值,代入面积公式可得.试题解析:(1)函数===所以函数的最小正周期为,由得,即单调递减区间为;(6分)(2)由得,由于C是的内角,所以,故,由余弦定理得,所以(当且仅当时取等号)所以面积的最大值为,.(12分)【考点】1、三角函数及求值;2、余弦定理.2.若角的终边上有一点,则的值是【答案】【解析】因为,所以.【考点】三角函数的定义点评:本题考查三角函数的定义,解决本题的关键是能熟练套用公式,属基础题.3.函数的图象上一点处的切线的斜率为A.1B.C.D.【答案】D【解析】根据题意可知,函数的导数为,在图象上一点处切线的斜率为,故选D.【考点】导数的几何意义点评:解决的关键是利用导数的几何意义来求解曲线的切线方程,属于基础题。
4.已知, , 函数f(x)=(1)求函数的单调增区间。
(2) 求函数的最大值及取最大值时x的集合。
【答案】(1)单调增区间为:,(2)【解析】本试题主要是考查了三角函数的图像和性质的运用(1)先将函数化为单一三角函数,然后利用正弦函数的单调区间得到结论。
(2)结合已知的解析式,分析函数的最大值和相应的x的取值5.(本题满分12分)在△ABC中,角A,B,C所对的边分别为a,b,c,且满足cos =, ·=6. (1)求△ABC的面积; (2)若c=2,求a的值【答案】【解析】略6.(本题满分10分)已知点A、B、C的坐标分别为A(3,0)、B(0,3)、C(cos,sin),∈(,). (Ⅰ)若||=||,求角的值;(Ⅱ)若·= -1,求的值.【答案】(1)="(cosα-3,sinα)," =(cosα,sinα-3),∵||=|| 可得cosα="sinα"又α∈(,)∴α=……5分(2)·= cos2α-3 cosα+ sin2α-3 sinα=-1∴cosα+sinα=∴2=-==2=-……10分【解析】略7.下列函数中,以为周期且在区间上为增函数的函数是()A.B.C.D.【答案】D【解析】8.(8分)已知 ,.(Ⅰ)求的值;(Ⅱ)求的值.【答案】解:(Ⅰ)因为,,故,所以. …4分(Ⅱ).………8分【解析】略9.,则____________.【答案】【解析】略10.(本小题满分12分)已知函数(1)求(2)求函数的单调区间【答案】(1)因为.(2分)(2)要使有意义,则的取值范围是.................................. (4分)由得...................................................... (5分)因为,所以,即,或................................ (7分)由得...................................................... (8分)]因为,所以,即.................................... (10分)所以的单调增区间为;单调减区间为........................ (12分)【解析】略11.函数最小值是A.B.C.1D.【答案】B【解析】当时,最小值为12.(1)化简:(2)求值:【答案】解:(1)(2)【解析】略13.函数在区间的简图是()A BC D【答案】A【解析】分析:将x=π代入到函数解析式中求出函数值,可排除B,D,然后将x=代入到函数解析式中求出函数值,可排除C,进而可得答案.解答:解:f(π)=sin(2π-)=-,排除B、D,f()=sin(2×-)=0,排除C.故选A.14.要得到函数的图像,只要把函数y="3sin2x" 图像()A.向右平移个单位B.向左平移个单位C.向右平移个单位D.向左平移个单位【答案】D【解析】【考点】函数y=Asin(ωx+φ)的图象变换.专题:阅读型.分析:根据函数的平移变化,y="sin2x" y="sin[2(x+" )],分析选项可得答案.解答:解:要得到函数y=sin(2x+)的图象可将y=sin2x的图象向左平移个单位.故选D.点评:本题主要考查三角函数的平移.三角函数的平移原则为左加右减上加下减.15.(本题满分12分)已知函数最小正周期为(1)求的单调递增区间(2)在中,角的对边分别是,满足,求函数的取值范围【答案】解:(1),由最小正周期为得,所以,的单调递增区间为;………………6分(2)利用正弦定理由得,,得………………12分【解析】略16.(本小题满分12分)一个圆锥高h为,侧面展开图是个半圆,求:(1)其母线l与底面半径r之比;(2)锥角;(3)圆锥的表面积【答案】(1)圆锥的侧面展开图恰为一个半圆2r=(2)AB=2OB即锥角为(3)Rt AOB中,=h+r又==3(6+3)=27【解析】略17.(本小题共10分)已知函数.(Ⅰ)求函数的单调递增区间;(Ⅱ)求函数在上的最大值和最小值.【答案】【解析】略18.化简【答案】【解析】略19.对于函数, 给出下列四个命题:①存在, 使;②存在, 使恒成立;③存在, 使函数的图象关于坐标原点成中心对称;④函数f(x)的图象关于直线对称;⑤函数f(x)的图象向左平移就能得到的图象其中正确命题的序号是 .【答案】③④【解析】略20.已知,则的值是()A.-1B.1C.2D.4【答案】C【解析】分析:应用两角和的正切公式,再通过变形即可求解解:因为,又已知,所以,变形得,即,而=2.故选C21.已知2弧度的圆心角所对的弦长为2,那么这个圆心角所对的弧长为( ) A.B.sin2C.D.2sin1【答案】C【解析】略22.已知,则等于A.B.C.D.【答案】B【解析】本题考查函数的导数由得由辅助角公式有即所以故正确答案为B23.要得到函数的图像,只需将函数的图像向______平移______个单位即可【答案】左,【解析】略24.要得到函数的图像,只需将函数的图像向______平移______个单位即可【答案】左、【解析】略25.(本小题满分12分)设函数图像的一条对称轴是直线。
2021年高考数学二轮复习 三角函数解答题专题训练(含解析)一、选择题1.设函数f (x )=a ·b ,其中向量a =(2cos x,1),b =(cos x ,3sin2x ),x ∈R . (1)若函数f (x )=1-3,且x ∈⎣⎢⎡⎦⎥⎤-π3,π3,求x 的值;(2)求函数y =f (x )的单调增区间,并在给出的坐标系中画出y =f (x )在区间[0,π]上的图象.解 (1)依题设得f (x )=2cos 2x +3sin2x =1+cos2x +3sin2x =2sin ⎝⎛⎭⎪⎫2x +π6+1. 由2sin ⎝ ⎛⎭⎪⎫2x +π6+1=1-3, 得sin ⎝⎛⎭⎪⎫2x +π6=-32. ∵-π3≤x ≤π3,∴-π2≤2x +π6≤5π6,∴2x +π6=-π3,即x =-π4.(2)当-π2+2k π≤2x +π6≤π2+2k π(k ∈Z ),即-π3+k π≤x ≤π6+k π(k ∈Z )时,函数y =f (x )单调递增,即函数y =f (x )的单调增区间为⎣⎢⎡⎦⎥⎤-π3+k π,π6+k π(k ∈Z ), 在[0,π]上列表如下:x 0 π6 π3 π2 2π3 5π6 π y232-12图象为:2.已知向量a =(cos x +3sin x ,3sin x ),b =(cos x -3sin x ,2cos x ),函数f (x )=a ·b -cos2x .(1)求函数f (x )的值域;(2)若f (θ)=15,θ∈⎣⎢⎡⎦⎥⎤π6,π3,求sin2θ的值. 解 (1)f (x )=a ·b -cos2x=(cos x +3sin x )(cos x -3sin x )+3sin x ·2cos x -cos2x =cos 2x -3sin 2x +23sin x cos x -cos2x =cos 2x -sin 2x -2sin 2x +23sin x cos x -cos2x =cos2x +3sin2x -1 =2sin ⎝⎛⎭⎪⎫2x +π6-1, 所以f (x )的值域为[-3,1].(2)由(1)知f (θ)=2sin ⎝ ⎛⎭⎪⎫2θ+π6-1,由题设2sin ⎝⎛⎭⎪⎫2θ+π6-1=15,即sin ⎝⎛⎭⎪⎫2θ+π6=35. ∵θ∈⎣⎢⎡⎦⎥⎤π6,π3, ∴2θ+π6∈⎣⎢⎡⎦⎥⎤π2,5π6,∴cos ⎝⎛⎭⎪⎫2θ+π6=-45, ∴sin2θ=sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫2θ+π6-π6=sin ⎝ ⎛⎭⎪⎫2θ+π6cos π6-cos ⎝ ⎛⎭⎪⎫2θ+π6sin π6=35×32-⎝ ⎛⎭⎪⎫-45×12=33+410. 3.已知函数f (x )=A sin(ωx +φ)其中x ∈R ,A >0,ω>0,-π2<φ<π2的部分图象如图所示.(1)求函数f (x )的解析式;(2)已知函数f (x )的图象上的三点M ,N ,P 的横坐标分别为-1,1,5,求sin ∠MNP 的值. 解 (1)由图可知,A =1,最小正周期T =4×2=8. 由T =2πω=8,得ω=π4. 又f (1)=sin ⎝ ⎛⎭⎪⎫π4+φ=1,且-π2<φ<π2,∴π4+φ=π2.解得φ=π4, ∴f (x )=sin ⎝ ⎛⎭⎪⎫π4x +π4.(2)∵f (-1)=0,f (1)=1,f (5)=sin ⎝ ⎛⎭⎪⎫5π4+π4=-1,∴M (-1,0),N (1,1),P (5,-1). ∴|MN |=5,|PN |=20,|MP |=37. 由余弦定理得cos ∠MNP =5+20-3725×20=-35.∵∠MNP ∈(0,π), ∴sin ∠MNP =45.4.已知m =(2cos x +23sin x,1),n =(cos x ,-y ),且m ⊥n . (1)将y 表示为x 的函数f (x ),并求f (x )的单调增区间;(2)已知a ,b ,c 分别为△ABC 的三个内角A ,B ,C 对应的边长,若f ⎝ ⎛⎭⎪⎫A 2=3,且a =2,b +c =4,求△ABC 的面积.解 (1)由m ⊥n ,得m ·n =2cos 2x +23sin x cos x -y =0, 即y =2cos 2x +23sin x cos x =cos2x +3sin2x +1 =2sin ⎝⎛⎭⎪⎫2x +π6+1, ∴由-π2+2k π≤2x +π6≤π2+2k π,k ∈Z ,得-π3+k π≤x ≤π6+k π,k ∈Z ,即函数f (x )的增区间为⎣⎢⎡⎦⎥⎤-π3+k π,π6+k π,k ∈Z .(2)∵f ⎝ ⎛⎭⎪⎫A 2=3,∴2sin ⎝⎛⎭⎪⎫A +π6+1=3.即sin ⎝⎛⎭⎪⎫A +π6=1. ∴A +π6=π2+2k π,k ∈Z .又0<A <π, ∴A =π3,由余弦定理,得a 2=b 2+c 2-2bc cos A , 即4=b 2+c 2-bc , ∴4=(b +c )2-3bc , 又b +c =4, ∴bc =4,∴S △ABC =12bc sin A =12×4×32= 3.5.已知函数f (x )=3sinωx +φ2cosωx +φ2+sin2ωx +φ2⎝ ⎛⎭⎪⎫其中ω>0,0<φ<π2.其图象的两个相邻对称中心的距离为π2,且过点⎝ ⎛⎭⎪⎫π3,1. (1)求函数f (x )的解析式;(2)在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,a =5,S △ABC =25,角C 为锐角.且满足f ⎝ ⎛⎭⎪⎫C 2-π12=76,求c 的值. 解 (1)f (x )=32sin ()ωx +φ+12[1-cos(ωx +φ)] =sin ⎝ ⎛⎭⎪⎫ωx +φ-π6+12. ∵两个相邻对称中心的距离为π2,则T =π, ∴2π|ω|=π,∵ω>0,∴ω=2. 又f (x )过点⎝ ⎛⎭⎪⎫π3,1, ∴sin ⎝ ⎛⎭⎪⎫2π3-π6+φ+12=1,即sin ⎝ ⎛⎭⎪⎫π2+φ=12,∴cos φ=12.又∵0<φ<π2,∴φ=π3, ∴f (x )=sin ⎝⎛⎭⎪⎫2x +π6+12. (2)f ⎝ ⎛⎭⎪⎫C 2-π12=sin ⎝ ⎛⎭⎪⎫C -π6+π6+12=sin C +12=76,∴sin C =23,又∵0<C <π2,∴cos C =53.又a =5,S △ABC =12ab sin C =12×5×b ×23=25,∴b =6,由余弦定理,得c 2=a 2+b 2-2ab cos C , 即c 2=5+36-25×6×53=21, ∴c =21.623073 5A21 娡29239 7237 爷31834 7C5A 籚fP27984 6D50 浐37192 9148 酈 39340 99AC 馬_21649 5491 咑R"d。
2021年高考数学三角函数与解三角形多选题之知识梳理与训练及解析一、三角函数与解三角形多选题1.在ABC 中,下列说法正确的是( )A .若AB >,则sin sin A B > B .存在ABC 满足cos cos 0A B +≤ C .若sin cos A B <,则ABC 为钝角三角形D .若2C π>,则22sin sin sin C A B >+【答案】ACD 【分析】A 项,根据大角对大边定理和正弦定理可判断;B 项,由A B π+<和余弦函数在()0,π递减可判断;C 项,显然2A π≠,分02A π<<和2A π>两种情况讨论,结合余弦函数的单调性可判断;D 项,根据2A B π+<和正弦函数的单调性得出0sin cos A B <<和0sin cos B A <<,再由放缩法可判断. 【详解】解:对于A 选项,若A B >,则a b >,则2sin 2sin R A R B >,即sin sin A B >,故A 选项正确;对于B 选项,由A B π+<,则A B π<-,且(),0,A B ππ-∈,cos y x =在()0,π上递减,于是cos cos A B >-,即cos cos 0A B +>,故B 选项错误﹔ 对于C 选项,由sin cos A B <,得cos cos 2A B π⎛⎫-< ⎪⎝⎭,cos y x =在()0,π上递减, 此时:若02A π<<,则2A B π->,则2A B π+<,于是2C π>; 若2A π>,则cos cos 2A B π⎛⎫-< ⎪⎝⎭,则2A B π->, 于是2A B π>+,故C 选项正确;对于D 选项,由2C π>,则2A B π+<,则022A B ππ<<-<,sin y x =在0,2π⎛⎫⎪⎝⎭递增,于是sin sin 2A B π⎛⎫<- ⎪⎝⎭, 即0sin cos A B <<,同理0sin cos B A <<, 此时,22sin sin()sin cos cos sin sin sin sin sin sin sin C A B A B A B A A B B A B=+=+>⋅+⋅=+所以D 选项正确. 故选:ACD 【点睛】关键点点睛:正余弦函数的单调性,正弦定理的边角互化,大边对大角定理以及大角对大边定理,不等式的放缩等等,综合使用以上知识点是解决此类题的关键.2.如图,ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .若a b =,且()3cos cos 2sin a C c A b B +=,D 是ABC 外一点,1DC =,3DA =,则下列说法正确的是( )A .ABC 是等边三角形B .若23AC =A ,B ,C ,D 四点共圆 C .四边形ABCD 面积最大值为5332+ D .四边形ABCD 面积最小值为5332- 【答案】AC 【分析】利用三角函数恒等变换化简已知等式可求sin B ,再利用a b =,可知ABC 为等边三角形,从而判断A ;利用四点A ,B ,C ,D 共圆,四边形对角互补,从而判断B ;设AC x =,0x >,在ADC 中,由余弦定理可得2106cos x D =-,利用三角形的面积公式,三角函数恒等变换的,可求ABCD S 四边形,利用正弦函数的性质,求出最值,判断CD .【详解】由正弦定理2sin ,2sin ,2sin a R A b R B c R C ===, 3(sin cos sin cos )2sin sin A C C A B B +=⋅,332sin ,sin B B =∴=, a b =,B 是等腰ABC 的底角,(0,)2B π∴∈,,3B ABC π∴=∴△是等边三角形,A 正确;B 不正确:若,,,A BCD 四点共圆,则四边形对角互补, 由A 正确知21,cos 32D D π∠==-,但由于1,3,DC DA AC ===22211cos 232DC DA AC D DA DC +-===-≠-⋅⋅,∴B 不正确. C 正确,D 不正确:设D θ∠=,则2222cos 106cos AC DC DA DC DA θθ=+-⋅⋅=-,(106cos )ABC S θθ∴=-=△, 3sin 2ADC S θ=△,3sin cos 222ABCADCABCD S S Sθθ∴=+=-+四边形,13(sin cos 2θθ=⋅-+,3sin()32πθ=-+,(0,),sin()(3πθπθ∈∴-∈,3ABCD S <≤+四边形,∴C 正确,D 不正确; 故选:AC.. 【点睛】本题主要考查正弦定理,余弦定理,三角函数恒等变换,正弦函数的图象和性质在解三角形中的综合应用,考查计算能力和转化思想,属于中档题.3.设函数()2sin 1xf x x x π=-+,则( )A .()43f x ≤B .()5f x x ≤C .曲线()y f x =存在对称轴D .曲线()y f x =存在对称中心【答案】ABC 【分析】通过()22sin sin11324x xf xx xxππ==-+⎛⎫-+⎪⎝⎭可发现函数()y f x=具有对称轴及最大值,再利用函数对称中心的特点去分析()y f x=是否具有对称中心,再将()5f x x≤化为32sin555x x x xπ≤-+,通过数形结合判断是否成立.【详解】函数解析式可化为:()22sin sin11324x xf xx xxππ==-+⎛⎫-+⎪⎝⎭,因为函数siny x=π的图象关于直线12x=对称,且函数21324y x⎛⎫=-+⎪⎝⎭的图象也关于直线12x=对称,故曲线()y f x=也关于直线12x=对称,选项C正确;当12x=时,函数siny x=π取得最大值1,此时21324y x⎛⎫=-+⎪⎝⎭取得最小值34,故()14334f x≤=,选项A正确;若()5f x x≤,则32sin555x x x xπ≤-+,令()32555g x x x x=-+,则()()221510553210g x x x x x'=-+=-+>恒成立,则()g x在R上递增,又()00g=,所以当0x<时,()00g<;当0x>时,()0g x>;作出sin xπ和32555x x x-+的图象如图所示:由图象可知32sin555x x x xπ≤-+成立,即()5f x x≤,选项B正确;对于D选项,若存在一点(),a b使得()f x关于点(),a b对称,则()()2f a x f a x b-++=,通过分析发现()()f a x f a x-++不可能为常数,故选项D错误.【点睛】本题考查函数的综合应用,涉及函数的单调性与最值、对称轴于对称中心、函数与不等式等知识点,难度较大. 对于复杂函数问题一定要化繁为简,利用熟悉的函数模型去分析,再综合考虑,注意数形结合、合理变形转化.4.设函数g (x )=sinωx (ω>0)向左平移5πω个单位长度得到函数f (x ),已知f (x )在[0,2π]上有且只有5个零点,则下列结论正确的是( )A .f (x )的图象关于直线2x π=对称B .f (x )在(0,2π)上有且只有3个极大值点,f (x )在(0,2π)上有且只有2个极小值点C .f (x )在(0,)10π上单调递增 D .ω的取值范围是[1229,510) 【答案】CD 【分析】利用正弦函数的对称轴可知,A 不正确;由图可知()f x 在(0,2)π上还可能有3个极小值点,B 不正确;由2A B x x π≤<解得的结果可知,D 正确;根据()f x 在3(0,)10πω上递增,且31010ππω<,可知C 正确. 【详解】依题意得()()5f x g x πω=+sin[()]5x πωω=+sin()5x πω=+, 2T πω=,如图:对于A ,令52x k ππωπ+=+,k Z ∈,得310k x ππωω=+,k Z ∈,所以()f x 的图象关于直线310k x ππωω=+(k Z ∈)对称,故A 不正确; 对于B ,根据图象可知,2A B x x π≤<,()f x 在(0,2)π有3个极大值点,()f x 在(0,2)π有2个或3个极小值点,故B 不正确, 对于D ,因为5522452525A x T ππππωωωω=-+=-+⨯=,22933555B x T ππππωωωω=-+=-+⨯=,所以2429255πππωω≤<,解得1229510ω≤<,对于C ,因为1123545410T ππππωωωω-+=-+⨯=,由图可知()f x 在3(0,)10πω上递增,因为29310ω<<,所以33(1)0101010πππωω-=-<,所以()f x 在(0,)10π上单调递增,故C 正确;故选:CD. 【点睛】本题考查了三角函数的相位变换,考查了正弦函数的对称轴和单调性和周期性,考查了极值点的概念,考查了函数的零点,考查了数形结合思想,属于中档题.5.已知函数()f x 的定义域为D ,若对于任意()()()a b c D f a f b f c ∈,,,,,分别为某个三角形的边长,则称()f x 为“三角形函数”,其中为“三角形函数”的函数是( ) A .()4sin f x x =- B .()22sin 10cos 13f x x x =-++C .()tan 2x f x = D .()sin 20,34f x x x ππ⎛⎫⎡⎤=++∈ ⎪⎢⎥⎝⎭⎣⎦【答案】AD 【分析】结合三角形的性质有:两边之差小于第三边,得若()f x 为 “三角形函数”则()()()max min min f x f x f x <-恒成立,即()()max min 2f x f x <恒成立即可,根据条件求出函数的最大值和最小值,进行判断即可. 【详解】解:①()4sin f x x =-,则()max 415f x =+=,()min 413f x =-= 则()()max min 2f x f x <恒成立,则A 满足条件②()22532cos 10cos 112cos 22f x x x x ⎛⎫=++=+= ⎪⎝⎭当0,2x π⎡⎤∈⎢⎥⎣⎦时,0cos 1x ≤≤∴当cos 0x =时,函数()f x 取得最小值()min 11f x =,当cos 1x =时,函数()f x 取得最大值,()max 23f x =则()()max min 2f x f x <不恒成立,则B 不满足条件 ③()()()tan ,00,2xf x =∈-∞⋃+∞,则不满足条件()()max min 2f x f x <恒成立,故C 不是④()sin 23f x x π⎛⎫=++ ⎪⎝⎭0,4x π⎡⎤∈⎢⎥⎣⎦,52,336x πππ⎡⎤∴+∈⎢⎥⎣⎦,则()max sin12f x π=+=+()min 51sin62f x π=+=+则()min 21f x =+,则()()max min 2f x f x <恒成立,故D 满足条件 故选AD 【点睛】本题考查了三角形的性质及“三角形函数”的概念,根据条件转化为()()max min 2f x f x <恒成立是解决本题的关键,综合性较强,有一定的难度.6.已知函数()2sin()05,||2f x x πωϕωϕ⎛⎫=+<<< ⎪⎝⎭,且对任意x ∈R ,()12f x f π⎛⎫≤ ⎪⎝⎭恒成立,3y f x π⎛⎫=+⎪⎝⎭为奇函数,则下列说法正确的是( ) A .函数()f x 的图象关于原点对称 B .函数()f x 的最小正周期为π C .函数()f x 的图象关于直线2x π=对称D .函数()f x 的单调递增区间为5,()1212k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z 【答案】BD 【分析】由()12f x f π⎛⎫≤ ⎪⎝⎭恒成立可得212f π⎛⎫=± ⎪⎝⎭,即()122k k ωππϕπ+=+∈Z ,由3y f x π⎛⎫=+ ⎪⎝⎭为奇函数可得()3k k ωπϕπ''+=∈Z ,即可求出2n 2)3(si f x x π⎛⎫=+⎪⎝⎭,再根据正弦函数的性质分别判断即可. 【详解】因为对任意x ∈R ,()12f x f π⎛⎫≤ ⎪⎝⎭恒成立,所以2sin 21212f πωπϕ⎛⎫⎛⎫=+=± ⎪⎪⎝⎭⎝⎭, 即sin 112ωπϕ⎛⎫+=±⎪⎝⎭,得()122k k ωππϕπ+=+∈Z ①. 2sin 2sin 333f x x x ππωπωϕωϕ⎡⎤⎛⎫⎛⎫⎛⎫+=++=++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,因为3y f x π⎛⎫=+ ⎪⎝⎭为奇函数,所以()3k k ωπϕπ''+=∈Z ②.由①②可得()(),3122k k k k ωπωπππ''-=--∈Z ,即()(42,)k k k k ω''=--∈Z .又05ω<<,所以1k k '-=,2ω=, 则(2,)33k k k k ππϕππ=+=-'∈'Z ,得3πϕ=,所以2n 2)3(si f x x π⎛⎫=+ ⎪⎝⎭,由于(0)0f =≠,故()f x 的图象不关于原点对称,所以A 不正确; ()f x 的最小正周期22T ππ==,所以B 正确;2sin 22sin 2sin 222333f ππππππ⎛⎫⎛⎫⎛⎫=⨯+=+=-=± ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以C 不正确;令222232k x k πππππ-≤+≤+,k ∈Z ,得51212k x k ππππ-≤≤+,k ∈Z , 故函数() f x 的单调递增区间为5,()1212k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z ,所以D 正确. 故选:BD. 【点睛】关键点睛:本题考查正弦型函数的性质,解题的关键是:(1)根据“对任意x ∈R ,()12f x f π⎛⎫≤ ⎪⎝⎭恒成立”得到“212f π⎛⎫=± ⎪⎝⎭”;(2)得到“2sin 33f x x πωπωϕ⎛⎫⎛⎫+=++ ⎪ ⎪⎝⎭⎝⎭”后,能根据“3y f x π⎛⎫=+⎪⎝⎭为奇函数”得到“()3k k ωπϕπ''+=∈Z ”.7.下列结论正确的是( )A .在三角形ABC 中,若AB >,则sin sin A B > B .在锐角三角形ABC 中,不等式2220b c a +->恒成立 C .若sin 2sin 2A B =,则三角形ABC 为等腰三角形D .在锐角三角形ABC 中,sin sin cos cos A B A B +>+ 【答案】ABD 【分析】由正弦定理及三角形性质判断A ,由余弦定理判断B ,由正弦函数性质判断C ,利用锐角△ABC 这个条件,可得2A B π+>,结合三角函数的单调性比较sin A 与cos B 大小即可判断D . 【详解】ABC 中,A B a b >⇔>,由sin sin a bA B=,得sin sin A B >,A 正确; 在锐角三角形ABC 中,222222cos 0,02b c a A b c a bc+-=>∴+->,B 正确;ABC 中,若sin 2sin 2A B =,则22A B =或22180A B ︒+=,即A B =或90A B ︒+=,ABC 为等腰三角形或直角三角形,C 错误;在锐角三角形ABC 中,2A B π+>,022A B ππ∴>>->,sin sin 2A B π⎛⎫∴>- ⎪⎝⎭,即sin cos A B >,同理:sin cos B A >sin sin cos cos A B A B ∴+>+,D 正确.故选:ABD. 【点睛】关键点睛:本题考查正弦定理,余弦定理,正弦函数的性质,诱导公式等,学会公式的灵活应用是解答本题的关键.8.设函数()sin()(0)4f x x πωω=+>,已知()f x 在[]02π,有且仅有5个零点,则下列结论成立的有( )A .()1y f x =+在()02π,有且仅有2个零点 B .()f x 在023π⎛⎫⎪⎝⎭,单调递增C .ω的取值范围是192388⎡⎫⎪⎢⎣⎭,D .将()f x 的图象先右移4π个单位,再纵坐标不变,横坐标扩大为原来的2倍,得到函数1()sin()2g x x ω=【答案】BC 【分析】首先利用图象直接判断A 选项;再利用函数()f x 在[]02π,有且仅有5个零点,求得ω的范围,并利用整体代入的方法判断B 选项;最后利用图象的变换规律,求得变换之后的解析式,判断D. 【详解】A.如图,[]0,2π上函数仅有5个零点,但有3个最小值点,这3个最小值点就是()1y f x =+在()0,2π上的3个零点;B.[]0,2x π∈时,,2444t x πππωωπ⎡⎤=+∈⋅+⎢⎥⎣⎦ 若函数()f x 在[]02π,有且仅有5个零点,则5264ππωππ≤⋅+<,得192388ω≤<,当023x π⎛⎫∈ ⎪⎝⎭,时,,448t x πππω⎛⎫=+∈ ⎪⎝⎭,此时函数单调递增,故BC 正确; D. 函数()f x 的图象先右移4π个单位后得到sin sin 4444y x x ππωππωω⎡⎤⎛⎫⎛⎫=-+=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,再将横坐标扩大为原来的2倍,得到()1sin 244g x x ωππω⎛⎫=-+ ⎪⎝⎭,故D 不正确;故选:BC 【点睛】关键点点睛:本题的关键是求出ω的取值范围,首先根据函数在区间[]0,2π有5个零点,首先求4t x πω=+的范围,再分析sin y t =的图象,求得ω的范围.9.已知函数)2()lg11( 2.7)x x f x x x e e e -=++-+≈⋯,若不等式(sin cos )2(sin 2)f f t θθθ+<--对任意R θ∈恒成立,则实数t 的可能取值为( )A .1B 2C .3D .4【答案】CD 【分析】 令)2()lg1x x g x x x e e -=++-,则()()1f x g x =+,可判断()g x 是奇函数且单调递增,不等式可变形可得(sin cos )(sin 2)g g t θθθ+<-,所以sin cos sin 2t θθθ>++,令()sin cos sin 2h θθθθ=++,换元法求出()h θ的最大值,()max t h θ>即可. 【详解】 令)2()lg1x x g x x x e e -=++-,则()()1f x g x =+,()g x 的定义域为R ,))()()lg lg x x x x g x g x x e e x e e ---+=+-++-0=, 所以()()g x g x -=-,所以()g x 是奇函数,不等式(sin cos )2(sin 2)f f t θθθ+<--等价于[](sin cos )1(sin 2)1f f t θθθ+-<---,即(sin cos )(sin 2)(sin 2)g g t g t θθθθ+<--=-,当0x >时y x =单调递增,可得)lg y x =单调递增, x y e =单调递增,x y e -=单调递减,所以)()lg x x g x x e e -=+-在()0,∞+单调递增,又因为)()lgx x g x x e e -=+-为奇函数,所以)()lg x x g x x e e -=+-在R 上单调递增,所以sin cos sin 2t θθθ+<-,即sin cos sin 2t θθθ>++,令()sin cos sin 2h θθθθ=++,只需()max t h θ>,令sin cos m θθ⎡+=∈⎣,则21sin 2m θ=+,2sin 21m θ=-,所以()21h m m m =+-,对称轴为12m =-,所以m =()max 211h m ==,所以1t >可得实数t 的可能取值为3或4,故选:CD【点睛】关键点点睛:本题解题的关键点是构造函数()g x 奇函数且是增函数,将原不等式脱掉f 转化为函数恒成立问题.10.设函数()()sin f x A x =+ωϕ,x ∈R (其中0A >,0>ω,2πϕ<),在,62ππ⎛⎫ ⎪⎝⎭上既无最大值,也无最小值,且()026f f f ππ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭,则下列结论错误的是( )A .若()()()12f x f x f x ≤≤对任意x ∈R ,则21min x x π-=B .()y f x =的图象关于点,03π⎛-⎫ ⎪⎝⎭中心对称 C .函数()f x 的单调减区间为()7,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦D .函数()()y f x x R =∈的图象相邻两条对称轴之间的距离是2π 【答案】ABD【分析】根据条件先求函数的解析式,对于A:判断出()1f x 为最小值,()2f x 为最大值,即可;对于B:根据函数的对称性进行判断;对于C:求出角的范围,结合三角函数的单调性进行判断;对于D:根据函数的对称性即对称轴之间的关系进行判断.【详解】因为函数()f x 在,62ππ⎛⎫ ⎪⎝⎭上既无最大值,也无最小值, 所以,62ππ⎛⎫ ⎪⎝⎭是函数的一个单调区间,区间长度为263πππ-=, 即函数的周期2233T ππ≥⨯=,即223ππω≥,则03ω<≤ 因为()06f f π⎛⎫= ⎪⎝⎭,所以06212ππ+=为函数的一条对称轴; 则1223πππωϕωϕπ+=+=①② 由①②解得:=2=3πωϕ,,即()sin 23f x A x π⎛⎫=+ ⎪⎝⎭,函数的周期=T π. 对于A: 若()()()12f x f x f x ≤≤对任意x ∈R 恒成立,则()1f x 为最小值,()2f x 为最大值,所以12||22T k x x k π-==,则21x x -必为2π的整数倍,故A 错误,可选A; 对于B:3x π=-时,()sin 03f x A π⎛⎫=-≠ ⎪⎝⎭,故,03π⎛-⎫ ⎪⎝⎭不是()y f x =的对称中心,B 错误,可选B; 对于C:当7,1212x k k ππππ⎡⎤∈++⎢⎥⎣⎦时,322,2322x k k πππππ⎡⎤+∈++⎢⎥⎣⎦,此时()y f x =单调递减,C 正确,不选C;对于D: 函数()()y f x x R =∈的图象相邻两条对称轴之间的距离是44T π=,故D 错误,可选D故选:ABD【点睛】(1)求三角函数解析式的方法:①求A 通常用最大值或最小值;②(2)求ω通常用周期;③求φ通常利用函数上的点带入即可求解;(2)三角函数问题通常需要把它化为“一角一名一次”的结构,借助于sin y x =或cos y x =的性质解题.。
2021年高考数学的三角函数与解三角形多选题含解析一、三角函数与解三角形多选题1.设函数()2sin sin 2cos2f x x x =++,给出下列四个结论:则正确结论的序号为( ) A .()20f >B .()f x 在53,2ππ⎛⎫--⎪⎝⎭上单调递增 C .()f x 的值域为[]12cos2,32cos2-++ D .()f x 在[]0,2π上的所有零点之和为4π 【答案】ABD 【分析】由()23sin 22cos2f =+,结合3224ππ<<,可判定A 正确;作出函数2sin sin y x x =+的图象,可得函数()f x 的值域及单调性,可判定B 正确,C 不正确;结合函数的图象,可得()f x 在[]0,2π上的所有零点之和,可判定D 正确. 【详解】由题意,函数()2sin sin 2cos2f x x x =++, 可得()22sin 2sin 22cos23sin 22cos2f =++=+ 因为3224ππ<<,所以sin 2cos20>->,所以()20f >,所以A 正确; 由3sin ,222sin sin ,sin ,222x k x k y x x k Z x k x k πππππππ≤≤+⎧=+=∈⎨-+≤≤+⎩,作出函数2sin sin y x x =+的图象,如图所示, 可得函数()f x 是以2π为周期的周期函数,由函数2sin sin y x x =+的图象可知,函数()f x 在3(,)2ππ上单调递增, 又由()f x 是以2π为周期的周期函数,可得函数()f x 在5(3,)2ππ--上单调递增, 所以B 是正确的;由由函数2sin sin y x x =+的图象可知,函数()f x 的值域为[2cos 2,32cos 2]+, 所以C 不正确; 又由2223ππ<<,所以1cos 202-<<,则02cos21<-<, 令()0f x =,可得2sin sin 2cos2x x +=-,由图象可知,函数()f x 在[]0,2π上的所有零点之和为4π,所以D 正确. 故选:ABD.【点睛】本题主要考查了三角函数的图象与性质的综合应用,其中解答中熟记三角函数的图象与性质是解答的关键,着重考查转化思想,以及数形结合思想的应用,以及推理与运算能力,属于中档试题.2.已知函数()()cos 2f x A x b ϕ=++(0A >,0ϕπ<<)的部分图像如图所示,则( )A .2A =B .点7,112π⎛⎫⎪⎝⎭是()f x 图像的一个对称中心 C .6π=ϕ D .直线3x π=是()f x 图像的一条对称轴【答案】ABD 【分析】由图知函数最大值为3,最小值为1-,且函数图像与y 轴的交点为()0,2,进而待定系数得()2cos 213f x x π⎛⎫=++ ⎪⎝⎭,再整体换元讨论B,D 选项即可.【详解】 因为0A >,所以31A b A b +=⎧⎨-+=-⎩,解得21A b =⎧⎨=⎩,故A 正确;()02cos 12f ϕ=+=,则1cos 2ϕ=.又0ϕπ<<,所以3πϕ=,故C 错误;()2cos 213f x x π⎛⎫=++ ⎪⎝⎭,令23x k ππ+=,k ∈Z ,解得62πk πx =-+,k ∈Z , 所以()f x 图像的对称轴方程为62πk πx =-+, 令1k =,则3x π=,D 正确;令232x k πππ+=+,k ∈Z ,解得122k x ππ=+,k ∈Z , 令1k =,则712x π=且7112f π⎛⎫= ⎪⎝⎭,故B 正确.故选:ABD 【点睛】本题考查三角函数图像求解析式,三角函数的对称轴,对称中心等,考查运算求解能力,是中档题.解题的过程中,需要注意形如()()sin 0y A x B A ωϕ=++>,()()cos 0y A x B A ωϕ=++>,max min ,y A B y A B =+=-+,ϕ的求解通常采用待定系数法求解.3.已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,下列说法正确的是( )A .函数()y f x =的周期为πB .函数()y f x =在2,36ππ⎡⎤--⎢⎥⎣⎦单调递减C .函数()y f x =的图象关于直线512x π=-对称 D .该图象向右平移6π个单位可得2sin 2y x =的图象 【答案】ACD 【分析】先根据图像求出()y f x =的解析式,再分别验证A 、B 、C 、D 是否正确. 对于A :利用周期公式求周期;对于B :利用复合函数“同增异减”求单调区间; 对于C :计算512f π⎛-⎫⎪⎝⎭,看512x π=-是否经过顶点; 对于D :利用“左加右减”判断. 【详解】由图像可知:A =2,周期24,2312T T ππππω⎛⎫=-=∴==⎪⎝⎭; 由=2sin 2212122f ππϕπϕ⎧⎛⎫⎛⎫⨯+= ⎪ ⎪⎪⎪⎝⎭⎝⎭⎨⎪<⎪⎩解得:3πϕ=故函数()2sin 23f x x π⎛⎫=+ ⎪⎝⎭对于A :4312T πππ⎛⎫=-= ⎪⎝⎭,故A 正确; 对于B :当236x ππ-≤≤- 时203x ππ-≤+≤,所以()y f x =在2,36ππ⎡⎤--⎢⎥⎣⎦上不单调.故B 错误; 对于C :当512x π=-时255s 2121232in f πππ⎛⎫⎛⎫=-=- ⎪ ⎭⎝-⎪⎭+⎝⨯,即直线512x π=-是()y f x =的一条对称轴.故C 正确;对于D :()y f x =向右平移6π个单位得到2sin 222sin 263y x x ππ⎛⎫=-⨯+= ⎪⎝⎭,故D 正确. 故选:ACD 【点睛】求三角函数解析式的方法: (1)求A 通常用最大值或最小值; (2)求ω通常用周期;()求φ通常利用函数上的点带入即可求解.4.已知函数()cos f x x x =-,则下列说法正确的是( ) A .()f x 的图象关于点,06π⎛⎫⎪⎝⎭中心对称B .()f x 在区间,2ππ⎡⎤⎢⎥⎣⎦上单调递减 C .()f x 在()0,2π上有且仅有1个最小值点 D .()f x 的值域为[]1,2- 【答案】BC 【分析】利用特殊值法可判断A 选项的正误;化简函数()f x 在区间,2ππ⎡⎤⎢⎥⎣⎦上的解析式,利用正弦型函数的单调性可判断B 选项的正误;由()()f x f x π+=可得()f x 的周期为π,再在[]0,π上讨论函数()f x 的单调性、最值,可判断CD 选项的正误.【详解】对于A 选项,因为06f π⎛⎫-= ⎪⎝⎭,2f π⎛⎫= ⎪⎝⎭62f f ππ⎛⎫⎛⎫-≠- ⎪ ⎪⎝⎭⎝⎭, 所以()f x 的图象不关于点,06π⎛⎫⎪⎝⎭中心对称,故A 错误;对于B 选项,当,2x ππ⎡⎤∈⎢⎥⎣⎦时,()cos 2sin 6f x x x x π⎛⎫=+=+ ⎪⎝⎭,27,636x πππ⎡⎤+∈⎢⎥⎣⎦,所以,函数()f x 在区间,2ππ⎡⎤⎢⎥⎣⎦上单调递减,B 选项正确; 对于C 选项,()()()cos sin cos f x x x x x πππ+=+-+=--()cos x x f x =-=,所以π为函数()f x 的周期.当0,2x π⎡⎤∈⎢⎥⎣⎦时,()cos 2sin 6f x x x x π⎛⎫=-=- ⎪⎝⎭,,663x πππ⎡⎤-∈-⎢⎥⎣⎦,所以()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上单调递增,()()min 01f x f ==-,()max 2f x f π⎛⎫== ⎪⎝⎭ 由B 选项可知,函数()f x 在区间,2ππ⎡⎤⎢⎥⎣⎦上单调递减,当,2x ππ⎡⎤∈⎢⎥⎣⎦时,()max 2f x f π⎛⎫== ⎪⎝⎭()()min1f x f π==-.所以,函数()f x 在()0,2π上有且只有1个最小值点,C 选项正确;对于D 选项,由C 选项可知,函数()f x 的值域为⎡-⎣,D 选项错误.故选:BC. 【点睛】方法点睛:求函数()()sin f x A x =+ωϕ在区间[],a b 上值域的一般步骤: 第一步:三角函数式的化简,一般化成形如()sin y A x k ωϕ=++的形式或()cos y A x k ωϕ=++的形式;第二步:由x 的取值范围确定x ωϕ+的取值范围,再确定()sin x ωϕ+(或()cos x ωϕ+)的取值范围;第三步:求出所求函数的值域(或最值).5.在ABC 中,角,,A B C 所对的边分别为,,a b c ,已知()()(::5:)4:6b c c a a b +++=,下列结论正确的是( )A .::7:5:3sinA sinB sinC = B .0AB AC ⋅>C .若6c =,则ABC 的面积是D .若8+=b c ,则ABC 【答案】ACD 【分析】先利用已知条件设4,5,6b c k c a k a b k +=+=+=,进而得到3.5, 2.5, 1.5a k b c k ===,利用正弦定理可判定选项A ;利用向量的数量积公式可判断选项B ;利用余弦定理和三角形的面积公式可判定选项C ;利用余弦定理和正弦定理可判断选项D. 【详解】依题意,设4,5,6b c k c a k a b k +=+=+=, 所以 3.5, 2.5, 1.5a k b c k ===,由正弦定理得:::::7:5:3sinA sinB sinC a b c ==, 故选项A 正确;222222cos 22b c a b c a AB AC bc A bc bc +-+-⋅==⨯=222222.5 1.5 3.515028k k +-==-<,故选项B 不正确; 若6c =,则4k =, 所以14,10a b ==,所以222106141cos 21062A +-==-⨯⨯,所以3sin A =, 故ABC 的面积是:113sin 610153222bc A =⨯⨯⨯=; 故选项C 正确;若8+=b c ,则2k =, 所以7,5,3a b c ===,所以2225371cos 2532A +-==-⨯⨯,所以3sin 2A =, 则利用正弦定理得:ABC 的外接圆半径是:1732sin a A ⨯=, 故选项D 正确; 故选:ACD. 【点睛】关键点睛:本题主要考查正余弦定理以及三角形面积公式. 利用已知条件设4,5,6b c k c a k a b k +=+=+=,再利用正余弦定理以及三角形面积公式求解是解决本题的关键.6.如图,已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的图象与x 轴交于点A ,B ,若7OB OA =,图象的一个最高点42,33D ⎛⎫⎪⎝⎭,则下列说法正确的是( )A .4πϕ=-B .()f x 的最小正周期为4C .()f x 一个单调增区间为24,33⎛⎫-⎪⎝⎭ D .()f x 图象的一个对称中心为5,03⎛⎫- ⎪⎝⎭【答案】BCD 【分析】先利用7OB OA =设0OA x =,得到点A 处坐标,结合周期公式解得选项A 错误,再利用最高点42,33D ⎛⎫⎪⎝⎭解出0x 得到周期,求得解析式,并利用代入验证法判断单调区间和对称中心,即判断选项BCD 正确. 【详解】由7OB OA =,设0OA x =,则07OB x =,06AB x =,选项A 中,点A ()0,0x 处,()0sin 0x ωϕ+=,则00x ωϕ+=,即0x ϕω=-,0612262T x AB ϕπωω-==⋅==,解得6πϕ=-,A 错误; 选项B 中,依题意0004343D x x x x =+==,得013x =,故1,03A ⎛⎫⎪⎝⎭,最小正周期414433T ⎛⎫=-= ⎪⎝⎭,B 正确; 选项C 中,由24T πω==,得2πω=,结合最高点42,33D ⎛⎫⎪⎝⎭,知43A =,即()4sin 326f x x ππ⎛⎫=- ⎪⎝⎭,当24,33x ⎛⎫∈- ⎪⎝⎭时,,2622x ππππ⎛⎫-∈- ⎪⎝⎭,故24,33⎛⎫- ⎪⎝⎭是()f x 的一个单调增区间,C 正确;选项D 中,53x =-时()5454sin sin 0332363f πππ⎡⎤⎛⎫⎛⎫-=⨯--=-= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,故5,03⎛⎫- ⎪⎝⎭是()f x 图象的一个对称中心,D 正确.故选:BCD. 【点睛】 思路点睛:解决三角函数()sin y A ωx φ=+的图象性质,通常利用正弦函数的图象性质,采用整体代入法进行求解,或者带入验证.7.已知4παπ≤≤,32ππβ≤≤,4sin 25α=,cos()10αβ+=-,则( )A .cos α=B .sin cos αα-=C .34πβα-= D .cos cos αβ= 【答案】BC 【分析】先根据4sin 25α=,判断角α的范围,再根据cos2α求cos α; 根据平方关系,判断sin cos αα-的值;利用公式cos()cos[()2]βααβα-=+-求值,并根据角的范围判断角βα-的值;利用公式()cos βα+和()cos βα-,联合求cos cos αβ.【详解】 ①因为4παπ≤≤,所以222παπ≤≤,又4sin 205α=>,故有22παπ≤≤,42ππα≤≤,解出2231cos 22cos 1cos cos 55αααα=-=-⇒=⇒=,故A 错误; ②()21sin cos 1sin 25ααα-=-=, 由①知:42ππα≤≤,所以sin cos αα>,所以sin cos 5αα-=,故B 正确; ③由①知:42ππα≤≤,而32ππβ≤≤,所以524παβπ≤+≤,又cos()010αβ+=-<,所以5342ππαβ≤+≤,解得sin()αβ+=所以34cos()cos[()2]1051052βααβα⎛⎫⎛⎫-=+-=--+-⨯=- ⎪ ⎪ ⎪⎝⎭⎝⎭又因为5342ππαβ≤+≤,22ππα-≤-≤-,所以4πβαπ≤-≤,有34πβα-=,故C 正确;④由cos()cos cos sin sin 1010αβαβαβ+=-⇒-=-,由③知,cos()cos cos sin sin 2βααβαβ-=+=-,两式联立得:cos cos 10αβ=-,故D 错误. 故选:BC 【点睛】关键点点睛:本题的关键是三角函数恒等变形的灵活应用,尤其是确定角的范围,根据三角函数值4sin 25α=,确定22παπ≤≤,且cos()010αβ+=-<,进一步确定5342ππαβ≤+≤,这些都是确定函数值的正负,以及角的大小的依据.8.已知函数)()lg1( 2.7)x x f x x e e e -=+-+≈⋯,若不等式(sin cos )2(sin 2)f f t θθθ+<--对任意R θ∈恒成立,则实数t 的可能取值为( )A .1BC .3D .4【答案】CD 【分析】令)()lgx x g x x e e -=+-,则()()1f x g x =+,可判断()g x 是奇函数且单调递增,不等式可变形可得(sin cos )(sin 2)g g t θθθ+<-,所以sin cos sin 2t θθθ>++,令()sin cos sin 2h θθθθ=++,换元法求出()h θ的最大值,()max t h θ>即可. 【详解】令)()lgx x g x x e e -=+-,则()()1f x g x =+,()g x 的定义域为R ,))()()lglgx x x x g x g x x e e x e e ---+=+-++-0=,所以()()g x g x -=-,所以()g x 是奇函数, 不等式(sin cos )2(sin 2)f f t θθθ+<--等价于[](sin cos )1(sin 2)1f f t θθθ+-<---,即(sin cos )(sin 2)(sin 2)g g t g t θθθθ+<--=-,当0x >时y x =单调递增,可得)lgy x =单调递增,x y e =单调递增,x y e -=单调递减,所以)()lgx x g x x e e -=+-在()0,∞+单调递增,又因为)()lg x x g x x e e -=+-为奇函数,所以)()lgx x g x x e e -=+-在R 上单调递增,所以sin cos sin 2t θθθ+<-,即sin cos sin 2t θθθ>++, 令()sin cos sin 2h θθθθ=++,只需()max t h θ>,令sin cos m θθ⎡+=∈⎣,则21sin 2m θ=+,2sin 21m θ=-,所以()21h m m m =+-,对称轴为12m =-,所以m =()max 211h m ==,所以1t >可得实数t 的可能取值为3或4,故选:CD 【点睛】关键点点睛:本题解题的关键点是构造函数()g x 奇函数且是增函数,将原不等式脱掉f 转化为函数恒成立问题.9.设函数()()sin f x A x =+ωϕ,x ∈R (其中0A >,0>ω,2πϕ<),在,62ππ⎛⎫ ⎪⎝⎭上既无最大值,也无最小值,且()026f f f ππ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭,则下列结论错误的是( )A .若()()()12f x f x f x ≤≤对任意x ∈R ,则21min x x π-=B .()y f x =的图象关于点,03π⎛-⎫⎪⎝⎭中心对称 C .函数()f x 的单调减区间为()7,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦D .函数()()y f x x R =∈的图象相邻两条对称轴之间的距离是2π【答案】ABD 【分析】根据条件先求函数的解析式,对于A:判断出()1f x 为最小值,()2f x 为最大值,即可; 对于B:根据函数的对称性进行判断;对于C:求出角的范围,结合三角函数的单调性进行判断; 对于D:根据函数的对称性即对称轴之间的关系进行判断. 【详解】 因为函数()f x 在,62ππ⎛⎫⎪⎝⎭上既无最大值,也无最小值, 所以,62ππ⎛⎫⎪⎝⎭是函数的一个单调区间,区间长度为263πππ-=,即函数的周期2233T ππ≥⨯=,即223ππω≥,则03ω<≤因为()06f f π⎛⎫= ⎪⎝⎭,所以06212ππ+=为函数的一条对称轴;则1223πππωϕωϕπ+=+=①② 由①②解得:=2=3πωϕ,,即()sin 23f x A x π⎛⎫=+⎪⎝⎭,函数的周期=T π. 对于A: 若()()()12f x f x f x ≤≤对任意x ∈R 恒成立,则()1f x 为最小值,()2f x 为最大值,所以12||22T k x x k π-==,则21x x -必为2π的整数倍,故A 错误,可选A; 对于B:3x π=-时,()sin 03f x A π⎛⎫=-≠ ⎪⎝⎭,故,03π⎛-⎫⎪⎝⎭不是()y f x =的对称中心,B错误,可选B;对于C:当7,1212x k k ππππ⎡⎤∈++⎢⎥⎣⎦时,322,2322x k k πππππ⎡⎤+∈++⎢⎥⎣⎦,此时()y f x =单调递减,C 正确,不选C;对于D: 函数()()y f x x R =∈的图象相邻两条对称轴之间的距离是44T π=,故D 错误,可选D 故选:ABD 【点睛】(1)求三角函数解析式的方法:①求A 通常用最大值或最小值;②(2)求ω通常用周期;③求φ通常利用函数上的点带入即可求解;(2)三角函数问题通常需要把它化为“一角一名一次”的结构,借助于sin y x =或cos y x =的性质解题.10.已知函数()sin()(0,0,0)f x A x A ωϕωϕπ=+>><<的部分图象如图所示,则下列正确的是( )A .2()2sin 23f x x π⎛⎫=+⎪⎝⎭B .(2021)1f π=C .函数|()|y f x =为偶函数D .,066x f x f x ππ⎛⎫⎛⎫∀∈++-=⎪ ⎪⎝⎭⎝⎭R 【答案】AD 【分析】先利用图象得到2A =,T π=,求得2ω=,再结合12x π=-时取得最大值求得ϕ,得到解析式,再利用解析式,结合奇偶性、对称性对选项逐一判断即可. 【详解】由图象可知,2A =,5212122T πππ=+=,即2T ππω==,2ω=, 由12x π=-时,()2sin 2212f x =πϕ⎡⎤⎛⎫=⨯-+ ⎪⎢⎥⎝⎭⎣⎦,得22,122=k k Z ππϕπ⎛⎫⨯-++∈ ⎪⎝⎭, 即22,3=k k Z πϕπ+∈,而0ϕπ<<,故2=3πϕ,故2()2sin 23f x x π⎛⎫=+⎪⎝⎭,A 正确;22(2021)2sin 22021=2sin =333f ππππ⎛⎫=⨯+ ⎪⎝⎭B 错误; 由2()2sin 23y f x x π⎛⎫==+⎪⎝⎭知,222sin 2=2sin 233x x ππ⎛⎫⎛⎫-++⎪ ⎪⎝⎭⎝⎭不是恒成立,故函数|()|y f x =不是偶函数,故C 错误; 由6x π=时,22sin 22sin 0663f =ππππ⎛⎫⎛⎫=⨯+=⎪ ⎪⎝⎭⎝⎭,故06π⎛⎫⎪⎝⎭,是2()2sin 23f x x π⎛⎫=+⎪⎝⎭的对称中心,故,066x f x f x ππ⎛⎫⎛⎫∀∈++-= ⎪ ⎪⎝⎭⎝⎭R ,故D 正确. 故选:AD. 【点睛】 方法点睛:三角函数模型()sin()f x A x b ωϕ=++求解析式时,先通过图象看最值求A ,b ,再利用特殊点(对称点、对称轴等)得到周期,求ω,最后利用五点特殊点求初相ϕ即可.。
2021年高考数学二轮复习 三角函数的图象与性质专题训练(含解析)一、选择题1.(xx·全国大纲卷)已知角α的终边经过点(-4,3),则cos α=( ) A.45 B.35 C .-35D .-45解析 cos α=-4-42+32=-45.答案 D2.(xx·四川卷)为了得到函数y =sin(2x +1)的图象,只需把函数y =sin2x 的图象上所有的点( )A .向左平行移动12个单位长度B .向右平行移动12个单位长度C .向左平行移动1个单位长度D .向右平行移动1个单位长度解析 ∵y =sin(2x +1)=sin2⎝ ⎛⎭⎪⎫x +12,∴只需把y =sin2x 图象上所有的点向左平移12个单位长度即得到y =sin(2x +1)的图象.答案 A3.(xx·北京东城一模)将函数y =sin(2x +φ)的图象沿x 轴向左平移π8个单位后,得到一个偶函数的图象,则φ的一个可能取值为( )A.3π4B.π2C.π4D .-π4解析 y =sin(2x +φ)错误!sin 错误!=sin 错误!是偶函数,即错误!+φ=k π+错误!(k ∈Z )⇒φ=k π+π4(k ∈Z ),当k =0时,φ=π4,故选C.答案 C4.函数f (x )=A sin(ωx +φ)⎝⎛⎭⎪⎫A >0,ω>0,|φ|<π2的部分图象如图所示,若x 1,x 2∈⎝ ⎛⎭⎪⎫-π6,π3,且f (x 1)=f (x 2),则f (x 1+x 2)=( )A .1 B.12 C.22D.32解析 观察图象可知,A =1,T =π, ∴ω=2,f (x )=sin(2x +φ).将⎝ ⎛⎭⎪⎫-π6,0代入上式得sin ⎝ ⎛⎭⎪⎫-π3+φ=0, 由|φ|<π2,得φ=π3, 则f (x )=sin ⎝⎛⎭⎪⎫2x +π3. 函数图象的对称轴为x =-π6+π32=π12.又x 1,x 2∈⎝ ⎛⎭⎪⎫-π6,π3,且f (x 1)=f (x 2),∴x 1+x 22=π12,∴x 1+x 2=π6, ∴f (x 1+x 2)=sin ⎝⎛⎭⎪⎫2×π6+π3=32.故选D.答案 D5.函数f (x )=sin(ωx +φ)(ω>0,|φ|<π2)的最小正周期是π,若其图象向右平移π6个单位后得到的函数为奇函数,则函数f (x )的图象( )A .关于点⎝ ⎛⎭⎪⎫π12,0对称B .关于直线x =π12对称C .关于点⎝ ⎛⎭⎪⎫π6,0对称 D .关于直线x =π6对称解析 ∵T =2πω=π,∴ω=2.∴f (x )=sin(2x +φ)向右平移π6个单位,得y =sin ⎝⎛⎭⎪⎫2x -π3+φ为奇函数, ∴-π3+φ=k π(k ∈Z ),∴φ=π3+k π(k ∈Z ),∴φ=π3,∴f (x )=sin ⎝⎛⎭⎪⎫2x +π3. ∵sin ⎝ ⎛⎭⎪⎫2×π12+π3=1,∴直线x =π12为函数图象的对称轴.故选B.答案 B6.已知函数f (x )=cos ⎝⎛⎭⎪⎫2x +π3-cos2x ,其中x ∈R ,给出下列四个结论:①函数f (x )是最小正周期为π的奇函数;②函数f (x )图象的一条对称轴是直线x =2π3;③函数f (x )图象的一个对称中心为⎝ ⎛⎭⎪⎫5π12,0;④函数f (x )的递增区间为k π+π6,k π+2π3,k ∈Z .则正确结论的个数是( ) A .1 B .2 C .3D .4解析 由已知得,f (x )=cos ⎝⎛⎭⎪⎫2x +π3-cos2x =cos2x cos π3-sin2x sin π3-cos2x =-sin ⎝ ⎛⎭⎪⎫2x +π6,不是奇函数,故①错;当x =2π3时,f ⎝ ⎛⎭⎪⎫2π3=-sin ⎝ ⎛⎭⎪⎫4π3+π6=1,故②正确;当x=5π12时,f ⎝ ⎛⎭⎪⎫5π12=-sinπ=0,故③正确;令2k π+π2≤2x +π6≤2k π+32π,k ∈Z ,得k π+π6≤x ≤k π+23π,k ∈Z ,故④正确.综上,正确的结论个数为3.答案 C 二、填空题7.若sin ⎝ ⎛⎭⎪⎫π3+α=13,则sin ⎝ ⎛⎭⎪⎫π6+2α=________. 解析 sin ⎝ ⎛⎭⎪⎫π6+2α=-cos ⎝ ⎛⎭⎪⎫π2+π6+2α=-cos ⎝ ⎛⎭⎪⎫2π3+2α=2sin 2⎝ ⎛⎭⎪⎫π3+α-1=-79.答案 -798.(xx·江苏卷)已知函数y =cos x 与y =sin(2x +φ)(0≤φ<π),它们的图象有一个横坐标为π3的交点,则φ的值是________. 解析 利用函数y =cos x 与y =sin(2x +φ)(0≤φ<π)的图象交点横坐标,列方程求解. 由题意,得sin ⎝⎛⎭⎪⎫2×π3+φ=cos π3, 因为0≤φ<π,所以φ=π6.答案π69.(xx·北京卷)设函数f (x )=A sin(ωx +φ)(A ,ω,φ是常数,A >0,ω>0).若f (x )在区间⎣⎢⎡⎦⎥⎤π6,π2上具有单调性,且f ⎝ ⎛⎭⎪⎫π2=f ⎝ ⎛⎭⎪⎫2π3=-f ⎝ ⎛⎭⎪⎫π6,则f (x )的最小正周期为________. 解析 由f (x )在区间⎣⎢⎡⎦⎥⎤π6,π2上具有单调性,且f ⎝ ⎛⎭⎪⎫π2=-f ⎝ ⎛⎭⎪⎫π6知,f (x )有对称中心⎝ ⎛⎭⎪⎫π3,0,由f ⎝ ⎛⎭⎪⎫π2=f ⎝ ⎛⎭⎪⎫23π知f (x )有对称轴x =12⎝ ⎛⎭⎪⎫π2+23π=712π,记T 为最小正周期,则12T ≥π2-π6⇒T ≥23π,从而712π-π3=T4,故T =π.答案 π 三、解答题10.(xx·重庆卷)已知函数f (x )=3sin(ωx +φ)(ω>0,-π2≤φ<π2)的图象关于直线x =π3对称,且图象上相邻两个最高点的距离为π.(1)求ω和φ的值;(2)若f ⎝ ⎛⎭⎪⎫α2=34⎝ ⎛⎭⎪⎫π6<α<2π3,求cos ⎝ ⎛⎭⎪⎫α+3π2的值.解 (1)因f (x )的图象上相邻两个最高点的距离为π,所以f (x )的最小正周期T =π,从而ω=2πT=2.又因f (x )的图象关于直线x =π3对称, 所以2·π3+φ=k π+π2,k =0,±1,±2,….因-π2≤φ<π2得k =0,所以φ=π2-2π3=-π6.(2)由(1)得f ⎝ ⎛⎭⎪⎫α2=3sin ⎝ ⎛⎭⎪⎫2·α2-π6=34,所以sin ⎝ ⎛⎭⎪⎫α-π6=14.由π6<α<2π3得0<α-π6<π2, 所以cos ⎝⎛⎭⎪⎫α-π6=1-sin 2⎝⎛⎭⎪⎫α-π6= 1-⎝ ⎛⎭⎪⎫142=154.因此cos ⎝ ⎛⎭⎪⎫α+3π2=sin α=sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α-π6+π6 =sin ⎝⎛⎭⎪⎫α-π6cos π6+cos ⎝⎛⎭⎪⎫α-π6sin π6 =14×32+154×12=3+158. 11.(xx·山东菏泽一模)已知函数f (x )=2sin ωx cos ωx +23sin 2ωx -3(ω>0)的最小正周期为π.(1)求函数f (x )的单调增区间; (2)将函数f (x )的图象向左平移π6个单位,再向上平移1个单位,得到函数y =g (x )的图象,若y =g (x )在[0,b ](b >0)上至少含有10个零点,求b 的最小值.解 (1)由题意得f (x )=2sin ωx cos ωx +23sin 2ωx -3=sin2ωx -3cos2ωx =2sin ⎝⎛⎭⎪⎫2ωx -π3, 由最小正周期为π,得ω=1,所以f (x )=2sin ⎝⎛⎭⎪⎫2x -π3, 由2k π-π2≤2x -π3≤2k π+π2,k ∈Z , 整理得k π-π12≤x ≤k π+5π12,k ∈Z ,所以函数f (x )的单调增区间是⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12,k ∈Z . (2)将函数f (x )的图象向左平移π6个单位,再向上平移1个单位,得到y =2sin2x +1的图象, 所以g (x )=2sin2x +1. 令g (x )=0,得x =k π+7π12或x =k π+11π12(k ∈Z ), 所以在[0,π]上恰好有两个零点,若y =g (x )在[0,b ]上有10个零点,则b 不小于第10个零点的横坐标即可,即b 的最小值为4π+11π12=59π12.B 级——能力提高组1.设函数f (x )=3cos(2x +φ)+sin(2x +φ)⎝ ⎛⎭⎪⎫|φ|<π2,且其图象关于直线x =0对称,则( )A .y =f (x )的最小正周期为π,且在⎝ ⎛⎭⎪⎫0,π2上为增函数B .y =f (x )的最小正周期为π,且在⎝⎛⎭⎪⎫0,π2上为减函数 C .y =f (x )的最小正周期为π2,且在⎝ ⎛⎭⎪⎫0,π4上为增函数 D .y =f (x )的最小正周期为π2,且在⎝⎛⎭⎪⎫0,π4上为减函数 解析 f (x )=3cos(2x +φ)+sin(2x +φ) =2sin ⎝⎛⎭⎪⎫2x +π3+φ, ∵其图象关于x =0对称,∴f (x )是偶函数. ∴π3+φ=π2+k π,k ∈Z . 又∵|φ|<π2,∴φ=π6. ∴f (x )=2sin ⎝⎛⎭⎪⎫2x +π3+π6=2cos2x .易知f (x )的最小正周期为π,在⎝⎛⎭⎪⎫0,π2上为减函数.答案 B2.(xx·全国大纲卷)若函数f (x )=cos2x +a sin x 在区间⎝ ⎛⎭⎪⎫π6,π2是减函数,则实数a 的取值范围是________.解析 f (x )=1-2sin 2x +a sin x =-2sin 2x +a sin x +1,sin x ∈⎝ ⎛⎭⎪⎫12,1,令t =sin x ∈⎝ ⎛⎭⎪⎫12,1,则y =-2t 2+at +1在⎝ ⎛⎭⎪⎫12,1是减函数,∴对称轴t =a 4≤12,∴a ≤2.答案 (-∞,2]3.(xx·湖北卷)某实验室一天的温度(单位:℃)随时间t (单位:h)的变化近似满足函数关系:f (t )=10-3cos π12t -sin π12t ,t ∈[0,24).(1)求实验室这一天的最大温差;(2)若要求实验室温度不高于11 ℃,则在哪段时间实验室需要降温? 解 (1)因为f (t )=10-2⎝ ⎛⎭⎪⎫32cos π12t +12sin π12t =10-2sin ⎝ ⎛⎭⎪⎫π12t +π3,又0≤t <24,所以π3≤π12t +π3<7π3, -1≤sin ⎝ ⎛⎭⎪⎫π12t +π3≤1. 当t =2时,sin ⎝ ⎛⎭⎪⎫π12t +π3=1;当t =14时,sin ⎝ ⎛⎭⎪⎫π12t +π3=-1. 于是f (t )在[0,24)上取得最大值12,取得最小值8.故实验室这一天最高温度为12 ℃,最低温度为8 ℃,最大温差为4 ℃. (2)依题意,当f (t )>11时实验室需要降温.由(1)得f (t )=10-2sin ⎝ ⎛⎭⎪⎫π12t +π3,故有10-2sin ⎝ ⎛⎭⎪⎫π12t +π3>11,即sin ⎝ ⎛⎭⎪⎫π12t +π3<-12.又0≤t <24,因此7π6<π12t +π3<11π6,即10<t <18. 在10时至18时实验室需要降温. 36014 8CAE 貮33058 8122 脢39755 9B4B 魋21980 55DC 嗜34759 87C7 蟇 30825 7869 硩f33504 82E0 苠 ?" y。
2.专题09三角函数【2021年高考全国I卷理数】函数sinxf(x)=一cosxx—在[,]的图像大致为xA.-ITC.门Tsin( x) ( x)【斛析】由 f ( x) 2cos( x) ( x)称,排除A.又fsin x x2cosx x- 1,f(力f(x),得f(x)是奇函数,其图象关于原点对立.........——2 0 ,排除B, C,应选D.1冗【名师点睛】此题考查函数的性质与图象,渗透了逻辑推理、直观想象和数学运算素养,采取性质法或赋值法,利用数形结合思想解题.解答此题时,A,再注意到选项的区别,利用特殊值得正确答案.【2021年高考全国I卷理数】关于函数f(x)先判断函数的奇偶性,得f(x)是奇函数,排除sin |x| |sin x|有下述四个结论:①f(x)是偶函数③f(x)在[,]有4个零点②f(x)在区间(一,)单调递增2④f(x)的最大值为2其中所有正确结论的编号是A.①②④B.②④C.①④D.①③冗当一x2/时,fx九时,fsin sin x sin2sinx,它在区间一22sinx ,它有两个零点:sin x f x , f x为偶函数,故①正确.单调递减,故②错误.0 ;当兀x 0时,f x sin x sinx当 x 2k ,2k k N 时,f x 2sin x ;当 x 2k , 2k 2 k N 时,f x sinx sinx 0,又f x 为偶函数,f x 的最大值为2,故④正确.综上所述,①④正确,应选 C. 【名师点睛】此题也可画出函数f x sin x sinx 的图象(如以下图),由图象可得①④正确.3.【2021年高考全国n 卷理数】以下函数中,以3为周期且在区间(7, 3)单调递增的是A . f(x)=|cos2x|B . f(x)=|sin2x| C. f(x)=cos|x| D . f(x)=sin|x|【答案】A【解析】作出由于 y sin |x|的图象如以下图1,知其不是周期函数,排除 D ;由于y cos|x| cosx,周期为2兀,排除C ; 作出ycos2x|图象如图2,由图象知,其周期为 -,在区间(一,一)单调递增,A 正确;24 2....一 一 一一一,一___ __________ 兀 •一、一作出y sin2x 的图象如图3,由图象知,其周期为 一,在区间(一,一)单调递减,排除 B,2 4 2应选A.2sin x ,它有一个零点:冗,故f x 在有3个零点:,故③错误.图3【名师点睛】此题主要考查三角函数的图象与性质,渗透直观想象、逻辑推理等数学素养,画出各 函数图象,即可作出选择.此题也可利用二级结论:①函数 y f (x)的周期是函数y f(x)周期 的一半;②y sin x 不是周期函数2222I2sin a cos a,又sin cos 1, 5sin a 1,sin a 一,又 sin 0, sin 5B.【名师点睛】此题是对三角函数中二倍角公式、同角三角函数根本关系式的考查,中等难度,判断 正余弦的正负,运算准确性是关键,题目不难,需细心,解决三角函数问题,研究角的范围后得出 三角函数值的正负很关键,切记不能凭感觉.解答此题时,先利用二倍角公式得到正余弦关系,再利用角范围及正余弦平方和为1关系得出答案.5.【2021年高考全国 出卷理数】设函数f x =sin ( x —)( >0),f X 在0,2有且仅有5个零点,下述四个结论:①f x 在(0,2 )有且仅有3个极大值点 ②f x 在(0,2 )有且仅有2个极小值点4. 2021年高考全国n 卷理数】(0, —),2sin2 a=cos2 o+1,贝U sin OF2B.Q2sin2 a cos2 a 1,4sin c cos 2 2cos a.Q 瓜cos 0 0 , sin0,图2③f x在(0, —)单调递增10④的取值范围是[但,29) 5 10其中所有正确结论的编号是A.①④B.②③C.①②③D.①③④【解析】①假设f(x)在[0,2句上有5个零点,可画出大致图象,由图1可知,f(x)在(0,2时有且仅有3个极大值点.故①正确;②由图1、2可知,f (x)在(0,2时有且仅有2个或3个极小值点.故②错误;④当f x =sin ( x -)=0 时, x —=k Tt (kC Z)5 5,所以x由于f(x)在[0,2 句上有5个零点,所以当k=5时,* 2/当k=6时,12,解得—529w —,10故④正确.③函数f x =sin x 一)5 的增区间为:2k z 九10 130 2k7t取k=0,7,12 ,〜71当 一时,单调递增区间为 一冗x 一冗, 5 24 829 ....................... 7 3当 —时,单倜递增区间为 —x x —%,10 29 29一. 一 _.冗 ........... .. .综上可得,f X 在0,— 单调递增.故③正确.所以结论正确的有①③④.故此题正确答案为 D.【名师点睛】此题为三角函数与零点结合问题,难度大,可数形结合,分析得出答案,要求高,理 解深度高,考查数形结合思想.注意此题中极小值点个数是动态的, 易错,正确性考查需认真计算,易出错.6.【2021年高考天津卷理数】函数 f(x) Asin( x )(A 0,0,| | )是奇函数,将f X 的图象上所有点的横坐标伸长到原来的 2倍(纵坐标不变),所得图象对应的函数为C.x .假设g x 的最小正周期为2私且g"那么f,2【解析】••• f(x)为奇函数,,f (0) Asin 0, Z, k 0, 0;g(x)八. 1-I- 2冗Asin - x, T -- 2 区22,f(x)32sin2x, f (一)V 2.应选 C.8【名师点睛】此题主要考查函数的性质和函数的求值问题,解题关键是求出函数 g x ,再根据函数性质逐步得出A,,的值即可.17 .【2021年局考全国 出卷理数】假设sin -,那么cos27 - 98 - 9 819 7-9♦ ♦B D1 9 7【解析】cos2 1 2sin 2 1 2 (―)2 —3 9应选B.【名师点睛】此题主要考查三角函数的求值,考查考生的运算求解水平,考查的核心素养是数学运 算.8.【2021年高考全国卷II 理数】假设f x cosx sinx 在 a,a 是减函数,那么a 的最大值是 花A . 一43冗 C.—— 4【答案】A(2)周期T求对称轴.⑶由 2k 冗 2ku k Z花求增区间;由一 2k :t23冗—2ku k Z 求 2减区间 9.【2021年高考天津理数】将函数 y sin(2x一)的图象向右平移 一个单位长度,所得图象对应的函5 103 5 ............A,在区间[3—,5—]上单调递增4 4,一一 .3 一B .在区间[,]上单调递减4【解析】由于fcosxsinx A /2cos x —,4所以由0 2k/花2kXk Z)得一43冗——2kXk Z), 4因此 a,a兀 ................ TT 一,从而a 的取大值为一, 4应选A.【名师点睛】 解答此题时,先确定三角函数单调减区间, 再根据集合包含关系确定a 的最大值 .函数y Asin B(A 0,.)的性质:⑴ y max =A+B, y min AB .令k 1可得一个单调递增区间为令k 1可得一个单调递减区间为:应选A.【名师点睛】此题主要考查三角函数的平移变换,三角函数的单调区间的判断等知识,意在考查学 生的转化水平和计算求解水平10.【2021年高考浙江卷】函数 y=2"sin2x 的图象可能是C.在区间[3 ......... ,3-]上单调递增D.在区间3 -[斗[万,2 ]上单调递减【解析】由函数图象平移变换的性质可知:sin 2x的图象向右平移二个单位长度之后10的解析式为y sin 2 x7t 10 7t5sin2x .那么函数的单调递增区间满足 2k%2x 2ku花,即 k :t — x4.......................... 冗函数的单调递减区间满足: 2 k 冗22x 3冗2k 冗—k Z , IP k u — x243冗 k k ——k4A . 【答案】DB.D.f x2忸sin2x 为奇函数,排除选项 A, B ;...兀. 一_ 一一 ... . . .由于x —,冗时,f x 0,所以排除选项C, 2应选D.............. ....................... ............ 冗 ................................ 【名师点睛】解答此题时,先研究函数的奇偶性,再研究函数在 一,冗上的符号,即可作出判断2有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置; (2)由函数的单调性,判断图象的变化趋势; (3)由函数的奇偶性,判断图象的对称性; (4)由函数的周期性,判断图象的循环往复.C1: y=cos x, C2: y=sin (2x+ 2^),那么下面结论正确的选项是3得到曲线C 2得到曲线C 2得到曲线C 2得到曲线C 2【解析】由于 C I ,C 2函数名不同,所以先将 C 2利用诱导公式转化成与 C I 相同的函数名,那么_ _ 2 7t _ 27t 冗 _ 冗 . .一 .................................. 1 C 2: y sin(2x ——)cos(2x —— 一)cos(2x —),那么由C 1上各点的横坐标缩短到原来的 一3 3 2 6 2,、、. _ . ....... .. 兀. .............. 4 倍变为y cos2x,再将曲线向左平移 一个单位长度得到c 2,应选D.12【名师点睛】对于三角函数图象变换问题,首先要将不同名函数转换成同名函数,利用诱导公式,【解析】令f x 2l x sin2x ,由于x R, f x2 x sin2 x2〞sin2 x11.【2021年高考全国 出理数】曲线 把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变, 再把得到的曲线向右平移 」个单位长度,6B. 把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变, 再把得到的曲线向左平移—个单位长度,12C. 把C 1上各点的横坐标缩短到原来的1 ............. ....... 一倍,纵坐标不变, 2再把得到的曲线向右平移 」个单位长度, 6 D .把C 1上各点的横坐标缩短到原来的1 ............. .......一倍,纵坐标不变, 2再把得到的曲线向左平移—个单位长度,12y Asin x 或 y Acos x b 的形式...,、一...、_ ____________________________ _ 冗(2)求f x Asin( x ) 0的对称轴,只需令 x ku - k Z,求x ;求f(x)的2对称中央的横坐标,只需令 xkXk Z)即可.5.一.一 —兀 兀 . ..需要重点记住sin cos( -),cos sin( -);另外,在进行图象变换时,提倡先平移后伸 2 2缩,而先伸缩后平移在测试中也经常出现,无论哪种变换,记住每一个变换总是对变量x 而言.12.【2021年高考全国出理数】设函数 f x cos(x1,那么以下结论错误的选项是A. f(x)的一个周期为 2几8B. y f(x)的图象关于直线x 8^对称 3C. f (x 花)的一个零点为x -6D. f(x)在(/)单调递减【答案】D____ _ _ _…… 2兀 _ _ 【解析】函数f (x)的最小正周期为T —— 2/,那么函数f(x)的周期为T 2k :tk Z ,取k 1,1可得函数f x 的一个周期为 2任,选项A 正确;一…,―......TT函数f (x)图象的对称轴为 x — k u k Z,即x 38关于直线x —对称,选项B 正确;3冗一 一 .一 ..一,ku — k Z ,取k 3,可得y=f(x)的图象 37tcos x37tcos x —,函数f(x)的零点满足x — ku k Z ,即332, 冗. _ 「I x k 冗—k Z,取 k 60,可得f (x-- -一TT ... .冗)的一个零点为x -,选项C 正确;6-,冗时,x -52,4』,函数f (x)在该区间内不单调,选项 D 错误.23 6 3应选D. 【名师点睛】1)求最小正周期时可先把所给三角函数式化为y Asin( x )或 y Acos( x)的形式,那么最小正周期为T奇偶性的判断关键是解析式是否为13.【2021年高考天津卷理数】设函数f(x) 2sin( x ) , x R ,其中0, | | •假设f (一)2,8【解析】由题意得11 8又T 2- 2 ,所以0 1,所以 2,2k 1—,3 12由 得 —,应选A. 12【名师点睛】关于 y Asin( x )的问题有以下两种题型: ①提供函数图象求解析式或参数的取值范围, 一般先根据图象的最高点或最低点确定A,再根据最小正周期求,最后利用最高点或最低点的坐标满足解析式,求出满足条件的的值;②题目用文字表达函数图象的特点,如对称轴方程、曲线经过的点的坐标、最值等,根据题意自己 画出大致图象,然后寻求待定的参变量,题型很活,一般是求 或 的值、函数最值、取值范围等.【2021年高考北京卷理数】函数 f (x) =sin 22x 的最小正周期是 . , 冗 【答案】- 2【解析】函数f x sin 22x 1 co s4x ,周期为-.2 2【名师点睛】此题主要考查二倍角的三角函数公式 ?三角函数的最小正周期公式,属于根底题 .将所 给的函数利用降哥公式进行恒等变形,然后求解其最小正周期即可f( .) 0,且f(x)的最小正周期大于 2 ,那么12B.12C.24D.2414.2k l 一12............ _,其中k 1,k 2 Z ,所以k215. 【2021年高考江苏卷】tan tan —4一,那么sin 2 一 的值是 ▲3 410tan 21类讨论和转化与化归思想解题.由题意首先求得tan 的值,然后利用两角和的正弦公式和二倍角公 式将原问题转化为齐次式求值的问题,最后切化弦求得三角函数式的值即可 16.【2021年高考全国I 理数】 函数f x 2sinx sin2x,那么f x 的最小值是21【斛析】f x 2cos x 2cos 2x 4cos x 2cos x 2 4 cosx 1 cosx 一 ,21 (1)所以当cosx -时函数单调递减,当 cosx 一时函数单调递增,从而得到函数的递减区间为 2 2 2k :t 55,2kTt - k Z ,函数的递增区间为 2ku -, 2k u - k Z , 33 33tantan tan 1 tan2 「 九 tan 1 tan 13'tan 一—41 tan2 ,或 tan1 .3【解析】由解得tan得 3tan 2 5tan 2 0,sin 2 sin 2花cos- 4 cos2 冗 sin 一4工~2~sin 2 cos2 2sin 2cos cos_■ 2sin2tan1 tan2 2 sin 2 cos当tan2时,上式=立 2 2 2 22 1 221W ;当tan1 ,,, 一时,上式= 32 [—〔3〕2〔J 〕213一10综上,sin、210【名师点睛】 此题考查三角函数的化简求值,渗透了逻辑推理和数学运算素养.采取转化法,利用分_冗 _ . __ ... .x 2k u — ,k Z 时,函数f x 取得最小值,此时 sinx3【名师点睛】该题考查的是有关应用导数研究函数的最小值问题,在求解的过程中,需要明确相关 的函数的求导公式, 需要明白导数的符号与函数的单调性的关系,确定出函数的单调增区间和单调减区间,进而求得函数的最小值点,从而求得相应的三角函数值,代入求得函数的最小值_........................................ .... ................ 7t..7t ........................................... ..17.【2021年高考北京卷理数】设函数 f (x) =cos( x -)(0),假设f(x)f(-)对任意白^实数x 都成64立,那么3的最小值为【名师点睛】此题主要考查三角函数的图象和性质,考查考生的逻辑推理水平以及运算求解水平, 考查的核心素养是逻辑推理、数学运算查的核心素养是数学运算所以当 所以f x .2min二垓",故答案是空3sin2 x 2由于f对任意白^实数x 都成立,所以f -取最大值,4所以-42ku6由于0,所以当 0时,..... ............. 2 w 取取小值为一318.【2021年高考全国出理数】函数cos兀的零点个数为Q0 x花3x619 7t由题可知3x解得xx4」,或7J ,故有3个零点.【名师点睛】 此题主要考查三角函数的图象与性质, 考查数形结合思想和考生的运算求解水平,考19.【2021年高考江苏卷】 函数y sin 2x一〕的图象关于直线x —对称, 23值是减区间.【解析】化简三角函数的解析式:【名师点睛】此题经三角函数式的化简将三角函数的问题转化为二次函数的问题,二次函数、二次 方程与二次不等式统称 三个二次〞,它们常结合在一起,有关二次函数的问题,数形结合,密切联 系图象是探求解题思路的有效方法 .一般从:①开口方向;②对称轴位置;③判别式;④端点函数值 符号四个方面分析.21.【2021年高考北京卷理数】在平面直角坐标系xOy 中,角〞与角3均以Ox 为始边,它们的终边关1于y 轴对称.右sin-,贝U cos( ) =.【解析】由题意可得 sin kXk Z),由于花所以20,【名师点睛】 由对称轴得kXk Z),再根据限制范围求结果.函数y Asin(A>0,3>0)的性质:(1) ymaxAB, y min(2)最小正周期 ⑶由 x-ku k Z~. 一冗 ~2k u k Z 求增区间;由一2k/2 3冗—2k 冗 k 220.【2021年高考全国n 理数】函数x sin 2 x \ 3 cosx3 4(x花0,一2)的最大值是 f x 1 cos 2 x \ 3 cosx cos 2 x _ 3 cosxcosx由自变量的范围:0 -可得: ’2cosx 0,1 ,当cosx 立时, 2函数f x 取得最大值1.1,cos 2是数学运算.23.【2021年高考江苏卷】假设tan(」) 4【考点】两角和的正切公式【名师点睛】三角函数求值的三种类型(2)给值求值:关键是找出式与待求式之间的联系及函数的差异.一般有如下两种思路: ①适当变换式,进而求得待求式的值;②变换待求式,便于将式的值代入,从而到达解题的目的. (3)给值求角:实质是转化为“给值求值〞,先求角的某一函数值, 再求角的范围,进而确定角.24.【2021年高考浙江卷】设函数 f(x) sinx,x R .【解析】 由于和 关于y 轴对称,所sinsincoscos2.2 3(或 cos cos2J ) 3 所以coscos cos sin sin2. 2c • 2/cossin2sin 1【名师点睛】此题考查了角的对称关系,以及诱导公式,常用的一些对称关系包含:假设 边关于y 轴对称,那么冗2ku,k Z ,假设 与 的终边关于x 轴对称,那么2kRk Z ,假设 与 的终边关于原点对称,那么22.【2021年高考全国n 理数】 sin a cos 3 1, cos a sin 3 0 ,那么sin( a3)【解析】由于sin cos 1, cos sin0, 所以sincos1,所以sin因止匕sin1sin cos cos sin 一22cos. 2sin【名师点睛】 此题主要考查三角恒等变换,考查考生分析问题、解决问题的水平, 4考查的核心 【解析】tan tan[( 4)-]tan( ) tan — 4 41 tan( ) tan —4 41 16_ 1」 6(1)给角求值:关键是正确选用公式, 以便把非特殊角的三角函数转化为特殊角的三角函数.(1) [0,2工函数f (x )是偶函数,求 的值;;(2) [1即 sinxcos cosxsin sinxcos cosxsin ,故 2sinxcos 0 , 所以cos 0 . 又 [0, 2冗),1 3cos 2x 『2 3【名师点睛】此题主要考查三角函数及其恒等变换等根底知识,同时考查运算求解水平25.【2021年高考浙江卷】函数f (x) sin 2 x cos 2 x 2V3sin xcosx(x f(—)的值.3f(x)的最小正周期及单调递增区间.单调递增区间是[—k ,2 6 3(2)求函数y[f(x万『[f(x产值域・【解析】(1)由于 f(x sin(x )是偶函数,所以,对任意实数x 都有sin(x ) sin( x ),(1)由.2sin 一3.32 , cos —2.3 2 1 2“于(万)(2)得f (23 )2.(2)由 cos2x.2sin x 与 sin 2x2sin xcosx 得 f (x)cos2x、、3sin2x]•因此,或上7tx127t4sin 27tx 一12sin 2 xcos 2xcos 2x&os2x 2久in2x2因此,函数的值域是[1,3 .3 y ,1 一 ]•(1)求 (2)求2sin(2 x -). 6所以 ^3cosx 3sin x .于是tan x又x 0,冗即x 0时,f x 取到最大值3;5工时,f x 取到最小值 266所以f(x)的最小正周期是 .由正弦函数的性质得 一 2k2-2斛得一k x — k , k63所以,f(x)的单调递增区间是32x -——2k ,k Z , 6 2Z ,[-k ,— k ], k Z . 6 3【名师点睛】此题主要考查了三角函数的化简,以及函数y Asin x的性质,是高考中的常考知识点,属于根底题,强调根底的重要性;三角函数解做题中,涉及到周期,单调性,单调区间 以及最值等考点时,都属于考查三角函数的性质,首先应把它化为三角函数的根本形式即y Asin x ,然后利用三角函数 y Asin u 的性质求解.26.【2021年高考江苏卷】向量a (cosx, sin x),b (3,扃x [0,4(1)假设 a// b,求x 的值; (2)记f(x) a b ,求f (x)的最大值和最小值以及对应的一 5冗 _(1) x ——;(2) x 0 时, 6x 取到最大值3;5冗x ——时,f x 取到最小值 2 J3 . 6(1)由于 a (cosx,sin x),(3, V 3) , all b,假设 cosx 0, 那么 sin x 0 ,与 sin 2 xcos 2 x 1 矛盾,故 cosx0.(2) f (x)a b (cos x,sin x) (3,、3) 3cos x \ 3 sin x「 兀2,3cos(x -).6由于x0,所以 冗 冗7冗x -[-,-],6 6 6从而cos(x27.【2021年高考浙江卷】角 a 的顶点与原点 O 重合,始边与x 轴的非负半轴重合,它的终边过点45)(1)求sin ( a+兀)的值;5 〜(2)右角3满足sin ( a+优=一,求cos 3的值.134【答案】(1) — ; (2) COS5【解析】(1)由角 的终边过点 所以sin( 访 sin【名师点睛】此题主要考查三角函数的定义、诱导公式、两角差的余弦公式,考查考生分析问题、 解决问题的水平,运算求解水平,考查的数学核心素养是数学运算求解三角函数的求值问题时,需综合应用三角函数的定义、诱导公式及三角恒等变换 (1)首先利用三角函数的定义求得 sin ,然后利用诱导公式,计算 sin (妙兀)的值;结合同角三角函数的根本关系,计算 cos( )的值,要注意该值的,利用两角差的余弦公式,通过分类讨论,求得 cosB 的值(1)求cos2的值;(2)求tan( )的值.【答案】(1)—;(2)-.25 11【解析】(1)由于tan 4 , tan §n 一3cos4— cos 356T 16 瓦或cos —3 4『P( -, 一Win5 5(2)由角 由 sin( 由 ( 34的终边过点P( 一,一)得cos 5 5 、5 3 , 、 12)而得.问)行) 得 cos cos( )cossin()sin ,所以cos史或cos6516 65(2)根据sin (廿3)的值, 正负,然后根据 28.【2021年高考江苏卷】为锐角,tan4一,cos( 3所以sin 由于sin 22cos因此tan(因此,tan( ) tan[2 (tan 2 tan( )2"1 tan 2 tan( )11由于tan4-, 八一,所以tan 2 3 2 tan 1 tan 2 24一,7【名师点睛】本小题主要考查同角三角函数关系、两角和(差)及二倍角的三角函数,考查运算求 解水平.三角函数求值的三种类型:(1)给角求值:关键是正确选用公式,以便把非特殊角的三角函数转化为特殊角的三角函数. (2)给值求值:关键是找出式与待求式之间的联系及函数的差异. 般有如下两种思路:①适当变换式,进而求得待求式的值;②变换待求式,便于将式的值代入,从而到达解题的目的.(3)给值求角:实质是转化为 给值求值〞,先求角的某一函数值, 再求角的范围,进而确定角. _ .............. .... ... 冗29.【2021年局考山东卷理数】设函数 f(x) sin( x —) sin( x 6」),其中0 2 3. 花 f(-) 0. 6 (1)求 (2)将函数y f (x)的图象上各点的横坐标伸长为原来的 2倍 (纵坐标不变),再将得到的图象 向左平移」个单位,得到函数y g(x)的图象,求g(x)在[-,3」]上的最小值 44 4 3 【答案】(1) 2 ; (2)最小值为 一. 2_ __ 冗冗【斛析】(1)由于 f (x) sin( x —) sin( x —), 62一, o 9 所以cos——,因此,cos2 2cos 2 17 25(2)由于,为锐角,所以(0, ).又由于cos(所以sin(...1 cos 2(2、5 ----- , 5所以f(x) .3 1——sin x cos x cos x 2 23;「 3 ———sin x —cos x2 23(』sin x -cos x)2 2、.3sin( x -). 3,-.一. Tt由题设知f (-) 0,6- Tt Tt . 一所以」」ku, k Z.6 3故6k 2 , k Z ,又0 3 ,所以2.(2)由(1)得f (x) >/3sin 2x —3所以g (x) . 3 sin x ——4 3 ?3 sin x —12所以x122 3, 3〜…,.,、 3所以当x 一一,即x 一时,g(x)取得最小值一.12 3 4 2【名师点睛】此类题目是三角函数问题中的典型题目,可谓相当经典.解答此题时,关键在于能利用三角公式化简函数、进一步讨论函数的性质,此题易错点在于一是图象的变换与解析式的对应,二是无视设定角的范围.难度不大,能较好地考查考生的根本运算求解水平及复杂式子的变形水平(1) 2; (2) f(x)的最小正周期是。
高二数学三角函数试题答案及解析1.函数的图像可由函数的图像()A.向左平移个单位得到B.向右平移个单位得到C.向左平移个单位得到D.向左平移个单位得到【答案】A【解析】因为可化为.所以将向左平移.可得到.故选A.本小题关键是考查的三角函数的平移,将时的的值,与是对比.即可知道是向左还是向右,同时也可以知道移了多少单位.【考点】1.三角函数的平移.2.类比的思想.2.设函数f (x) =.(1)求f(x)的最小正周期及其图象的对称轴方程;(2)将函数f(x)的图象向右平移个单位长度,得到函数g(x)的图象,求g (x)在区间上的值域.【答案】(1),(2)【解析】解:(1)由得对称轴为(2)从而的值域为【考点】三角函数的性质点评:主要是考查了三角函数的性质的运用,属于基础题。
3.若角的终边上有一点,则的值是【答案】【解析】因为,所以.【考点】三角函数的定义点评:本题考查三角函数的定义,解决本题的关键是能熟练套用公式,属基础题.4.函数的最小值是,在一个周期内图象最高点与最低点横坐标差是,又:图象过点,求(1)函数解析式,(2)函数的最大值、以及达到最大值时的集合;(3)该函数图象可由的图象经过怎样的平移和伸缩得到?(4)当时,函数的值域.【答案】(1)(2)2 (3)向左平移个单位,横坐标伸长到原来的3倍,纵坐标变为原来的2倍(4)【解析】(1)易知:A =" 2" 半周期∴T = 6p 即()从而:设:令x = 0 有又:∴∴所求函数解析式为 .(2)令,即时,有最大值2,故当时,取最大值2 .(3)因为,所以向左平移个单位得到,横坐标伸长到原来的3倍得到,纵坐标伸长到原来的2倍得到.(4)因为,所以,所以,所以.【考点】由的部分图象确定其解析式.点评:本题考查由的部分图象确定其解析式,确定A,ω,φ的值是关键,φ的确定是难点,属于中档题.5.函数的图象上一点处的切线的斜率为A.1B.C.D.【答案】D【解析】根据题意可知,函数的导数为,在图象上一点处切线的斜率为,故选D.【考点】导数的几何意义点评:解决的关键是利用导数的几何意义来求解曲线的切线方程,属于基础题。
2021年高考数学三角函数与解三角形多选题之知识梳理与训练附解析一、三角函数与解三角形多选题1.ABC 中,2BC =,BC 边上的中线2AD =,则下列说法正确的有( )A .AB AC →→⋅为定值B .2210AC AB += C .co 415s A << D .BAD ∠的最大值为30【答案】ABD 【分析】A 利用向量的加减法及向量的数量积公式运算即可,B 根据余弦定理及角的互补运算即可求值,C 利用余弦定理及基本不等式求出cos A 范围即可,D 根据余弦定理及基本不等式求出cos BAD ∠的最小值即可. 【详解】 对于A ,22413AB AC AD DB AD DB AD DB →→→→→→→→⎛⎫⎛⎫⋅=+-=-=-= ⎪⎪⎝⎭⎝⎭,AB AC →→∴⋅为定值,A 正确; 对于B ,cos cos ADC ADB∠=-∠2222222cos 2cos AC AB AD DC AD DC ADC AD DB AD DB ADB ∴+=+-⋅⋅∠++-⋅⋅∠2222AD DB DC =++ 2221110=⨯++=,故B 正确;对于C ,由余弦定理及基本不等式得224242122b c bc cosA bc bc bc+--=≥=-(当且仅当b c =时,等号成立),由A 选项知cos 3bc A =,22cos cos 1133cos AA A∴≥-=-, 解得3cos 5A ≥,故C 错误; 对于D,2222213cos 44c c BAD c c +-+∠==≥=(当且仅当c =立),因为BAD ABD ∠<∠, 所以(0,)2BAD π∠∈,又cos BAD ∠≥BAD ∠的最大值30,D 选项正确. 故选:ABD 【点睛】本题主要考查了向量的数量积运算,余弦定理,基本不等式,考查了推理能力,属于难题.2.已知函数()f x 的定义域为D ,若对于任意()()()a b c D f a f b f c ∈,,,,,分别为某个三角形的边长,则称()f x 为“三角形函数”,其中为“三角形函数”的函数是( ) A .()4sin f x x =- B .()22sin 10cos 13f x x x =-++C .()tan 2x f x = D .()sin 20,34f x x x ππ⎛⎫⎡⎤=++∈ ⎪⎢⎥⎝⎭⎣⎦【答案】AD 【分析】结合三角形的性质有:两边之差小于第三边,得若()f x 为 “三角形函数”则()()()max min min f x f x f x <-恒成立,即()()max min 2f x f x <恒成立即可,根据条件求出函数的最大值和最小值,进行判断即可. 【详解】解:①()4sin f x x =-,则()max 415f x =+=,()min 413f x =-= 则()()max min 2f x f x <恒成立,则A 满足条件②()22532cos 10cos 112cos 22f x x x x ⎛⎫=++=+= ⎪⎝⎭当0,2x π⎡⎤∈⎢⎥⎣⎦时,0cos 1x ≤≤∴当cos 0x =时,函数()f x 取得最小值()min 11f x =,当cos 1x =时,函数()f x 取得最大值,()max 23f x =则()()max min 2f x f x <不恒成立,则B 不满足条件 ③()()()tan ,00,2xf x =∈-∞⋃+∞,则不满足条件()()max min 2f x f x <恒成立,故C 不是④()sin 23f x x π⎛⎫=++ ⎪⎝⎭0,4x π⎡⎤∈⎢⎥⎣⎦,52,336x πππ⎡⎤∴+∈⎢⎥⎣⎦,则()max sin12f x π=+=+()min 51sin62f x π=+=+则()min 21f x =+,则()()max min 2f x f x <恒成立,故D 满足条件 故选AD 【点睛】本题考查了三角形的性质及“三角形函数”的概念,根据条件转化为()()max min 2f x f x <恒成立是解决本题的关键,综合性较强,有一定的难度.3.在ABC 中,a ,b ,c 分别为A ∠,B ,C ∠的对边,下列叙述正确的是( ) A .若sin sin a bB A=,则ABC 为等腰三角形 B .若cos cos a bB A=,则ABC 为等腰三角形 C .若tan A tan tan 0B C ++<,则ABC 为钝角三角形 D .若sin cos a b C c B =+,则4C π∠=【答案】ACD 【分析】多项选择题,一个一个选项验证:对于A :利用正弦定理判断sin sin A B =,在三角形中只能A=B ,即可判断; 对于B :∵由正弦定理得 sin 2sin 2A B =,可以判断∴ABC 为等腰三角形或直角三角形;对于C :利用三角函数化简得tan A tan tan B C ++sin sin sin =cos cos cos A B CA B C,利用sin 0,sin 0,sin 0,A B C >>>判断cos cos cos A B C 、、必有一个小于0,即可判断; 对于D :利用正弦定理判断得cos sin C C =求出角C . 【详解】对于A :∵由正弦定理得:sin sin a bA B=,而sin sin a b B A =,∴sin sin A B =, ∵A+B+C=π,∴只能A=B ,即ABC 为等腰三角形,故A 正确;对于B :∵由正弦定理得:sin sin a bA B=, ∴若cos cos a bB A=可化为sin cos sin cos A A B B =,即sin 2sin 2A B =, ∴22A B =或22A B π+=∴ABC 为等腰三角形或直角三角形,故B 错误; 对于C :∵A+B+C=π,∴()()()()sin sin sin cos cos cos A B C C A B C C ππ+=-=+=-=,, ∴tan A tan tan B C ++sin sin sin =cos cos cos A B CA B C++ sin cos sin cos sin =cos cos cos A B B A CA B C ++sin sin =cos cos cos C CA B C+11=sin cos cos cos C A B C ⎛⎫+ ⎪⎝⎭cos cos cos =sin cos cos cos C A B C A B C +⎛⎫ ⎪⎝⎭ sin sin sin =cos cos cos A B CA B C.∵tan A tan tan 0B C ++<而sin 0,sin 0,sin 0,A B C >>> ∴cos cos cos A B C 、、必有一个小于0,∴ABC 为钝角三角形. 故C 正确;对于D :∵sin cos a b C c B =+,∴由正弦定理得:sin sin sin sin cos A B A C B =+, 即sin cos sin cos sin sin sin cos B C C B B C C B +=+ ∴cos sin C C = ∵()0,C π∈∴4C π.故D 正确. 故选:ACD 【点睛】在解三角形中,选择用正弦定理或余弦定理,可以从两方面思考: (1)从题目给出的条件,边角关系来选择; (2)从式子结构来选择.4.已知函数()()cos 2f x A x b ϕ=++(0A >,0ϕπ<<)的部分图像如图所示,则( )A .2A =B .点7,112π⎛⎫⎪⎝⎭是()f x 图像的一个对称中心C .6π=ϕ D .直线3x π=是()f x 图像的一条对称轴【答案】ABD 【分析】由图知函数最大值为3,最小值为1-,且函数图像与y 轴的交点为()0,2,进而待定系数得()2cos 213f x x π⎛⎫=++ ⎪⎝⎭,再整体换元讨论B,D 选项即可.【详解】 因为0A >,所以31A b A b +=⎧⎨-+=-⎩,解得21A b =⎧⎨=⎩,故A 正确;()02cos 12f ϕ=+=,则1cos 2ϕ=.又0ϕπ<<,所以3πϕ=,故C 错误;()2cos 213f x x π⎛⎫=++ ⎪⎝⎭,令23x k ππ+=,k ∈Z ,解得62πk πx =-+,k ∈Z , 所以()f x 图像的对称轴方程为62πk πx =-+, 令1k =,则3x π=,D 正确;令232x k πππ+=+,k ∈Z ,解得122k x ππ=+,k ∈Z , 令1k =,则712x π=且7112f π⎛⎫= ⎪⎝⎭,故B 正确. 故选:ABD 【点睛】本题考查三角函数图像求解析式,三角函数的对称轴,对称中心等,考查运算求解能力,是中档题.解题的过程中,需要注意形如()()sin 0y A x B A ωϕ=++>,()()cos 0y A x B A ωϕ=++>,max min ,y A B y A B =+=-+,ϕ的求解通常采用待定系数法求解.5.将函数()2πsin 23f x x ⎛⎫=- ⎪⎝⎭的图象向左平移π6个单位长度后得到函数()g x 的图象,则下列说法正确的是( )A .π4g ⎛⎫= ⎪⎝⎭B .π,06⎛⎫⎪⎝⎭是函数()g x 图象的一个对称中心 C .函数()g x 在π0,4⎡⎤⎢⎥⎣⎦上单调递增D .函数()g x 在ππ,63⎡⎤-⎢⎥⎣⎦上的值域是⎡⎢⎣⎦【答案】BC 【分析】首先求得函数()sin 23g x x π=-⎛⎫⎪⎝⎭,再根据选项,整体代入,判断函数的性质. 【详解】()2sin 2sin 2633g x x x πππ⎡⎤⎛⎫⎛⎫=+-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,1sin 462g ππ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,故A 错误;sin 0633g πππ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,故B 正确;0,4x π⎡⎤∈⎢⎥⎣⎦时,2,,33622x πππππ⎡⎤⎡⎤-∈-⊆-⎢⎥⎢⎥⎣⎦⎣⎦,所以函数()g x 在0,4⎡⎤⎢⎥⎣⎦π上单调递增,故C 正确;,63x ππ⎡⎤∈-⎢⎥⎣⎦时,22,333x πππ⎡⎤-∈-⎢⎥⎣⎦,当232x ππ-=-时,函数取得最小值-1,当233x ππ-=1,2⎡-⎢⎣⎦.故选:BC 【点睛】思路点睛:本题考查()sin y A ωx φ=+的解析式和性质的判断,可以整体代入验证的方法判断函数性质:(1)对于函数()sin y A ωx φ=+,其对称轴一定经过图象的最高点或最低点,对称中心的横坐标一定是函数的零点,因此判断直线0x x =或点()0,0x 是否是函数的对称轴和对称中心时,可通过验证()0f x 的值进行判断;(2)判断某区间是否是函数的单调区间时,也可以求x ωϕ+的范围,验证此区间是否是函数sin y x =的增或减区间.6.已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,下列说法正确的是( )A .函数()y f x =的周期为πB .函数()y f x =在2,36ππ⎡⎤--⎢⎥⎣⎦单调递减 C .函数()y f x =的图象关于直线512x π=-对称 D .该图象向右平移6π个单位可得2sin 2y x =的图象 【答案】ACD 【分析】先根据图像求出()y f x =的解析式,再分别验证A 、B 、C 、D 是否正确. 对于A :利用周期公式求周期;对于B :利用复合函数“同增异减”求单调区间; 对于C :计算512f π⎛-⎫⎪⎝⎭,看512x π=-是否经过顶点; 对于D :利用“左加右减”判断. 【详解】由图像可知:A =2,周期24,2312T T ππππω⎛⎫=-=∴==⎪⎝⎭;由=2sin 2212122f ππϕπϕ⎧⎛⎫⎛⎫⨯+= ⎪ ⎪⎪⎪⎝⎭⎝⎭⎨⎪<⎪⎩解得:3πϕ=故函数()2sin 23f x x π⎛⎫=+ ⎪⎝⎭对于A :4312T πππ⎛⎫=-= ⎪⎝⎭,故A 正确; 对于B :当236x ππ-≤≤- 时203x ππ-≤+≤,所以()y f x =在2,36ππ⎡⎤--⎢⎥⎣⎦上不单调.对于C :当512x π=-时255s 2121232in f πππ⎛⎫⎛⎫=-=- ⎪ ⎭⎝-⎪⎭+⎝⨯,即直线512x π=-是()y f x =的一条对称轴.故C 正确;对于D :()y f x =向右平移6π个单位得到2sin 222sin 263y x x ππ⎛⎫=-⨯+= ⎪⎝⎭,故D 正确. 故选:ACD 【点睛】求三角函数解析式的方法: (1)求A 通常用最大值或最小值; (2)求ω通常用周期;()求φ通常利用函数上的点带入即可求解.7.已知函数()cos f x x x =-,则下列说法正确的是( ) A .()f x 的图象关于点,06π⎛⎫⎪⎝⎭中心对称B .()f x 在区间,2ππ⎡⎤⎢⎥⎣⎦上单调递减 C .()f x 在()0,2π上有且仅有1个最小值点 D .()f x 的值域为[]1,2- 【答案】BC 【分析】利用特殊值法可判断A 选项的正误;化简函数()f x 在区间,2ππ⎡⎤⎢⎥⎣⎦上的解析式,利用正弦型函数的单调性可判断B 选项的正误;由()()f x f x π+=可得()f x 的周期为π,再在[]0,π上讨论函数()f x 的单调性、最值,可判断CD 选项的正误.【详解】对于A 选项,因为06f π⎛⎫-= ⎪⎝⎭,2f π⎛⎫= ⎪⎝⎭62f f ππ⎛⎫⎛⎫-≠- ⎪ ⎪⎝⎭⎝⎭, 所以()f x 的图象不关于点,06π⎛⎫⎪⎝⎭中心对称,故A 错误;对于B 选项,当,2x ππ⎡⎤∈⎢⎥⎣⎦时,()cos 2sin 6f x x x x π⎛⎫=+=+ ⎪⎝⎭,27,636x πππ⎡⎤+∈⎢⎥⎣⎦,所以,函数()f x 在区间,2ππ⎡⎤⎢⎥⎣⎦上单调递减,B 选项正确;()()()cos sin cos f x x x x x πππ+=+-+=--()cos x x f x =-=,所以π为函数()f x 的周期.当0,2x π⎡⎤∈⎢⎥⎣⎦时,()cos 2sin 6f x x x x π⎛⎫=-=- ⎪⎝⎭,,663x πππ⎡⎤-∈-⎢⎥⎣⎦,所以()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上单调递增,()()min01f x f ==-,()max 2f x f π⎛⎫== ⎪⎝⎭ 由B 选项可知,函数()f x 在区间,2ππ⎡⎤⎢⎥⎣⎦上单调递减,当,2x ππ⎡⎤∈⎢⎥⎣⎦时,()max 2f x f π⎛⎫== ⎪⎝⎭()()min1f x f π==-.所以,函数()f x 在()0,2π上有且只有1个最小值点,C 选项正确;对于D 选项,由C 选项可知,函数()f x 的值域为⎡-⎣,D 选项错误.故选:BC. 【点睛】方法点睛:求函数()()sin f x A x =+ωϕ在区间[],a b 上值域的一般步骤: 第一步:三角函数式的化简,一般化成形如()sin y A x k ωϕ=++的形式或()cos y A x k ωϕ=++的形式;第二步:由x 的取值范围确定x ωϕ+的取值范围,再确定()sin x ωϕ+(或()cos x ωϕ+)的取值范围;第三步:求出所求函数的值域(或最值).8.下列结论正确的是( )A .在三角形ABC 中,若AB >,则sin sin A B > B .在锐角三角形ABC 中,不等式2220b c a +->恒成立 C .若sin 2sin 2A B =,则三角形ABC 为等腰三角形D .在锐角三角形ABC 中,sin sin cos cos A B A B +>+ 【答案】ABD 【分析】由正弦定理及三角形性质判断A ,由余弦定理判断B ,由正弦函数性质判断C ,利用锐角△ABC 这个条件,可得2A B π+>,结合三角函数的单调性比较sin A 与cos B 大小即可判断D . 【详解】ABC 中,A B a b >⇔>,由sin sin a bA B=,得sin sin A B >,A 正确; 在锐角三角形ABC 中,222222cos 0,02b c a A b c a bc+-=>∴+->,B 正确;ABC 中,若sin 2sin 2A B =,则22A B =或22180A B ︒+=,即A B =或90A B ︒+=,ABC 为等腰三角形或直角三角形,C 错误;在锐角三角形ABC 中,2A B π+>,022A B ππ∴>>->,sin sin 2A B π⎛⎫∴>- ⎪⎝⎭,即sin cos A B >,同理:sin cos B A >sin sin cos cos A B A B ∴+>+,D 正确.故选:ABD. 【点睛】关键点睛:本题考查正弦定理,余弦定理,正弦函数的性质,诱导公式等,学会公式的灵活应用是解答本题的关键.9.已知函数22()(sin cos )2cos f x x x x =++,则( ) A .()f x 的最小正周期是πB .()f x 的图像可由函数()22g x x =+的图像向左平移8π个单位而得到 C .4x π=是()f x 的一条对称轴D .()f x 的一个对称中心是,08π⎛⎫- ⎪⎝⎭【答案】AB 【分析】首先化简函数()224f x x π⎛⎫=++ ⎪⎝⎭,再根据三角函数形式的公式,以及代入的方法判断选项. 【详解】()1sin 2cos 21224f x x x x π⎛⎫=+++=++ ⎪⎝⎭,A.函数的最小正周期22T ππ==,故A 正确;B.根据图象的平移变换规律,可知函数()22g x x =+的图像向左平移8π个单位而得到()222284f x x x ππ⎛⎫⎛⎫=++=++ ⎪ ⎪⎝⎭⎝⎭,故B 正确; C.当4x π=时,32444πππ⨯+=,不是函数的对称轴,故C 不正确; D.当8x π=-时,2084ππ⎛⎫⨯-+= ⎪⎝⎭,此时函数值是2,故函数的一个对称中心应是,28π⎛⎫- ⎪⎝⎭,故D 不正确. 故选:AB【点睛】思路点睛:本题考查()sin y A ωx φ=+的解析式和性质的判断,可以整体代入验证的方法判断函数性质:(1)对于函数()sin y A ωx φ=+,其对称轴一定经过图象的最高点或最低点,对称中心的横坐标一定是函数的零点,因此判断直线0x x =或点()0,0x 是否是函数的对称轴和对称中心时,可通过验证()0f x 的值进行判断;(2)判断某区间是否是函数的单调区间时,也可以求x ωϕ+的范围,验证此区间是否是函数sin y x =的增或减区间.10.在ABC 中,下列说法正确的是( )A .若AB >,则sin sin A B >B .若2C π>,则222sin sin sin C A B >+C .若sin cos A B <,则ABC 为钝角三角形D .存在ABC 满足cos cos 0A B +≤【答案】ABC【分析】根据大角对大边,以及正弦定理,判断选项A ;利用余弦定理和正弦定理边角互化,判断选项B ;结合诱导公式,以及三角函数的单调性判断CD.【详解】A.A B >,a b ∴>,根据正弦定理sin sin a b A B =,可知sin sin A B >,故A 正确; B.2C π>,222cos 02a b c C ab +-∴=<,即222a b c +<,由正弦定理边角互化可知222sin sin sin C A B >+,故B 正确;C.当02A π<<时,sin cos cos cos 2A B A B π⎛⎫<⇔-< ⎪⎝⎭,即22A B A B ππ->⇒+<,即2C π>,则ABC 为钝角三角形,若2A π>,sin cos cos cos 2A B A B π⎛⎫<⇔-< ⎪⎝⎭,即22A B A B ππ->⇒>+成立,A 是钝角,当2A π=是,sin cos A B >,所以综上可知:若sin cos A B <,则ABC 为钝角三角形,故C 正确;D.A B A B ππ+<⇒<-,0,0A B πππ<<<-<,()cos cos cos A B B π∴>-=-,即cos cos 0A B +>,故D 不正确.故选:ABC【点睛】关键点点睛:本题考查判断三角形的形状,关键知识点是正弦定理和余弦定理,判断三角形形状,以及诱导公式和三角函数的单调性.。
2021年高考数学三角函数与解三角形多选题与热点解答题组合练附答案一、三角函数与解三角形多选题1.已知函数()(|sin |cos )(sin cos )f x x x x x =-+,x ∈R ,则( )A .()f x 在0,3π⎛⎫⎪⎝⎭上单调递减B .()f x 是周期为2π的函数C .()f x 有对称轴D .函数()f x 在(0,2)π上有3个零点【答案】BD 【分析】先判断出()f x 是周期为2π的函数,再在给定的范围上研究()f x 的单调性和零点,从而可判断BCD 的正误,再利用反证法可判断C 不正确. 【详解】因为[][]()(2)|sin(2)|cos(2)(sin(2)cos(2))f x x x x x f x πππππ+=+-+⋅+++=, 故()f x 是周期为2π的函数,故B 正确. 当0,3x π⎛⎫∈ ⎪⎝⎭时,22()sin cos cos 2f x x x x =-=-, 因为220,3x π⎛⎫∈ ⎪⎝⎭,而cos y u =-在20,3π⎛⎫ ⎪⎝⎭为增函数, 故()cos2f x x =-在0,3π⎛⎫⎪⎝⎭为增函数,故A 错误.由(sin cos )(sin cos )002x x x x x π⎧-+=⎨<<⎩可得4x π=或34x π=或74x π=,故D 正确.若()f x 的图象有对称轴x a =,因为()f x 的周期为2π,故可设[)0,2a π∈, 则()()2f x f a x =-对任意的x ∈R 恒成立,所以()()02f f a =即1(|sin 2|cos 2)(sin 2cos 2)a a a a -=-+①, 也有222f f a ππ⎛⎫⎛⎫=-⎪ ⎪⎝⎭⎝⎭即1(|cos 2|sin 2)(cos 2sin 2)a a a a =--+②, 也有222f f a ππ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭即1(|cos 2|sin 2)(cos 2sin 2)a a a a -=+-③, 由②③可得cos 2sin 20cos 2sin 2cos 2sin 2a a a a a a -≠⎧⎨+=-⎩, 故sin 20a =,由①②可得cos21a =-,故π2a或32a π=.若π2a,则21116222f π⎛⎛⎛⎫-=-+=- ⎪ ⎝⎭⎝⎭⎝⎭⎝⎭,而2711162226f f ππ⎛⎛⎛⎫⎛⎫=-=-+≠- ⎪ ⎪ ⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,若32a π=,则21911162226f f ππ⎛⎛⎛⎫⎛⎫=+-=-+≠-⎪ ⎪ ⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭这与()()2f x f a x =-对任意的x ∈R 恒成立矛盾, 故D 不成立. 故选:BD. 【点睛】方法点睛:与三角函数相关的函数性质的研究,应该依据一定次序,比如先研究函数的奇偶性或周期性,再根据前者把函数的研究限制在一定的范围内进行讨论.2.已知函数()()sin f x x ωϕ=+(其中,0>ω,||2ϕπ<),08f π⎛⎫-= ⎪⎝⎭,3()8f x f π⎛⎫≤ ⎪⎝⎭恒成立,且()f x 在区间,1224ππ⎛⎫- ⎪⎝⎭上单调,则下列说法正确的是( )A .存在ϕ,使得()f x 是偶函数B .3(0)4f f π⎛⎫=⎪⎝⎭C .ω是奇数D .ω的最大值为3【答案】BCD 【分析】根据3()8f x f π⎛⎫≤ ⎪⎝⎭得到21k ω=+,根据单调区间得到3ω≤,得到1ω=或3ω=,故CD 正确,代入验证知()f x 不可能为偶函数,A 错误,计算得到B 正确,得到答案. 【详解】08f π⎛⎫-= ⎪⎝⎭,3()8f x f π⎛⎫≤ ⎪⎝⎭,则3188242k T πππ⎛⎫⎛⎫--==+ ⎪ ⎪⎝⎭⎝⎭,k ∈N , 故221T k π=+,21k ω=+,k ∈N , 08f π⎛⎫-= ⎪⎝⎭,则()s n 08i f x πωϕ⎛⎫=+= ⎪⎭-⎝,故8k πωϕπ+=-,8k ϕπωπ=+,k Z ∈,当,1224x ππ⎛⎫∈-⎪⎝⎭时,,246x k k ωπωπωϕππ⎛⎫+∈++ ⎪⎝⎭,k Z ∈,()f x 在区间,1224ππ⎛⎫-⎪⎝⎭上单调,故241282T πππ⎛⎫--=≤ ⎪⎝⎭,故4T π≥,即8ω≤,0243ωππ<≤,故62ωππ≤,故3ω≤,综上所述:1ω=或3ω=,故CD 正确;1ω=或3ω=,故8k ϕππ=+或38k ϕππ=+,k Z ∈,()f x 不可能为偶函数,A 错误;当1ω=时,(0)sin sin 8f k πϕπ⎛⎫==+⎪⎝⎭,33sin sin 4488f k k ππππππ⎛⎫⎛⎫⎛⎫=++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故3(0)4f f π⎛⎫= ⎪⎝⎭; 当3ω=时,3(0)sin sin 8f k πϕπ⎛⎫==+⎪⎝⎭, 393sin sin 4488f k k ππππππ⎛⎫⎛⎫⎛⎫=++=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故3(0)4f f π⎛⎫= ⎪⎝⎭, 综上所述:3(0)4f f π⎛⎫= ⎪⎝⎭,B 正确; 故选:BCD. 【点睛】本题考查了三角函数的性质和参数的计算,难度较大,意在考查学生的计算能力和综合应用能力.3.(多选题)已知22tan 2tan 10x y --=,则下列式子成立的是( ) A .22sin 2sin 1y x =+ B .22sin 2sin 1y x =-- C .22sin 2sin 1y x =-D .22sin 12cos y x =-【答案】CD 【分析】对原式进行切化弦,整理可得:222222sin cos 2sin cos cos cos x y y x y x ⋅-⋅=⋅,结合因式分解代数式变形可得选项. 【详解】∵22tan 2tan 10x y --=,2222sin sin 210cos cos x yx y-⋅-=, 整理得222222sin cos 2sin cos cos cos x y y x y x ⋅-⋅=⋅,∴()()()22222221cos 1sin sin cos cos sin cos x x y x y y x ---⋅=+, 即22222221cos sin sin cos sin cos cos x y y x y x x --+⋅-⋅=, 即222sin 12cos 2sin 1y x x =-=-,∴C 、D 正确.故选:CD 【点睛】此题考查三角函数的化简变形,根据弦切关系因式分解,结合平方关系变形.4.已知函数()f x 的定义域为D ,若对于任意()()()a b c D f a f b f c ∈,,,,,分别为某个三角形的边长,则称()f x 为“三角形函数”,其中为“三角形函数”的函数是( ) A .()4sin f x x =- B .()22sin 10cos 13f x x x =-++C .()tan 2x f x = D .()sin 20,34f x x x ππ⎛⎫⎡⎤=++∈ ⎪⎢⎥⎝⎭⎣⎦【答案】AD 【分析】结合三角形的性质有:两边之差小于第三边,得若()f x 为 “三角形函数”则()()()max min min f x f x f x <-恒成立,即()()max min 2f x f x <恒成立即可,根据条件求出函数的最大值和最小值,进行判断即可. 【详解】解:①()4sin f x x =-,则()max 415f x =+=,()min 413f x =-= 则()()max min 2f x f x <恒成立,则A 满足条件②()22532cos 10cos 112cos 22f x x x x ⎛⎫=++=+= ⎪⎝⎭当0,2x π⎡⎤∈⎢⎥⎣⎦时,0cos 1x ≤≤∴当cos 0x =时,函数()f x 取得最小值()min 11f x =,当cos 1x =时,函数()f x 取得最大值,()max 23f x =则()()max min 2f x f x <不恒成立,则B 不满足条件 ③()()()tan ,00,2xf x =∈-∞⋃+∞,则不满足条件()()max min 2f x f x <恒成立,故C 不是④()sin 23f x x π⎛⎫=++ ⎪⎝⎭0,4x π⎡⎤∈⎢⎥⎣⎦,52,336x πππ⎡⎤∴+∈⎢⎥⎣⎦,则()max sin12f x π=+=+()min 51sin62f x π=+=+则()min 21f x =+,则()()max min 2f x f x <恒成立,故D 满足条件 故选AD 【点睛】本题考查了三角形的性质及“三角形函数”的概念,根据条件转化为()()max min 2f x f x <恒成立是解决本题的关键,综合性较强,有一定的难度.5.已知函数()()cos 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图像如图所示,则下列关于函数()f x 的说法中正确的是( )A .函数()f x 最靠近原点的零点为3π-B .函数()f x 的图像在y 3C .函数56f x π⎛⎫-⎪⎝⎭是偶函数 D .函数()f x 在72,3ππ⎛⎫ ⎪⎝⎭上单调递增【答案】ABC 【分析】首先根据图象求函数的解析式,利用零点,以及函数的性质,整体代入的方法判断选项. 【详解】根据函数()()cos f x A x ωϕ=+的部分图像知,2A =, 设()f x 的最小正周期为T ,则24362T πππ=-=,∴2T π=,21T πω==. ∵2cos 266f ππϕ⎛⎫⎛⎫=+=⎪ ⎪⎝⎭⎝⎭,且2πϕ<,∴6πϕ=-, 故()2cos 6f x x π⎛⎫=- ⎪⎝⎭. 令()2cos 06f x x π⎛⎫=-= ⎪⎝⎭,得62x k πππ-=+,k Z ∈, 即23x k ππ=+,k Z ∈,因此函数()f x 最靠近原点的零点为3π-,故A 正确; 由()02cos 36f π⎛⎫=-= ⎪⎝⎭()f x 的图像在y 3B 正确;由()52cos 2cos 6f x x x ππ⎛⎫-=-=- ⎪⎝⎭,因此函数56f x π⎛⎫-⎪⎝⎭是偶函数,故C 正确; 令226k x k ππππ-≤-≤,k Z ∈,得52266k x k ππππ-≤≤+,k Z ∈,此时函数()f x 单调递增,于是函数()f x 在132,6ππ⎛⎫ ⎪⎝⎭上单调递增,在137,63ππ⎛⎫⎪⎝⎭上单调递减,故D 不正确. 故选:ABC . 【点睛】思路点睛:本题考查()sin y A ωx φ=+的解析式和性质的判断,可以整体代入验证的方法判断函数性质:(1)对于函数()sin y A ωx φ=+,其对称轴一定经过图象的最高点或最低点,对称中心的横坐标一定是函数的零点,因此判断直线0x x =或点()0,0x 是否是函数的对称轴和对称中心时,可通过验证()0f x 的值进行判断;(2)判断某区间是否是函数的单调区间时,也可以求x ωϕ+的范围,验证此区间是否是函数sin y x =的增或减区间.6.将函数()2πsin 23f x x ⎛⎫=- ⎪⎝⎭的图象向左平移π6个单位长度后得到函数()g x 的图象,则下列说法正确的是( )A .π4g ⎛⎫= ⎪⎝⎭B .π,06⎛⎫⎪⎝⎭是函数()g x 图象的一个对称中心 C .函数()g x 在π0,4⎡⎤⎢⎥⎣⎦上单调递增D .函数()g x 在ππ,63⎡⎤-⎢⎥⎣⎦上的值域是⎡⎢⎣⎦【答案】BC 【分析】首先求得函数()sin 23g x x π=-⎛⎫⎪⎝⎭,再根据选项,整体代入,判断函数的性质. 【详解】()2sin 2sin 2633g x x x πππ⎡⎤⎛⎫⎛⎫=+-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,1sin 462g ππ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,故A 错误;sin 0633g πππ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,故B 正确;0,4x π⎡⎤∈⎢⎥⎣⎦时,2,,33622x πππππ⎡⎤⎡⎤-∈-⊆-⎢⎥⎢⎥⎣⎦⎣⎦,所以函数()g x 在0,4⎡⎤⎢⎥⎣⎦π上单调递增,故C 正确;,63x ππ⎡⎤∈-⎢⎥⎣⎦时,22,333x πππ⎡⎤-∈-⎢⎥⎣⎦,当232x ππ-=-时,函数取得最小值-1,当233x ππ-=时,函数取得最大值3,所以函数的值域是31,⎡⎤-⎢⎥⎣⎦.故选:BC 【点睛】思路点睛:本题考查()sin y A ωx φ=+的解析式和性质的判断,可以整体代入验证的方法判断函数性质:(1)对于函数()sin y A ωx φ=+,其对称轴一定经过图象的最高点或最低点,对称中心的横坐标一定是函数的零点,因此判断直线0x x =或点()0,0x 是否是函数的对称轴和对称中心时,可通过验证()0f x 的值进行判断;(2)判断某区间是否是函数的单调区间时,也可以求x ωϕ+的范围,验证此区间是否是函数sin y x =的增或减区间.7.函数()()()2sin 0,f x x ωϕωϕπ=+><的部分图象如图所示,则下列结论正确的是( )A .1()2sin 36f x x π⎛⎫=-⎪⎝⎭ B .若把()f x 的横坐标缩短为原来的23倍,纵坐标不变,得到的函数在[],ππ-上是增函数C .若把函数()f x 的图像向左平移2π个单位,则所得函数是奇函数 D .函数()y f x =的图象关于直线4x π=-对称【答案】ACD 【分析】根据函数的图象求出函数的解析式,得选项A 正确;求出213263x πππ--得到函数在[],ππ-上不是增函数,得选项B 错误;求出图象变换后的解析式得到选项C 正确; 求出函数的对称轴方程,得到选项D 正确. 【详解】 A, 如图所示:1732422T πππ=-=, 6T π∴=,∴2163πωπ==,(2)2f π=,∴2(2)2sin()23f ππϕ=+=,即2sin()13πϕ+=, ∴22()32k k Z ππϕπ+=+∈, ∴2()6k k Z πϕπ=-∈,||ϕπ<,∴6πϕ=-,∴1()2sin()36f x x π=-,故选项A 正确;B, 把()y f x =的横坐标缩短为原来的23倍,纵坐标不变,得到的函数12sin()26y x π=-,[x π∈-,]π,∴213263x πππ--,∴12sin()26y x π=-在[π-,]π上不单调递增,故选项B 错误;C, 把()y f x =的图象向左平移2π个单位,则所得函数12sin[()]2sin 3223xy x ππ=-+=,是奇函数,故选项C 正确; D, 设1,,32,362x k k Z x k πππππ-=+∈∴=+当24k x π=-⇒=-,所以函数()y f x =的图象关于直线4x π=-对称,故选项D 正确.故选:ACD 【点睛】方法点睛:求三角函数的解析式,一般利用待定系数法,一般先设出三角函数的解析式sin()y A wx k ,再求待定系数,,,A w k ,最值确定函数的,A k ,周期确定函数的w ,非平衡位置的点确定函数的φ.8.已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,下列说法正确的是( )A .函数()y f x =的周期为πB .函数()y f x =在2,36ππ⎡⎤--⎢⎥⎣⎦单调递减 C .函数()y f x =的图象关于直线512x π=-对称 D .该图象向右平移6π个单位可得2sin 2y x =的图象 【答案】ACD 【分析】先根据图像求出()y f x =的解析式,再分别验证A 、B 、C 、D 是否正确. 对于A :利用周期公式求周期;对于B :利用复合函数“同增异减”求单调区间; 对于C :计算512f π⎛-⎫⎪⎝⎭,看512x π=-是否经过顶点; 对于D :利用“左加右减”判断. 【详解】由图像可知:A =2,周期24,2312T T ππππω⎛⎫=-=∴==⎪⎝⎭; 由=2sin 2212122f ππϕπϕ⎧⎛⎫⎛⎫⨯+= ⎪ ⎪⎪⎪⎝⎭⎝⎭⎨⎪<⎪⎩解得:3πϕ=故函数()2sin 23f x x π⎛⎫=+ ⎪⎝⎭对于A :4312T πππ⎛⎫=-= ⎪⎝⎭,故A 正确; 对于B :当236x ππ-≤≤- 时203x ππ-≤+≤,所以()y f x =在2,36ππ⎡⎤--⎢⎥⎣⎦上不单调.故B 错误; 对于C :当512x π=-时255s 2121232in f πππ⎛⎫⎛⎫=-=- ⎪ ⎭⎝-⎪⎭+⎝⨯,即直线512x π=-是()y f x =的一条对称轴.故C 正确;对于D :()y f x =向右平移6π个单位得到2sin 222sin 263y x x ππ⎛⎫=-⨯+= ⎪⎝⎭,故D 正确. 故选:ACD 【点睛】求三角函数解析式的方法: (1)求A 通常用最大值或最小值; (2)求ω通常用周期;()求φ通常利用函数上的点带入即可求解.9.已知4παπ≤≤,32ππβ≤≤,4sin 25α=,cos()αβ+= )A .cos α=B .sin cos αα-=C .34πβα-= D .cos cos 5αβ=-【答案】BC 【分析】先根据4sin 25α=,判断角α的范围,再根据cos2α求cos α; 根据平方关系,判断sin cos αα-的值;利用公式cos()cos[()2]βααβα-=+-求值,并根据角的范围判断角βα-的值;利用公式()cos βα+和()cos βα-,联合求cos cos αβ.【详解】 ①因为4παπ≤≤,所以222παπ≤≤,又4sin 205α=>,故有22παπ≤≤,42ππα≤≤,解出2231cos 22cos 1cos cos 555αααα=-=-⇒=⇒=,故A 错误; ②()21sin cos 1sin 25ααα-=-=, 由①知:42ππα≤≤,所以sin cos αα>,所以sin cos αα-=,故B 正确; ③由①知:42ππα≤≤,而32ππβ≤≤,所以524παβπ≤+≤,又cos()010αβ+=-<,所以5342ππαβ≤+≤,解得sin()10αβ+=-,所以34cos()cos[()2]55βααβα⎛⎛⎫-=+-=-+⨯= ⎪ ⎝⎭⎝⎭又因为5342ππαβ≤+≤,22ππα-≤-≤-, 所以4πβαπ≤-≤,有34πβα-=,故C 正确;④由cos()cos cos sin sin 1010αβαβαβ+=-⇒-=-,由③知,cos()cos cos sin sin 2βααβαβ-=+=-,两式联立得:cos cos αβ=D 错误. 故选:BC【点睛】 关键点点睛:本题的关键是三角函数恒等变形的灵活应用,尤其是确定角的范围,根据三角函数值4sin 25α=,确定22παπ≤≤,且cos()0αβ+=<,进一步确定5342ππαβ≤+≤,这些都是确定函数值的正负,以及角的大小的依据.10.在ABC 中,下列说法正确的是( )A .若AB >,则sin sin A B >B .若2C π>,则222sin sin sin C A B >+C .若sin cos A B <,则ABC 为钝角三角形D .存在ABC 满足cos cos 0A B +≤【答案】ABC【分析】根据大角对大边,以及正弦定理,判断选项A ;利用余弦定理和正弦定理边角互化,判断选项B ;结合诱导公式,以及三角函数的单调性判断CD.【详解】A.A B >,a b ∴>,根据正弦定理sin sin a b A B =,可知sin sin A B >,故A 正确; B.2C π>,222cos 02a b c C ab +-∴=<,即222a b c +<,由正弦定理边角互化可知222sin sin sin C A B >+,故B 正确;C.当02A π<<时,sin cos cos cos 2A B A B π⎛⎫<⇔-< ⎪⎝⎭,即22A B A B ππ->⇒+<,即2C π>,则ABC 为钝角三角形,若2A π>,sin cos cos cos 2A B A B π⎛⎫<⇔-< ⎪⎝⎭,即22A B A B ππ->⇒>+成立,A 是钝角,当2A π=是,sin cos A B >,所以综上可知:若sin cos A B <,则ABC 为钝角三角形,故C 正确;D.A B A B ππ+<⇒<-,0,0A B πππ<<<-<,()cos cos cos A B B π∴>-=-,即cos cos 0A B +>,故D 不正确.故选:ABC【点睛】关键点点睛:本题考查判断三角形的形状,关键知识点是正弦定理和余弦定理,判断三角形形状,以及诱导公式和三角函数的单调性.。
甘肃省张掖二中2021年高考数学三角函数与解三角形多选题专项练习及解析一、三角函数与解三角形多选题1.设函数()2sin sin 2cos2f x x x =++,给出下列四个结论:则正确结论的序号为( ) A .()20f >B .()f x 在53,2ππ⎛⎫--⎪⎝⎭上单调递增 C .()f x 的值域为[]12cos2,32cos2-++ D .()f x 在[]0,2π上的所有零点之和为4π 【答案】ABD 【分析】由()23sin 22cos2f =+,结合3224ππ<<,可判定A 正确;作出函数2sin sin y x x =+的图象,可得函数()f x 的值域及单调性,可判定B 正确,C 不正确;结合函数的图象,可得()f x 在[]0,2π上的所有零点之和,可判定D 正确. 【详解】由题意,函数()2sin sin 2cos2f x x x =++, 可得()22sin 2sin 22cos23sin 22cos2f =++=+ 因为3224ππ<<,所以sin 2cos20>->,所以()20f >,所以A 正确; 由3sin ,222sin sin ,sin ,222x k x k y x x k Z x k x k πππππππ≤≤+⎧=+=∈⎨-+≤≤+⎩,作出函数2sin sin y x x =+的图象,如图所示, 可得函数()f x 是以2π为周期的周期函数,由函数2sin sin y x x =+的图象可知,函数()f x 在3(,)2ππ上单调递增, 又由()f x 是以2π为周期的周期函数,可得函数()f x 在5(3,)2ππ--上单调递增, 所以B 是正确的;由由函数2sin sin y x x =+的图象可知,函数()f x 的值域为[2cos 2,32cos 2]+, 所以C 不正确; 又由2223ππ<<,所以1cos 202-<<,则02cos21<-<, 令()0f x =,可得2sin sin 2cos2x x +=-,由图象可知,函数()f x 在[]0,2π上的所有零点之和为4π,所以D 正确. 故选:ABD.【点睛】本题主要考查了三角函数的图象与性质的综合应用,其中解答中熟记三角函数的图象与性质是解答的关键,着重考查转化思想,以及数形结合思想的应用,以及推理与运算能力,属于中档试题.2.如图,ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .若a b =,且()3cos cos 2sin a C c A b B +=,D 是ABC 外一点,1DC =,3DA =,则下列说法正确的是( )A .ABC 是等边三角形B .若23AC =A ,B ,C ,D 四点共圆 C .四边形ABCD 面积最大值为5332+ D .四边形ABCD 533 【答案】AC 【分析】利用三角函数恒等变换化简已知等式可求sin B ,再利用a b =,可知ABC 为等边三角形,从而判断A ;利用四点A ,B ,C ,D 共圆,四边形对角互补,从而判断B ;设AC x =,0x >,在ADC 中,由余弦定理可得2106cos x D =-,利用三角形的面积公式,三角函数恒等变换的,可求ABCD S 四边形,利用正弦函数的性质,求出最值,判断CD .【详解】由正弦定理2sin ,2sin ,2sin a R A b R B c R C ===, 3(sin cos sin cos )2sin sin A C C A B B +=⋅,2sin ,sin B B =∴=, a b =,B 是等腰ABC 的底角,(0,)2B π∴∈,,3B ABC π∴=∴△是等边三角形,A 正确;B 不正确:若,,,A BCD 四点共圆,则四边形对角互补, 由A 正确知21,cos 32D D π∠==-,但由于1,3,DC DA AC ===2222221311cos 221332DC DA AC D DA DC +-+-===-≠-⋅⋅⨯⨯,∴B 不正确. C 正确,D 不正确:设D θ∠=,则2222cos 106cos AC DC DA DC DA θθ=+-⋅⋅=-,(106cos )cos 422ABC S θθ∴=⋅-=-△, 3sin 2ADC S θ=△,3sin 2ABCADCABCD S S Sθθ∴=+=-+四边形13(sin cos 2θθ=⋅-+,3sin()3πθ=-+(0,),sin()(3πθπθ∈∴-∈,3ABCD S <≤+四边形,∴C 正确,D 不正确; 故选:AC.. 【点睛】本题主要考查正弦定理,余弦定理,三角函数恒等变换,正弦函数的图象和性质在解三角形中的综合应用,考查计算能力和转化思想,属于中档题.3.(多选题)如图,设ABC 的内角、、A B C 所对的边分别为a b c 、、,若a b c 、、成等比数列,、、A B C 成等差数列,D 是ABC 外一点,1,3DC DA ==,下列说法中,正确的是( )A .3B π=B .ABC 是等边三角形C .若A B CD 、、、四点共圆,则13AC =D .四边形ABCD 面积无最大值 【答案】ABC 【分析】根据等差数列的性质和三角形内角和可得3B π=,根据等比中项和余弦定理可得a c =,即ABC 是等边三角形,若A B C D 、、、四点共圆,根据圆内接四边形的性质可得23D π=,再利用余弦定理可求13AC =211sin sin 223ACD ABC S S S AD CD D AC π∆∆=+=⋅+和2222cos AC AD CD AD CD D 可得3335353sin cos 3sin()22232S D D D π=-+=-+,从而求出最大面积. 【详解】由、、A B C 成等差数列可得,2A+C =B ,又A B C π++=, 则3B π=,故A 正确;由a b c 、、成等比数列可得,2b ac =,根据余弦定理,2222cos b a c ac B =+-,两式相减整理得,2()0a c -=,即a c =,又3B π=,所以,ABC 是等边三角形,故B 正确;若A B C D 、、、四点共圆,则B D π+=,所以,23D π=, ADC 中,根据余弦定理,2222cos AC AD CD AD CD D ,解得13AC =C 正确; 四边形ABCD 面积为:211sin sin 223ACD ABC S S S AD CD D AC π∆∆=+=⋅+233sin 2D AC = 又2222cos 106cos AC AD CD AD CD D D =+-⋅=-,所以,3sin 3sin()23S D D D π==-+因为(0,)D π∈,当四边形面积最大时,sin()13D π-=,此时max 3S =,故D 错误. 故选:ABC 【点睛】本题考查解三角形和平面几何的一些性质,同时考查了等差等比数列的基本知识,综合性强,尤其是求面积的最大值需要一定的运算,属难题.4.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且::4:5:6a b c =,则下列结论正确的是( )A .sin :sin :sin 4:5:6ABC = B .ABC 是钝角三角形C .ABC 的最大内角是最小内角的2倍D .若6c =,则ABC外接圆半径为7【答案】ACD 【分析】由正弦定理可判断A ;由余弦定理可判断B ;由余弦定理和二倍角公式可判断C ;由正弦定理可判断D. 【详解】解:由::4:5:6a b c =,可设4a x =,5b x =,6c x =,()0x >, 根据正弦定理可知sin :sin :sin 4:5:6A B C =,选项A 描述准确;由c 为最大边,可得2222221625361cos 022458a b c x x x C ab x x +-+-===>⋅⋅,即C 为锐角,选项B 描述不准确;2222222536163cos 22564b c a x x x A bc x x +-+-===⋅⋅,291cos 22cos 121cos 168A A C =-=⨯-==, 由2A ,C ()0,π∈,可得2A C =,选项C 描述准确;若6c =,可得2sin 7c R C===,ABC外接圆半径为7,选项D 描述准确. 故选:ACD.【点睛】本题考查三角形的正弦定理和余弦定理,二倍角公式,考查化简运算能力,属于中档题.5.在ABC 中,a ,b ,c 分别为A ∠,B ,C ∠的对边,下列叙述正确的是( ) A .若sin sin a bB A=,则ABC 为等腰三角形 B .若cos cos a bB A=,则ABC 为等腰三角形 C .若tan A tan tan 0B C ++<,则ABC 为钝角三角形 D .若sin cos a b C c B =+,则4C π∠=【答案】ACD 【分析】多项选择题,一个一个选项验证:对于A :利用正弦定理判断sin sin A B =,在三角形中只能A=B ,即可判断; 对于B :∵由正弦定理得 sin 2sin 2A B =,可以判断∴ABC 为等腰三角形或直角三角形;对于C :利用三角函数化简得tan A tan tan B C ++sin sin sin =cos cos cos A B CA B C,利用sin 0,sin 0,sin 0,A B C >>>判断cos cos cos A B C 、、必有一个小于0,即可判断; 对于D :利用正弦定理判断得cos sin C C =求出角C . 【详解】对于A :∵由正弦定理得:sin sin a bA B=,而sin sin a b B A =,∴sin sin A B =, ∵A+B+C=π,∴只能A=B ,即ABC 为等腰三角形,故A 正确;对于B :∵由正弦定理得:sin sin a bA B=, ∴若cos cos a bB A=可化为sin cos sin cos A A B B =,即sin 2sin 2A B =, ∴22A B =或22A B π+=∴ABC 为等腰三角形或直角三角形,故B 错误; 对于C :∵A+B+C=π,∴()()()()sin sin sin cos cos cos A B C C A B C C ππ+=-=+=-=,, ∴tan A tan tan B C ++sin sin sin =cos cos cos A B CA B C++ sin cos sin cos sin =cos cos cos A B B A CA B C++sin sin =cos cos cos C CA B C+11=sin cos cos cos C A B C ⎛⎫+ ⎪⎝⎭cos cos cos =sin cos cos cos C A B C A B C +⎛⎫ ⎪⎝⎭ sin sin sin =cos cos cos A B CA B C.∵tan A tan tan 0B C ++<而sin 0,sin 0,sin 0,A B C >>> ∴cos cos cos A B C 、、必有一个小于0,∴ABC 为钝角三角形. 故C 正确;对于D :∵sin cos a b C c B =+,∴由正弦定理得:sin sin sin sin cos A B A C B =+, 即sin cos sin cos sin sin sin cos B C C B B C C B +=+ ∴cos sin C C = ∵()0,C π∈∴4C π.故D 正确. 故选:ACD 【点睛】在解三角形中,选择用正弦定理或余弦定理,可以从两方面思考: (1)从题目给出的条件,边角关系来选择; (2)从式子结构来选择.6.已知函数()()cos 2f x A x b ϕ=++(0A >,0ϕπ<<)的部分图像如图所示,则( )A .2A =B .点7,112π⎛⎫⎪⎝⎭是()f x 图像的一个对称中心 C .6π=ϕ D .直线3x π=是()f x 图像的一条对称轴【答案】ABD 【分析】由图知函数最大值为3,最小值为1-,且函数图像与y 轴的交点为()0,2,进而待定系数得()2cos 213f x x π⎛⎫=++ ⎪⎝⎭,再整体换元讨论B,D 选项即可.【详解】 因为0A >,所以31A b A b +=⎧⎨-+=-⎩,解得21A b =⎧⎨=⎩,故A 正确;()02cos 12f ϕ=+=,则1cos 2ϕ=.又0ϕπ<<,所以3πϕ=,故C 错误;()2cos 213f x x π⎛⎫=++ ⎪⎝⎭,令23x k ππ+=,k ∈Z ,解得62πk πx =-+,k ∈Z , 所以()f x 图像的对称轴方程为62πk πx =-+, 令1k =,则3x π=,D 正确;令232x k πππ+=+,k ∈Z ,解得122k x ππ=+,k ∈Z , 令1k =,则712x π=且7112f π⎛⎫= ⎪⎝⎭,故B 正确. 故选:ABD 【点睛】本题考查三角函数图像求解析式,三角函数的对称轴,对称中心等,考查运算求解能力,是中档题.解题的过程中,需要注意形如()()sin 0y A x B A ωϕ=++>,()()cos 0y A x B A ωϕ=++>,max min ,y A B y A B =+=-+,ϕ的求解通常采用待定系数法求解.7.已知函数()()3sin 222f x x ππϕϕ⎛⎫=+-<< ⎪⎝⎭的图象关于直线3x π=对称,则( )A .函数12f x π⎛⎫+⎪⎝⎭为奇函数B .函数()f x 在,32ππ⎡⎤⎢⎥⎣⎦上单调递增 C .函数()f x 的图象向右平移()0a a >个单位长度得到的函数的图象关于6x π=对称,则a 的最小值是3π D .若方程()f x a =在2,63ππ⎡⎤⎢⎥⎣⎦上有2个不同实根1x ,2x ,则12x x -的最大值为3π【答案】ACD 【分析】 由条件可得13f π⎛⎫=±⎪⎝⎭,可得6πϕ=-从而得出()f x 的解析式, 选项A 先得出12f x π⎛⎫+ ⎪⎝⎭的表达式,可判断;选项B 求出函数的单调区间,可判断;选项C 根据图象平移变换得出解析式,可得答案;选项D 作出函数的图像,根据图象可判断. 【详解】 根据条件可得23sin 333f ππϕ⎛⎫⎛⎫=+=± ⎪ ⎪⎝⎭⎝⎭,所以2,32k k Z ππϕπ+=+∈ 则,6k k Z πϕπ=-∈,由22ππϕ-<<,所以6πϕ=-所以()3sin 26f x x π⎛⎫=- ⎪⎝⎭选项A. 3sin 212f x x π⎛⎫+= ⎪⎝⎭为奇函数,故A 正确. 选项B. 由3222262k x k k Z πππππ+≤-≤+∈, 2522233k x k k Z ππππ+≤≤+∈, 536k x k k Z ππππ+≤≤+∈, 当0k =时,536x ππ≤≤,所以函数()f x 在,32ππ⎡⎤⎢⎥⎣⎦上单调递减,故选项B 不正确.选项C. 函数()f x 的图象向右平移()0a a >个单位长度得到, ()3sin 23sin 2266y x a x a ππ⎡⎤⎛⎫=--=-- ⎪⎢⎥⎣⎦⎝⎭根据条件可得当6x π=时,3sin 23sin 23366a a πππ⎛⎫⎛⎫--=-=±⎪ ⎪⎝⎭⎝⎭所以2,62a k k Z πππ-=+∈,则1,26a k k Z ππ=--∈ 由0a >,则当1k =-时,a 有的最小值是3π,故C 正确. 选项D. 作出()3sin 26f x x π⎛⎫=- ⎪⎝⎭的图象,如图 当2,63x ππ⎡⎤∈⎢⎥⎣⎦时,由()3f x =,可得3x π= 由33sin 662f ππ⎛⎫==⎪⎝⎭,当2,63x ππ⎡⎤∈⎢⎥⎣⎦时,由()32f x =,可得2x π= 当332a ≤<时,方程()f x a =在2,63ππ⎡⎤⎢⎥⎣⎦上有2个不同实根1x ,2x ,则1x +223x π= 设1x <2x ,则1211122233x x x x x ππ⎛⎫-=--=- ⎪⎝⎭,162x ππ⎡⎫∈⎪⎢⎣⎭,如图当32a =时,1x ,2x 分别为6π,2π时,12x x -最大,最大值为3π,故D 正确.故选:ACD【点睛】关键点睛:本题考查三角函数()sin y A x ωϕ=+的图像性质,考查三角函数的图象变换,解答本题的关键是根据正弦型函数的对称性求出ϕ的值,根据三角函数的对称性得到1211122233x x x x x ππ⎛⎫-=--=- ⎪⎝⎭,162x ππ⎡⎫∈⎪⎢⎣⎭,,属于中档题.8.已知函数)()lg 1( 2.7)x x f x x e e e -=+-+≈⋯,若不等式(sin cos )2(sin 2)f f t θθθ+<--对任意R θ∈恒成立,则实数t 的可能取值为( )A .1B C .3 D .4 【答案】CD【分析】令)()lg x x g x x e e -=+-,则()()1f x g x =+,可判断()g x 是奇函数且单调递增,不等式可变形可得(sin cos )(sin 2)g g t θθθ+<-,所以sin cos sin 2t θθθ>++,令()sin cos sin 2h θθθθ=++,换元法求出()h θ的最大值,()max t h θ>即可.【详解】令)()lg x x g x x e e -=+-,则()()1f x g x =+, ()g x 的定义域为R ,))()()lg lg x x x x g x g x x e e x e e ---+=+-++-0=, 所以()()g x g x -=-,所以()g x 是奇函数,不等式(sin cos )2(sin 2)f f t θθθ+<--等价于[](sin cos )1(sin 2)1f f t θθθ+-<---,即(sin cos )(sin 2)(sin 2)g g t g t θθθθ+<--=-,当0x >时y x =单调递增,可得)lg y x =单调递增, x y e =单调递增,x y e -=单调递减,所以)()lg x x g x x e e -=+-在()0,∞+单调递增,又因为)()lgx x g x x e e -=+-为奇函数,所以)()lg x x g x x e e -=+-在R 上单调递增,所以sin cos sin 2t θθθ+<-,即sin cos sin 2t θθθ>++,令()sin cos sin 2h θθθθ=++,只需()max t h θ>,令sin cos m θθ⎡+=∈⎣,则21sin 2m θ=+,2sin 21m θ=-,所以()21h m m m =+-,对称轴为12m =-,所以m =()max 211h m ==,所以1t >可得实数t 的可能取值为3或4,故选:CD【点睛】关键点点睛:本题解题的关键点是构造函数()g x 奇函数且是增函数,将原不等式脱掉f 转化为函数恒成立问题.9.设函数()()1sin 022f x x x πωωω⎛⎫=++> ⎪⎝⎭,已知()f x 在[]0,π有且仅有3个零点,则( )A .在()0,π上存在1x 、2x ,满足()()122f x f x -=B .()f x 在()0,π有且仅有1个最小值点C .()f x 在0,2π⎛⎫ ⎪⎝⎭上单调递增 D .ω的取值范围是1723,66⎡⎫⎪⎢⎣⎭【答案】AD【分析】 化简函数()f x 的解析式为()sin 6f x x πω⎛⎫=+ ⎪⎝⎭,令6t x πω=+,由[]0,x π∈可求得,66t ππωπ⎡⎤∈+⎢⎥⎣⎦,作出函数sin ,066y t t ππωπω⎛⎫=≤≤+> ⎪⎝⎭的图象,可判断AB 选项的正误;由图象得出346ππωππ≤+<可判断D 选项的正误;取3ω=,利用正弦型函数的单调性可判断C 选项的正误.【详解】()11sin sin cos sin 222226f x x x x x x ππωωωωω⎛⎫⎛⎫=++=+=+ ⎪ ⎪⎝⎭⎝⎭, 当[]0,x π∈时,,666x πππωωπ⎡⎤+∈+⎢⎥⎣⎦,令6t x πω=+,则,66t ππωπ⎡⎤∈+⎢⎥⎣⎦, 作出函数sin ,066y t t ππωπω⎛⎫=≤≤+> ⎪⎝⎭的图象如下图所示:对于A 选项,由图象可知,max 1y =,min 1y =-,所以,在()0,π上存在1x 、2x ,满足()()122f x f x -=,A 选项正确;对于B 选项,()f x 在()0,π上有1个或2个最小值点,B 选项错误;对于D 选项,由于函数()f x 在[]0,π有且仅有3个零点,则346ππωππ≤+<,解得172366ω≤<,D 选项正确; 对于C 选项,由于172366ω≤<,取3ω=,当0,2x π⎛⎫∈ ⎪⎝⎭时,53663x πππ<+<, 此时,函数()f x 在区间0,2π⎛⎫ ⎪⎝⎭上不单调,C 选项错误. 故选:AD.【点睛】 关键点点睛:本题考查利用正弦型函数在区间上的零点个数判断正弦型函数的基本性质,解本题的关键在于换元6t x πω=+,将问题转化为函数sin y t =在区间,66ππωπ⎡⎤+⎢⎥⎣⎦上的零点个数问题,数形结合来求解.10.已知函数()()cos 22f x x πϕϕ⎛⎫=+< ⎪⎝⎭,()()1324F x f x f x π⎛⎫=+ ⎪⎝⎭为奇函数,则下述四个结论中说法正确的是( )A .3tan ϕ=B .()f x 在[],a a -上存在零点,则a 的最小值为6π C .()F x 在3,44ππ⎛⎫ ⎪⎝⎭上单调递增 D .()F x 的图象可由()f x 的图象向左平移2π个单位得到【答案】ABC【分析】首先得到()()124F x f x f x π⎛⎫=++ ⎪⎝⎭的解析式,再根据函数的奇偶性求出参数ϕ,最后结合三角函数的性质一一验证即可.【详解】 解:因为()cos(2)f x x ϕ=+,所以11()()+cos(2)sin(2)cos 2224223F x f x f x x x x ππϕϕϕ⎛⎫⎛⎫=+=+-+=++ ⎪ ⎪⎝⎭⎝⎭, 因为()F x 为奇函数,则(0)0F =,即cos 03πϕ⎛⎫+= ⎪⎝⎭,所以32k ππϕπ+=+,k Z ∈,因为||2ϕπ<,所以6π=ϕ;对于A ,tan tan 6πϕ==,故A 正确; 对于B ,令()cos 206f x x π⎛⎫=+= ⎪⎝⎭,得26k x ππ=+,k ∈Z ,若()f x 在[,]a a -上存在零点,则0a >且a 的最小值为6π,故B 正确; 对于C ,()cos 2sin 263F x x x ππ⎛⎫=++=- ⎪⎝⎭,当3,44x ππ⎛⎫∈ ⎪⎝⎭时,2,232x ππ⎛⎫∈ ⎪⎝⎭,则()F x 在3,44ππ⎛⎫ ⎪⎝⎭上单调递增,故C 正确. 对于D ,因为()cos 26f x x π⎛⎫=+ ⎪⎝⎭, ()cos 266F x x ππ⎡⎤⎛⎫=++ ⎪⎢⎥⎝⎭⎣⎦,根据“左加右减”,()F x 的图象可由()f x 的图象向左平移6π个单位得到,故D 错误.故选:ABC .【点睛】关键点点睛:本题解答的关键是先根据()()1224F x f x f x π⎛⎫=++ ⎪⎝⎭为奇函数,确定参数ϕ的值,再结合三角函数的性质逐一判断即可.。
专题九 三角函数
(一)知识梳理:
1、三角函数的图象和性质
2、周期函数
(1)定义:对于函数y=f(x),如果存在一个非零常数T ,使得______________________ 成立,那么函数y=f(x)就叫做周期函数,________叫做周期。
(2)应用:)sin(ϕω+=x A y 的周期是_________,
)cos(ϕω+=x A y 的周期是_________, )tan(ϕω+=x A y 的周期是_________.
(3)归纳:如果函数)(x f y =的周期是T ,那么函数)(x f y ω=的周期是_______
(二)例题讲解:
考点1:利用三角函数的图像求定义域、值域
例1(a 级)、函数y = cos x ,∈x [-6
π
,2π]的值域是 ( ) (A )[0,1] (B )[-1,1] (C )[0,
2
3
] (D )[-
2
1
,1]
易错笔记:
例2(b 级)、函数2
1
cos +
=x y 的定义域是____________________
易错笔记:
考点2:利用整体法求三角函数的对称中心(轴)、单调区间、最值点等
例3(b 级)、函数sin()4
y x π
=+
的图象的一个对称中心是 ( )
.(0,0)A B.(,1)4π C. 3(,1)4π D. 3(,0)4
π
易错笔记:
例4(b 级)、函数)
6
2sin(π-=x y 的单调递增区间是 ( )
A .[ππ
ππ
k k ++-3
,
6
],Z k ∈ B .
[ππ
ππ
k k 23
,
26
++-]
,Z k ∈ C.[ππππ
k k ++65,
3
],Z k ∈ D.
[ππ
ππk k 22
,22++-],Z k ∈
易错笔记:
例5(b 级)、函数)
6
2sin(π-=x y 取得最大值时的一个x 值是 ( )
(A)
2
π (B)
3
π (C)6π
(D)0
易错笔记:
考点3:周期的求法及应用
例6(a 级)、右图表示周期函数y =f (x )的变化规律,由图象可
以观察出f (x )的最小正周期是_______.
易错笔记:
例7(b 级)、函数y =sin x cos x 是 ( ) A. 周期为2π的奇函数 B. 周期为2π的偶函数 C. 周期为π的奇函数 D. 周期为π的偶函数
易错笔记:
(三)练习巩固:
一、选择题 1、|
tan |tan |sin |sin x x
x x y -=
的值域是 ( )
A.{-2,4}
B.{-2,0,2}
C.{-4,-2,0,2}
D.{-2,0,2,4}
2、函数y=tan(π+x) ( ) (A)是偶函数,但不是奇函数 (B)是奇函数,但不是偶函数 (C)既是奇函数也是偶函数 (D)既不是奇函数也不是偶函数
3、已知函数x x y cos 3sin +=,它的图象的一条对称轴方程是 ( ) (A)x=0
(B)6
π
=
x
(C) 3
π
=x
(D) 2
π
=
x
4、函数y=cos 2x –3cosx+2的最小值是
(
)
A .2
B .0
C .
4
1
D .6
5、函数f(x)=cos(ωx+φ)(ω>0)的最小正周期为1,则ω= ( ) (A)1 (B)2 (C)π (D)2π
6、一根长l 厘米的线,一端固定,另一端悬挂一小球,小球摆动时离开平衡位置的位移s(厘米)和时间t (秒)的函数关系是)3
cos(3π
+=t l g s ,其中g 是重力加速度。
要使小球摆动周期是1秒,则l = ( ) (A)
π
g
(B)
π
2g (C)
2
π
g
(D)
2
4π
g
7、f ( x ) = sin
2
x
是 ( ) (A )最小正周期为π的奇函数 (B )最小正周期为4π的奇函数 (C )最小正周期为π的偶函数 (D )最小正周期为4π的偶函数 8、函数f(x)=sin(32π+x )cos(3
2π
+x )的最小正周期是 ( ) (A)
2
π
(B)π
(C)2π
(D)4π
9、函数y=cos 2 x -sin 2x 的最小正周期是 ( )
A. 4π
B. 2π
C. π
D.
2
π 二、填空题
10
、已知cos 2)θθπ=<<,则θ可能的值有_______________ 11、函数3tan()24
x y π
=-的定义域是_________________,值域是________,周期______。
12、如图,单摆的摆球离开平衡位置的位移S (厘米)和 时间 t (秒)的函数关
系是)3
2(sin 21π+=
t S ,则摆球往复摆动一次所需要的时间是 秒. 13、不等式1
sin 2
x >
的解集是_________________ 14、在[0,2]π中,指出下列函数的单调递增区间
(1) x y 2cos =增区间是 (2) x x y 2cos 2sin 3+=增区间是 三、解答题
15、求函数]),0[(cos sin 3π∈+=x x x y 的 (1)单调递减区间 (2)值域
(第14题)。