浙江省温州23中2020高二数学会考辅导 第三讲 三角函数与三角恒等变换练习
- 格式:doc
- 大小:229.50 KB
- 文档页数:2
高二数学三角函数三角恒等变换解三角形试题答案及解析1.ABC中,已知,则ABC的形状为【答案】直角三角形【解析】略2.在中,,.(Ⅰ)求的值;(Ⅱ)设,求的面积.【答案】(1);(2).【解析】(1)利用内角和为,所以,再利用同角基本关系式求;(2),那么利用正弦定理,,求边,最后,试题解析:(1) ,,因为,所以,.(2),那么利用正弦定理,,代入数值,,所以.【考点】1.两角和的三角函数;2.正弦定理.3.(本题满分13分)已知中,点,动点满足(常数),点的轨迹为Γ.(Ⅰ)试求曲线Γ的轨迹方程;(Ⅱ)当时,过定点的直线与曲线Γ相交于两点,是曲线Γ上不同于的动点,试求面积的最大值.【答案】(Ⅰ)(Ⅱ)【解析】(Ⅰ)利用椭圆定义求动点轨迹,注意定义的条件要完整,不要少,另外要注意三角形中三顶点不共线,对轨迹要去杂(Ⅱ)求面积的最大值,首先要表示出面积,这要用到底乘高的一半,其中底为直线与椭圆的弦长,高为点到直线的距离,而由椭圆的几何性质知当直线与平行且与椭圆相切时,切点到直线的距离最大,因此还要求椭圆的切线,其次利用直线方程与椭圆方程联立方程组,再结合韦达定理可得弦长及切线,最后根据面积的表达式求最值,这要用到导数试题解析:(Ⅰ)在中,因为,所以(定值),且, 2分所以动点的轨迹为椭圆(除去与A、B共线的两个点).设其标准方程为,所以, 3分所以所求曲线的轨迹方程为.4分(Ⅱ)当时,椭圆方程为.5分①过定点的直线与轴重合时,面积无最大值.6分②过定点的直线不与轴重合时,设方程为:,,若,因为,故此时面积无最大值.根据椭圆的几何性质,不妨设.联立方程组消去整理得:, 7分所以则.8分因为当直线与平行且与椭圆相切时,切点到直线的距离最大,设切线,联立消去整理得,由,解得.又点到直线的距离, 9分所以, 10分所以.将代入得:,令,设函数,则,因为当时,,当时,,所以在上是增函数,在上是减函数,所以.故时,面积最大值是.所以,当的方程为时,的面积最大,最大值为.13分【考点】椭圆定义,直线与椭圆位置关系4.函数的图象的一条对称轴的方程是( )A.B.C.D.【答案】D【解析】根据余弦函数的图像和性质,可知,解得,,可知当时得到,故选D.【考点】余弦函数的图像和性质.5.已知两灯塔A和B与海洋观测站C的距离相等,灯塔A在观察站C的北偏东400,灯塔B在观察站C 的南偏东600,则灯塔A在灯塔B的()A.北偏东100B.北偏西100C.南偏东100D.南偏西100【答案】B【解析】由题意知, .由数形结合可得灯塔在灯塔的北偏西.故B正确.【考点】数形结合.6.已知函数的图象向左平移个单位长度,所得图象关于原点对称,则的最小值为()A.B.C.D.【答案】C【解析】函数,向左平移个单位长度得:,因为关于原点对称,所以,因此的最小正值为,选C.【考点】三角函数图像与性质7.角的终边上有一点,则()A.B.C.D.【答案】B【解析】【考点】三角函数定义8.三角形ABC中..则A的取值范围是.【答案】【解析】由已知不等式结合正弦定理得则A的取值范围是【考点】正余弦定理解三角形9.已知是锐角的外心,.若,则A.B.C.3D.【答案】A【解析】取AB的中点D,连接OA,OD,由三角形外接圆的性质可得OD⊥AB,∴.,代入已知,两边与作数量积得到由正弦定理可得:,化为cosB+cosCcosA=msinC,∵cosB=-cos(A+C)=-cosAcosC+sinAsinC,∴sinAsinC=msinC,∴m=sinA.∵,∴【考点】1.向量的线性运算性质及几何意义;2.正弦定理;3.三角函数基本公式10.如图,某人在垂直于水平地面ABC的墙面前的点A处进行射击训练.已知点A到墙面的距离为AB,某目标点P沿墙面上的射击线CM移动,此人为了准确瞄准目标点P,需计算由点A观察点P的仰角的大小.若,,,则的最大值是(仰角为直线AP与平面ABC所成角)【答案】【解析】仰角最大时即为面ACM与面ABC所成的角.过B作BC的垂线交CM于点P,过B作连接PN,则为所求的角,【考点】1、二面角的平面角;2、线面垂直的应用.【易错点晴】本题主要考查的是二面角的平面角的应用,属于中档题.本题容易犯的错误是过B作认为为所求角,从而出错.题中说目标P沿线MC运动,面ACM是确定的,仰角的最大值就是二面角M-AC-B的平面角,再应用三垂线法做出二面角的平面角.11.如图,某市新体育公园的中心广场平面图如图所示,在y轴左侧的观光道曲线段是函数,时的图象且最高点B(-1,4),在y轴右侧的曲线段是以CO为直径的半圆弧.(1)试确定A,和的值;(2)现要在右侧的半圆中修建一条步行道CDO(单位:米),在点C与半圆弧上的一点D之间设计为直线段(造价为2万元/米),从D到点O之间设计为沿半圆弧的弧形(造价为1万元/米).设(弧度),试用来表示修建步行道的造价预算,并求造价预算的最大值?(注:只考虑步行道的长度,不考虑步行道的宽度)【答案】(1);(2)造价,,在时取极大值,也即造价预算最大值为()万元.【解析】(1)由“五点法”可求得;(2)由(1)求出点坐标,得半圆的半径,用表示出弦长和弧长,由题意可得造价,,下面用导数的知识求出的最大值.试题解析:(1)因为最高点B(-1,4),所以A=4;,因为代入点B(-1,4),,又;(2)由(1)可知:,得点C即,取CO中点F,连结DF,因为弧CD为半圆弧,所以,即,则圆弧段造价预算为万元,中,,则直线段CD造价预算为万元所以步行道造价预算,.由得当时,,当时,,即在上单调递增;当时,,即在上单调递减所以在时取极大值,也即造价预算最大值为()万元.……16分【考点】“五点法”,的解析式,导数与最值.12.已知面积为,,则BC长为.【答案】【解析】由三角形面积公式可知【考点】三角形面积公式13.在△ABC中,a=3,b=5,sinA=,则sinB=()A.B.C.D.1【答案】A【解析】由正弦定理得【考点】正弦定理解三角形14.△ABC的内角A、B、C的对边分别为a、b、c.若a、b、c成等比数列且c=2a,则cosB =()A. B. C. D.【答案】A【解析】由a、b、c成等比数列且c=2,知:,所以,故选A.【考点】1、等比数列性质;2、余弦定理.15.已知中,角,所对的边分别是,且.(1)求的值;(2)若,求面积的最大值.【答案】(1);(2).【解析】(1)由条件的特点,可以考虑余弦定理求,再由半角公式求解;(2)由面积公式知,需求的最值,利用均值不等式即可.试题解析:(1)(2)又当且仅当时,△ABC面积取最大值,最大值为【考点】1、余弦定理;2、半角公式;3、基本不等式.【方法点晴】本题主要考查的是余弦定理、半角的正弦公式和三角形的面积公式及基本不等式,属于中档题.解题时一定要注意所给条件的结构特征,能主动联想余弦定理得角的余弦值,然后利用半角公式变形求解.由面积公式分析面积的最大值即求的最大值,因为考虑基本不等式来处理,注意等号成立的条件,这是易错点.16.已知角A、B、C为△ABC的三个内角,其对边分别为a、b、c,若=(-cos,sin),=(cos,sin),a=2,且·=.(1)若△ABC的面积S=,求b+c的值.(2)求b+c的取值范围.【答案】(1)b+c=4,(2)【解析】(1)由已知及余弦定理可求cosA=-,结合范围三角形内角的取值范围A∈(0,π),可求A.又由三角形面积公式可求bc,利用余弦定理即可解得b+c的值.(2)由正弦定理及三角形内角和定理可得b+c=4sin(B+),根据范围0<B<,利用正弦函数的有界性即可求得b+c的取值范围试题解析:(1)∵=(-cos,sin),=(cos,sin),且·=,∴-cos2+sin2=,即-cosA=,又A∈(0,π),∴A=.又由S=bcsinA=,所以bc=4,由余弦定理得:a2=b2+c2-2bc·cos=b2+c2+bc,△ABC∴16=(b+c)2,故b+c=4(2)由正弦定理得:==4,又B+C=π-A=,∴b+c=4sinB+4sinC=4sinB+4sin(-B)=4sin(B+),∵0<B<,则<B+<,则<sin(B+)≤1,即b+c的取值范围是.【考点】正弦定理,余弦定理,三角形面积公式.【方法点睛】(1)在三角形中处理边角关系时,一般全部转化为角的关系,或全部转化为边的关系.题中若出现边的一次式一般采用正弦定理,出现边的二次式一般采用余弦定理,应用正弦、余弦定理时,注意公式变形的应用,解决三角形问题时,注意角的限制范围;(2)在三角形中,注意隐含条件(3)解决三角形问题时,根据边角关系灵活的选用定理和公式.(3))在解决三角形的问题中,面积公式最常用,因为公式中既有边又有角,容易和正弦定理、余弦定理联系起来.17.要得到函数y = sin的图象,只要将函数y = sin2x的图象A.向左平移个单位B.向左平移个单位C.向右平移个单位D.向右平移个单位【答案】B【解析】,因此只需将函数y = sin2x的图象向左平移个单位【考点】三角函数图像平移18.在中,,则边的长为()A.B.3C.D.7【答案】A【解析】由三角形的面积公式,得,解得;由余弦定理,得,即;故选A.【考点】1.三角形的面积公式;2.余弦定理.19.在中,若,则的形状为.【答案】等腰三角形【解析】法一:由正弦定理可将变形为,,即.,.所以三角形为等腰三角形.法二: 由可得,整理可得,解得,即.所以三角形为等腰三角形.【考点】正弦定理,余弦定理.【方法点睛】本题主要考查的是正弦定理、余弦定理,属于容易题,本题利用正弦定理把边转化为角,变形后为正弦的两角和差公式.或是利用余弦定理将角转化为边再变形整理.即解此类题的关键是边角要统一.20.在△ABC中,已知B=45°,D是BC边上的一点,AD=10,AC=14,DC=6,求AB的长.【答案】AB=.【解析】先根据余弦定理求出∠ADC的值,即可得到∠ADB的值,最后根据正弦定理可得答案.解:在△ADC中,AD=10,AC=14,DC=6,由余弦定理得cos∠ADC==,∴∠ADC=120°,∠ADB=60°在△ABD中,AD=10,∠B=45°,∠ADB=60°,由正弦定理得,∴AB=.【考点】余弦定理;正弦定理.21.(2015秋•醴陵市校级期末)正弦函数y=sinx在x=处的切线方程为.【答案】【解析】先求导函数,利用导函数在x=处可知切线的斜率,进而求出切点的坐标,即可求得切线方程.解:由题意,设f(x)=sinx,∴f′(x)=cosx当x=时,∵x=时,y=∴正弦函数y=sinx在x=处的切线方程为即故答案为:【考点】利用导数研究曲线上某点切线方程.22.在△ABC中,内角A,B,C的对边分别是a,b,c,若a2﹣b2=bc,sinC=2sinB,则A= .【答案】30°【解析】已知sinC=2sinB利用正弦定理化简,代入第一个等式用b表示出a,再利用余弦定理列出关系式,将表示出的c与a代入求出cosA的值,即可确定出A的度数.解:将sinC=2sinB利用正弦定理化简得:c=2b,代入得a2﹣b2=bc=6b2,即a2=7b2,∴由余弦定理得:cosA===,∵A为三角形的内角,∴A=30°.故答案为:30°【考点】正弦定理.23.在△ABC中,所对的边分别为,且,则.【答案】【解析】由得【考点】正弦定理24.△ABC的内角A,B,C的对边分别为a,b,c,若,则a等于()A.B.2C.D.【答案】D【解析】先根据正弦定理求出角C的正弦值,进而得到角C的值,再根据三角形三内角和为180°确定角A=角C,所以根据正弦定理可得a=c.解:由正弦定理,∴故选D.【考点】正弦定理的应用.25.在中, 角的对边分别是,且则的形状是()A.等腰三角形B.等腰直角三角形C.直角三角形D.等边三角形【答案】C【解析】,三角形为直角三角形【考点】余弦定理及二倍角公式26.已知中,角所对的边分别,且.(Ⅰ)求;(Ⅱ)若,求面积的最大值.【答案】(Ⅰ);(Ⅱ).【解析】对于问题(Ⅰ),首先根据余弦定理把关于边的问题转化为关于角的问题,再结合降次公式以及三角函数的诱导公式,即可求得;对于问题(Ⅱ)可以根据(Ⅰ)的结论并结合基本不等式和三角形的面积公式即可求得面积的最大值.试题解析:(Ⅰ)(Ⅱ)且,,又,,,面积的最大值注:求法不唯一,只要过程、方法、结论正确,给满分。
专题23 三角函数三角恒等变换【考点讲解】(1)会用向量的数量积推导出两角差的余弦公式;(2)能利用两角差的余弦公式导出两角差的正弦、正切公式;(3)能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式 ,导出二倍角的正弦、余弦、正切公式 , 了解它们的内在联系;2.简单的三角恒等变换:能运用上述公式进行简单的恒等变换 (包括导出积化和差、和差化积、半角公式 ,但对这三组公式不要求记忆 )一、具本目标:1. 两角的正余弦 ,会求和差角的正弦、余弦、正切值.2. 会求类似于15° ,75° ,105°等特殊角的正、余弦、正切值.3. 用和差角的正弦、余弦、正切公式化简求值.4. 逆用和差角的正弦、余弦、正切公式化简求值.5. 会配凑、变形、拆角等方法进行化简与求值.二、知识概述:知识点一两角和与差的正弦、余弦、正切公式两角和与差的正弦公式: ,.两角和与差的余弦公式: ,.两角和与差的正切公式: ,.【特别提醒】公式的条件:1.两角和与差的正弦、余弦公式中的两个角α、β为任意角.2.两角和与差的正切公式中两个角有如下的条件:知识点二公式的变用1.两角和与差的正弦公式的逆用与辅助角公式:(其中φ角所在的象限由a,b的符号确定 ,φ的值由tanbaϕ=确定 ) ,在求最|值、化简时起着重要的作用.2.变形为,变形为.变形为,变形为来使用.条件为:知识点三二倍角公式:1.2.常见变形:(1 ) ,(2) ,;(3) ,.3.半角公式:,,,.【真题分析】1.【17新课标III 文】,那么=α2sin ( )A .97-B .92- C .92 D .97【答案】A2.【17新课标III 文】函数的最|大值为 ( )A .56 B .1 C .53 D .51【解析】将化简 ,利用两角和、差的正余弦公式及辅助角公式 ,三角函数 最|值的性质可以求得函数最|大值. 由,因为 ,所以函数的最|大值为56. 【答案】A3.【2021年渭南期中】向量a = (sin θ ,2- ) ,b = (1 ,cos θ ) ,且a ⊥b ,那么sin 2θ +cos 2θ的值为 ( )A .1B .2C .12D .3【答案】A4.【2021吉林二模】cos θ =-725 ,θ∈ (-π ,0 ) ,那么sin 2θ +cos 2θ= ( ) A .125 B .15± C .15 D .15-【解析】∵cos θ =-725 ,θ∈ (-π ,0 ) ,∴cos 22θ-sin 22θ = (cos 2θ +sin 2θ ) (cos 2θ-sin 2θ )<0 ,2θ∈ (π2- ,0 ) ,∴si n 2θ +cos 2θ<0 ,cos 2θ-sin 2θ>0 ,∵ (sin2θ +cos 2θ )2 =1 +sin θ =1491625- =125, ∴sin2θ +cos 2θ =15-.应选D . 【答案】D等于 ( )A .-sin αB .-cos αC .sin αD .cos α 【解析】此题考点:三角函数的恒等变换及化简求值.原式 ===cos α.应选D. 【答案】D6.【2021全国二卷15】 , ,那么sin()αβ+=__________.【解析】此题考点:同角三角函数的平方和、两角和的正弦公式. 将两式平方与,将平方后的两式相加整理得:, ,也就是.【答案】21-7.【2021(高|考)四川】.【答案】6 2.8.【2021(高|考)江苏卷】在锐角三角形ABC中 ,假设 ,那么的最|小值是 .【解析】此题考查的是三角恒等变换及正切的性质 ,此题要求会利用三角形中隐含的边角关系作为消元依据 ,同时要记住斜三角形ABC中恒有,,因此即最|小值为8.【答案】8.9.【2021秦皇岛期中】假设cos (α +β ) =45,cos (α−β ) =−45,, ,那么sin 2β = . 【解析】cos (α +β ) =45, cos (α−β ) =−45,, ,∴sin (α +β ) =−35 ,sin (α−β ) =35, ∴sin 2β =sin[α +β− (α−β )] =sin (α +β )cos (α−β )−cos (α +β )∙sin (α−β ) =3()5-×4()5-−45×35=0. 【答案】010..sin α +sin β =2165 ,cos α +cos β =2765,那么 = .所以 ==cos2sin2αβαβ++ =97. 【答案】9711.【2021江苏卷16】,αβ为锐角 ,4tan 3α=,.(1 )求cos 2α的值; (2 )求tan()αβ-的值.【解】 (1 )因为4tan 3α=,sin tan cos ααα= ,所以.因为,所以29cos 25α=, 因此 ,.【答案】D6.设α为锐角 ,假设 ,那么 ( )A .210 B .210- C .45 D .45-【答案】A7.假设 ,那么 ( )A.1B.21 C.31 D.41【解析】,应选B. 【答案】B8.以下各式中 ,值为3的是 ( )A.B.C.1tan15 1tan15 +︒-︒D.【解析】,,1tan151tan15+︒-︒,cos15=︒ ,应选C.【答案】C9.tan (π4+α ) =12,那么的值为________.【答案】2 310.【2021浙江卷18】角α的顶点与原点O重合 ,始边与x轴的非负半轴重合 ,它的终边过点P(3455 -,- ).(Ⅰ )求sin (α+π )的值;(Ⅱ )假设角β满足sin (α +β ) =513,求cosβ的值.解:. (Ⅰ )由角α的终边过点34(,)55P--得4sin5α=- ,所以.(Ⅱ )由角α的终边过点34(,)55P--得3cos5α=- ,由得.由得, 所以或.。
3.3 三角函数的积化和差与和差化积典题精讲例1 已知cos α-cos β=21,sin α-sin β=-31,求sin(α+β)的值. 思路分析:考查三角函数的和差化积公式的应用,以及万能公式.两个等式分别用和差化积公式后再相除,得tan 2βα+的值,再用万能公式求sin(α+β)的值.解:∵cos α-cos β=21,∴-2sin 2βα+sin 2βα-=21.① ∵sin α-sin β=-31,∴2cos 2βα+sin 2βα-=-31.②①÷②得-tan2βα+=-23. ∴tan2βα+=23. ∴sin(α+β)=2tan 12tan22βαβα+++=491232+⨯=1312. 绿色通道:如果出现系数绝对值相同的同名三角函数的和差时,常用到和差化积公式.如果出现弦函数的积时,常用到积化和差公式.黑色陷阱:受思维定势的影响,如果由已知sin 2α+cos 2α=1,sin 2β+cos 2β=1联立方程组,分别解得sin α,cos α,sin β,cos β的值,那么运算量就明显加大,甚至会陷入困境. 变式训练1 已知tan α、tan β是方程x 2+3x-4=0的两个根,求βαβα2sin 2sin 2cos 2cos ++的值.思路分析:利用根与系数的关系,得到tan α+tan β和tan αtan β,进而得到tan(α+β).看到cos2α+cos2β,sin2α+sin2β是系数相等的同名三角函数的和,用和差化积公式变形.解:由韦达定理得tan α+tan β=-3,tan αtan β=-4. ∴βαβα2sin 2sin 2cos 2cos ++=)cos()sin(2)cos()cos(2βαβαβαβα-+-+=βαβαβαtan tan tan tan 1)tan(1+-=+=341-+=-35.变式训练2 把cosx+cos2x+cos3x+cos4x 化成积的形式.思路分析:所给的式子是四项的和,要化为积的形式,需考虑适当分组,注意到四个角的特征,显然应将cosx 和cos4x 组到一起,将cos2x 和cos3x 组到一起,这样可以在分别化积之后产生公因式,提取公因式后再继续化积.解:cosx+cos2x+cos3x+cos4x=(cosx+cos4x)+(cos2x+cos3x)=2cos25x cos 23x +2cos 25x cos 2x =2cos 25x (cos 23x +cos 2x )=4cos 25x cosxcos 2x. 例2(2005重庆高考卷,文17)若函数f(x)=)2sin(22cos 1x x-+π+sinx+a 2sin(x+4π)的最大值为2+3,试确定常数a 的值.思路分析:考查三角函数公式,以及利用三角函数的有界性来求最值的问题.化简函数f(x)的解析式为Asin(ωx+φ)的形式,再确定常数a 的值. 解:f(x)=)2sin(2cos 22x x -π+sinx+a 2sin(x+4π) =xx cos 2cos 22+sinx+a 2sin(x+4π)=sinx+cosx+a 2sin(x+4π)=2sin(x+4π)+a 2sin(x+4π)=(2+a 2)sin(x+4π). ∵f(x)的最大值为2+3,sin(x+4π)的最大值为1,∴2+a 2=2+3.∴a=±2.绿色通道:讨论三角函数的最值问题时,经过三角恒等变换,化归为 y=Asin(ωx+φ)的形式求解,有时化归为二次函数求解. 变式训练 求函数y=cos3x·cosx 的最值.思路分析:由于是弦函数积的形式,则利用化积公式,将两个角的余弦化为一个角的三角函数值,从而转化为求二次函数的最值. 解:y=cos3x·cosx=21(cos4x+cos2x) =21(2cos 22x-1+cos2x) =cos 22x+21cos2x-21=(cos2x+41)2-169.∵cos2x∈[-1,1], ∴当cos2x=-41时,y 取得最小值-169; 当cos2x=1时,y 取得最大值1,即函数y=cos3x·cosx 的最大值是1,最小值是-169. 问题探究问题 1)试分别计算cosA+cosB+cosC-4sin2A sin 2B sin 2C的值. ①在等边三角形ABC 中;②A=60°,B=90°,C=30°;③A=120°,B=30°,C=30°.(2)由(1)你发现了什么结论?并加以证明.(3)利用(2)的结论计算-2cos10°-2cos99.8°-2cos70.2°+8sin5°sin49.9°sin35.1°的值.导思:从A+B+C 上归纳并猜想出结论. 探究:(1)①由题意得A=B=C=60°, cosA+cosB+cosC-4sin 2A sin 2B sin 2C =cos60°+cos60°+cos60°-4sin30°sin30°sin30°=21+21+21-4×21×21×21=1; ②cosA+cosB+cosC -4sin 2A sin 2B sin 2C=cos60°+cos90°+cos30°-4sin30°sin45°sin15° =21+0+23-4×21×22×2cos30-1︒=1; ③cosA+cosB+cosC -4sin 2A sin 2B sin 2C=cos120°+cos30°+cos30°-4sin60°sin15°si n15° =-21+23+23-4×23sin 215° =-21+3-3×(1-cos30°)=1. (2)在(1)①中A+B+C=180°,有cosA+cosB+cosC-4sin2A sin 2B sin 2C=1; 在(1)②中A+B+C=180°,有cosA+cosB+cosC-4sin 2A sin 2B sin 2C=1;在(1)③中A+B+C=180°,有cosA+cosB+cosC-4sin 2A sin 2B sin 2C=1.猜想:当A+B+C=180°时,有cosA+cosB+cosC=1+4sin 2A sin 2B sin 2C.证明:当A+B+C=180°时,有A+B=180°-C,即2B A +=90°-2C,∴cosA+cosB+cosC=2cos 2B A +cos 2B A -+1-2sin 22C =2cos(90°-2C )cos 2B A -+1-2sin 22C=2sin 2C cos 2B A --2sin 22C +1=2sin 2C (cos 2B A --sin 2C )+1=2sin 2C (cos 2B A --cos 2B A +)+1=2sin2C (-2)sin 2A sin(-2B)+1 =4sin 2A sin 2B sin 2C+1.∴cosA+cosB+cosC=1+4sin 2A sin 2B sin 2C.(3)∵10°+99.8°+70.2°=180°,∴cos10°+cos99.8°+cos70.2°-4sin5°sin49.9°sin35.1°=1.∴-2cos10°-2cos99.8°-2cos70.2°+8sin5°sin49.9°sin35.1°=-2.。
高二数学三角函数三角恒等变换解三角形试题1.若,则.【答案】【解析】【考点】1.二倍角公式;2.同角三角函数2.将函数的图象向右平移个单位,得到函数的图象,若在上为增函数,则的最大值为.【答案】2【解析】由题意得:,因为在上为增函数,所以,即的最大值为2【考点】三角函数图像变换与性质3.函数(其中)的图象如图所示,为了得到的图象,只需把的图象上所有点()A.向左平移个单位长度B.向右平移个单位长度C.向右平移个单位长度D.向左平移个单位长度【答案】C【解析】由图可知则,又,结合可知,即,为了得到的图象,只需把的图象上所有点向右平移个单位长度.【考点】函数图象、图象的平移.4.在中,角所对的边分别为,满足,且.(1)求角的大小;(2)求的最大值,并求取得最大值时角的值.【答案】(1);(2)当时,取到最大值.【解析】本题主要考查余弦定理、正弦定理、两角和的正弦公式、基本不等式等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,利用三角形的内角和定理转化为A的三角函数,利用两角和的正弦公式求解,结合正弦定理把边转化为角,求出表达式,求出结果即可;第二问,由余弦定理以及基本不等式求出的最值,注意等号成立的条件即可.试题解析:(1)由,可得,即,又,所以,由正弦定理得,因为,所以0,从而,即.(2)由余弦定理,得,又,所以,于是,--10当时,取到最大值.【考点】余弦定理、正弦定理、两角和的正弦公式、基本不等式.5.下列各式中,值为的是()A.B.C.D.【答案】C【解析】A,B、,C、, D、,故选择C【考点】三角恒等变换6.在△ABC中,a,b,c分别是角A,B,C所对的边,已知则c=.【答案】【解析】由余弦定理可得【考点】余弦定理解三角形7.已知面积为,,则BC长为.【答案】【解析】由三角形面积公式可知【考点】三角形面积公式8.在锐角△ABC中,a,b,c分别为角A,B,C所对的边,又c=,b=4,且BC边上的高h=2.(1)求角C;(2)求边a的长【答案】(1);(2)5;【解析】(1)角C在直角三角形ADC中,根据定义求解即可;(2)由(1)知的值,利用余弦定理即可.本题注意活用余弦定理.试题解析:(1)由于△ABC为锐角三角形,过A作AD⊥BC于D点,,则.(2)由余弦定理,可知则,即所以或(舍)因此边长为5.【考点】1.正弦的定义;2.余弦定理;9.△ABC中,,则△ABC一定是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等边三角形【答案】A【解析】由正弦定理可知,,整理得,所以,则△ABC为等腰三角形.【考点】正弦定理的应用.10.在中,,则边的长为()A.B.3C.D.7【答案】A【解析】由三角形的面积公式,得,解得;由余弦定理,得,即;故选A.【考点】1.三角形的面积公式;2.余弦定理.11.(2011•安徽)已知△ABC的一个内角为120°,并且三边长构成公差为4的等差数列,则△ABC的面积为.【答案】15【解析】因为三角形三边构成公差为4的等差数列,设中间的一条边为x,则最大的边为x+4,最小的边为x﹣4,根据余弦定理表示出cos120°的式子,将各自设出的值代入即可得到关于x的方程,求出方程的解即可得到三角形的边长,然后利用三角形的面积公式即可求出三角形ABC 的面积.解:设三角形的三边分别为x﹣4,x,x+4,则cos120°==﹣,化简得:x﹣16=4﹣x,解得x=10,所以三角形的三边分别为:6,10,14则△ABC的面积S=×6×10sin120°=15.故答案为:15【考点】余弦定理;数列的应用;正弦定理.12.(2015秋•醴陵市校级期末)正弦函数y=sinx在x=处的切线方程为.【答案】【解析】先求导函数,利用导函数在x=处可知切线的斜率,进而求出切点的坐标,即可求得切线方程.解:由题意,设f(x)=sinx,∴f′(x)=cosx当x=时,∵x=时,y=∴正弦函数y=sinx在x=处的切线方程为即故答案为:【考点】利用导数研究曲线上某点切线方程.13.如图所示,甲船以每小时30海里的速度向正北方向航行,乙船按固定方向匀速直线航行.当甲船位于A1处时,乙船位于甲船的南偏西75°方向的B1处,此时两船相距20海里.当甲船航行20分钟到达A2处时,乙船航行到甲船的南偏西60°方向的B2处,此时两船相距10海里.问:乙船每小时航行多少海里?【答案】【解析】连接,则∴△是等边三角形,求出,在△中使用余弦定理求出的长,除以航行时间得出速度试题解析:如图,连接A1B2,由题意知,A1B1=20,A2B2=10,A1A2=×30=10(海里)又∵∠B2A2A1=180°-120°=60°,∴△A1A2B2是等边三角形,∠B1A1B2=105-60°=45°.在△A1B2B1中,由余弦定理得=202+(10)2-2×20×10×=200,∴B1B2=10(海里).因此乙船的速度大小为×60=30(海里/小时).【考点】解三角形的实际应用;余弦定理14.(2015春•东城区期末)下列三句话按“三段论”模式排列顺序正确的是()①y=cosx(x∈R)是三角函数;②三角函数是周期函数;③y=cosx(x∈R)是周期函数.A.①②③B.②①③C.②③①D.③②①【答案】B【解析】根据三段论”的排列模式:“大前提”→“小前提”⇒“结论”,分析即可得到正确的次序.解:根据“三段论”:“大前提”→“小前提”⇒“结论”可知:①y=cosx((x∈R )是三角函数是“小前提”;②三角函数是周期函数是“大前提”;③y=cosx((x∈R )是周期函数是“结论”;故“三段论”模式排列顺序为②①③故选B【考点】演绎推理的基本方法.15.在△ABC内部有任意三点不共线的2017个点,加上A、B、C三个顶点,共有2020个点,把这2020个点连线,将△ABC分割成以这些点为顶点,且互不重叠的小三角形,则小三角形的个数为()A.4037 B.4035 C.4033 D.4032【答案】B【解析】三个点时,有1个三角形,4个点时有3个三角形,5个点时有5个三角形,每加一个点,三角形的个数加2,因此2020个点时三角形的个数为1+(2020-3)×2=4035.【考点】归纳推理.16.在锐角中,内角的对边分别为,且.(1)求角的大小;(2)若,求的面积.【答案】(1);(2).【解析】(1)由正弦定理得的值,再由题意可得的大小;(2)由已知条件代入余弦定理可求得的值,代入面积公式可得三角形的面积.试题解析:(1)∵中,,∴根据正弦定理,得∵锐角中,,∴等式两边约去,得∵是锐角的内角,∴;(2)∵,,∴由余弦定理,得,化简得,∵,平方得,∴两式相减,得,可得.因此,的面积.【考点】正弦定理、余弦定理.17.设函数,若为奇函数,则= ;【答案】【解析】,函数为奇函数,所以【考点】三角函数性质18.已知的三内角所对的边分别为,且,则.【答案】【解析】由正弦定理及得,所以,所以.【考点】正弦定理与余弦定理.19.函数的部分图像如图所示,则A.B.C.D.【答案】A【解析】由图象可知,,所以,当时,,故选A.【考点】函数的图象.20.在锐角中,分别为角所对的边,且.(1)确定角的大小;(2)若,且的面积为,求的值.【答案】(1);(2).【解析】(1)根据正弦定理化简已知的式子求出,在由锐角三角形的特征求出角的大小;(2)根据余弦定理和条件,可得,利用三角形的面积公式和条件求出和的值,由完全平方公式即可求出的值.试题解析:(1)由及正弦定理得,,∵,∴.∵是锐角三角形,∴.(2)∵,由面积公式得,即....①由余弦定理得,即,∴....②,由①②得,故.【考点】正弦定理与余弦定理.21.已知:f(x)=2cos2x+sin2x﹣+1(x∈R).求:(Ⅰ)f(x)的最小正周期;(Ⅱ)f(x)的单调增区间;(Ⅲ)若x∈[﹣,]时,求f(x)的值域.【答案】见解析【解析】解:f(x)=sin2x+(2cos2x﹣1)+1=sin2x+cos2x+1=2sin(2x+)+1(Ⅰ)函数f(x)的最小正周期为T==π(Ⅱ)由2kπ﹣≤2x+≤2kπ+得2kπ﹣≤2x≤2kπ+∴kπ﹣≤x≤kπ+,k∈Z函数f(x)的单调增区间为[kπ﹣,kπ+],k∈Z(Ⅲ)因为x∈[﹣,],∴2x+∈[﹣,],∴sin(2x+)∈[,1],∴f(x)∈[0,3].【点评】本题考查三角函数的最值,三角函数的周期性及其求法,正弦函数的单调性,考查计算能力,此类题目的解答,关键是基本的三角函数的性质的掌握熟练程度,是基础题.22.在中,三内角的对边分别为,面积为,若,则等于()A.B.C.D.【答案】A【解析】因为,所以,所以,化为,又因为,解得或(舍去),所以.【考点】余弦定理.23.已知函数,(1)求函数的单调递减区间;(2)求函数的极小值和最大值,并写明取到极小值和最大值时分别对应的值.【答案】(1);(2)详见解析.【解析】(1)先求函数的导数,并且根据辅助角公式化简函数,并求导数在的零点,同时讨论零点两侧的单调性,确定函数的单调递减区间;(2)根据(1)的讨论,可求得极值点和极值以及端点值的大小,经比较可得函数的最大值以及极小值.试题解析:(1)f′(x)=cosx+sinx+1=sin(x+)+1 ()令f′(x)=0,即sin(x+)=-,解之得x=π或x=π.x,f′(x)以及f(x)变化情况如下表:(π,π)π(π,2π)-0+∴f(x)的单调减区间为(π,π).=f()=.(2)由(1)知f (x)极小而f(π)=π+2,,所以.【考点】导数的简单应用24.在一个港口,相邻两次高潮发生的时间相距,低潮时水深为,高潮时水深为.每天潮涨潮落时,该港口水的深度()关于时间()的函数图象可以近似地看成函数的图象,其中,且时涨潮到一次高潮,则该函数的解析式可以是()A.B.C.D.【答案】A【解析】由题意分析可知函数的最大值为15,最小值为9,周期T=12,所以,又当t=3时,函数取得最大值,所以答案为A。
高二数学三角函数三角恒等变换解三角形试题答案及解析1.在中,内角的对边分别是,若,的面积为,则( )A.B.C.D.【答案】A【解析】根据题意有,即,结合余弦定理,可知,所以有,结合题中所给的三角形的面积,可知,化简整理可得,结合三角形内角的取值范围,可知,故选A.【考点】余弦定理,三角形的面积,辅助角公式,已知三角函数值求角.2.函数的图象的一条对称轴的方程是( )A.B.C.D.【答案】D【解析】根据余弦函数的图像和性质,可知,解得,,可知当时得到,故选D.【考点】余弦函数的图像和性质.3.已知,函数在上单调递减,则的取值范围是.【答案】【解析】由得函数的单调递减区间为.经验证当k=0时,有,解得,.【考点】三角函数的单调性,注意利用复合函数的单调性考虑.4.在中,角所对的边分别为,满足:.(Ⅰ)求的大小;(Ⅱ)若,求的最大值,并求取得最大值时角的值.【答案】(Ⅰ);(Ⅱ);.【解析】(Ⅰ)由三角函数恒等变换的应用及正弦定理化简已知等式可得:,结合范围,可得,从而解得的值.(Ⅱ)由正弦定理可得,由,可求,即可得解.试题解析:(Ⅰ)由.可得,所以,由正弦定理可得:,因为,所以,从而,即,从而解得:(Ⅱ)由正弦定理:,可得,所以:,又因为,得:,,所以,所以,此时,即【考点】余弦定理;正弦定理.5.在△中,若,则△的形状为()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形【答案】D【解析】∵,∴,∴,∴,∴,∴或,∴或,∴△的形状为等腰三角形或直角三角形.【考点】判断三角形形状、两角和与差的正弦公式.6.在△ABC中,,则()A.2∶3∶4B.14∶11∶(-4)C.4∶3∶2D.7∶11∶(-2)【答案】B【解析】∵,∴由正弦定理得:,∴设,,,∴.【考点】正弦定理和余弦定理.7.(本小题满分12分)是单位圆上的点,点是单位圆与轴正半轴的交点,点在第二象限.记且.(1)求点坐标;(2)求的值.【答案】(1);(2).【解析】(1)根据角的终边与单位交点为(),结合同角三角函数关系和,可得B点坐标;(2)由(1)中结论,结合诱导公式化简,代入可得答案试题解析:(1)∵点A是单位圆与x轴正半轴的交点,点B在第二象限.设B点坐标为(x,y),则y=sin.x=即B点坐标为:(2)【考点】1.三角函数定义;2.同角三角函数基本关系及诱导公式8.已知在△ABC中,三个内角A,B,C的对边分别为a,b,c,若△ABC的面积为S,且,则tanC等于()A.B.C.D.【答案】C【解析】【考点】1.余弦定理解三角形;2.同角间三角函数关系9.(本小题12分)在锐角△中,内角的对边分别为,且(1)求角的大小。
高三数学三角函数三角恒等变换解三角形试题答案及解析1.已知函数的图象上关于轴对称的点至少有3对,则实数的取值范围是()A.B.C.D.【答案】A【解析】原函数在轴左侧是一段正弦型函数图象,在轴右侧是一条对数函数的图象,要使得图象上关于轴对称的点至少有对,可将左侧的图象对称到轴右侧,即,应该与原来轴右侧的图象至少有个公共点如图,不能满足条件,只有此时,只需在时,的纵坐标大于,即,得.【考点】分段函数,函数图象,正弦型函数,对数函数2.若,则函数的最大值是___________.【答案】【解析】由题意因为,所以,所以函数的最大值是.【考点】求最大值.3.已知,,则下列不等式一定成立的是A.B.C.D.【答案】D【解析】,【考点】三角函数的性质4.若,且为第二象限角,则()A.B.C.D.【答案】B【解析】由得又为第二象限角,所以,选B.【考点】两角差余弦公式5.设函数对任意的,都有,若函数,则的值是()A.1B.-5或3C.-2D.【答案】C【解析】根据题意有是函数图像的对称轴,从而有,所以有,故选C.【考点】三角函数的性质.6.设的最小值为,则.【答案】【解析】,根据题意,结合二次函数在某个区间上的最值问题,对参数进行讨论,当时,其最小值为,所以不合题意,当时,其最小值为,解得,当时,其最小值为,无解,所以.【考点】倍角公式,二次函数在给定区间上的最值问题.7.设函数对任意的,都有,若函数,则的值是()A.1B.-5或3C.D.-2【答案】D【解析】根据题意有是函数图像的对称轴,从而有,所以有,故选D.【考点】三角函数的性质.8.下列函数中,以为最小正周期的偶函数是()A.y=sin2x+cos2xB.y=sin2xcos2xC.y=cos(4x+)D.y=sin22x﹣cos22x【答案】D【解析】因为A项为非奇非偶函数,B项是奇函数,C项是奇函数,只有D项是符合题意的,故选D.【考点】诱导公式,倍角公式,三角函数的奇偶性和周期.9.函数的最大值为.【答案】【解析】解析式表示过的直线的斜率,由几何意义,即过定点(4,3)与单位圆相切时的切线斜率为最值.所以设切线得斜率为k,则直线方程为,即 ,【考点】三角函数最值【方法点睛】本题主要考查三角函数最值问题及转化的思想,解决问题的根据是根据所给函数式子转化为直线与圆的位置关系问题,即将所给式子看做定点与单位圆上点的连线的斜率的范围问题,通过模型转化使问题定点巧妙解决,属于经典试题.10.(本题满分12分)如图,在中,边上的中线长为3,且,.(1)求的值;(2)求边的长.【答案】(1)(2)4【解析】(1)利用角的关系,再结合两角差正弦公式展开就可求解(2)先在三角形ABD中,由正弦定理解出BD长,即CD长:由正弦定理,得,即,解得…故;再在三角形ADC中由余弦定理解出AC:;AC= 4试题解析:(1)(2)在中,由正弦定理,得,即,解得…故,从而在中,由余弦定理,得;AC= 4 ;【考点】正余弦定理11.中,,则的最大值为.【答案】【解析】设,由余弦定理的推论,所以,设,代入上式得,,故,当时,此时,符合题意,因此最大值为,故答案为:.【考点】解三角形.【思路点睛】首先假设,然后再根据余弦定理的推论,可得,找到与的关系,再设,代入上式得,利用根的判别式,进而求出结果.本题的关键是利用余弦定理的推论.12.已知函数的部分图象如图所示.(1)求函数的解析式;(2)若,求函数在区间上的单调减区间.【答案】(1);(2),.【解析】(1)由图象中的最高点和最低点的纵坐标得到关于的方程组求得,再利用图象得到函数的周期,进而得到值,最后代入最低点坐标或最高点坐标结合的范围求出,即得到函数的解析式;(2)先求出,利用两角和差的正弦公式将其化为的形式,再利用整体思想求其单调递减区间.试题解析:(1)由图知,解得,又,所以,所以,将点代入,得,再由,得,所以;(2)因为由,解得;又,故所求的单调减区间为,.【考点】1.三角函数的图象与性质;2.三角恒等变形.13.已知角的终边经过点(-4,3),则= ,= ;【答案】;【解析】由题意可得.【考点】任意角三角函数的定义.14.在△ABC中,a、b、c分别是角A、B、C的对边,且.(Ⅰ)求角B的大小;(Ⅱ)若,求△ABC的面积.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)在解三角形的背景下,考查正弦定理,余弦定理,知值求值.(Ⅱ)综合余弦定理,求三角形的面积公式,需要把作为整体求之.试题解析:(Ⅰ)由正弦定理得将上式代入已知即,即.∵∵∵B为三角形的内角,∴.(Ⅱ)由余弦定理得,结合,可得,所以△ABC的面积.【考点】正弦定理,余弦定理,三角形的面积公式.15.在△中,角,,所对的边分别为,,,表示△的面积,若,,则.【答案】【解析】∵,∴,∴,∴,.∵,∴,∴,∴,∴.【考点】解三角形.【思路点睛】先利用余弦定理和三角形的面积公式可得,可得,再用正弦定理把中的边换成角的正弦,利用两角和公式化简整理可求得,最后根据三角形内角和,进而求得.16.中,角A,B,C的对边分别为a,b,c,若的面积,则 .【答案】【解析】由余弦定理,,又,,,即,,.【考点】1、余弦定理;2、同角三角函数的基本关系;3、三角形面积公式.【思路点睛】本题主要考查的是余弦定理、同角三角函数基本关系、三角形的面积公式,属于容易题.因为题目求,且的面积,边的平方的形式一般想到余弦定理,面积展开后利用余弦定理即可求得与的关系,从而利用同角三角函数的基本关系求得.17.(2012•安徽)设△ABC的内角A、B、C所对边的长分别为a、b、c,且有2sinBcosA=sinAcosC+cosAsinC.(Ⅰ)求角A的大小;(Ⅱ)若b=2,c=1,D为BC的中点,求AD的长.【答案】(Ⅰ);(Ⅱ)【解析】(Ⅰ)根据2sinBcosA=sinAcosC+cosAsinC,可得2sinBcosA=sin(A+C),从而可得2sinBcosA=sinB,由此可求求角A的大小;(Ⅱ)利用b=2,c=1,A=,可求a的值,进而可求B=,利用D为BC的中点,可求AD的长.解:(Ⅰ)∵2sinBcosA=sinAcosC+cosAsinC∴2sinBcosA=sin(A+C)∵A+C=π﹣B∴sin(A+C)=sinB>0∴2sinBcosA=sinB∴cosA=∵A∈(0,π)∴A=;(Ⅱ)∵b=2,c=1,A=∴a2=b2+c2﹣2bccosA=3∴b2=a2+c2∴B=∵D为BC的中点,∴AD=.【考点】余弦定理;三角函数的恒等变换及化简求值.18.在中,已知.(Ⅰ)求sinA与角B的值;(Ⅱ)若角A,B,C的对边分别为的值.【答案】(Ⅰ);(Ⅱ),.【解析】(I)给出了关于角的两个三角函数值,利用诱导公式和同角三角函数的基本关系式可求得其正弦、余弦,再根据三角形的性质可求得的值;(II)在第一问的基础上,利用正弦定理可求得边,再由余弦定理求边,注意利用三角形基本性质舍解.试题解析:(Ⅰ)∵,,又∵,.∵,且,.(Ⅱ)由正弦定理得,,另由得,解得或(舍去),,.【考点】三角函数的诱导公式,同角三角函数的基本关系式及利用正、余弦定理在解三角形.19.已知,则的值为.【答案】.【解析】,故填:.【考点】三角恒等变形.20.在中,角A,B,C的对边分别为,,,若,则角的值为()A.或B.或C.D.【答案】A.【解析】,,∴或,故选A.【考点】余弦定理.【思路点睛】由已知条件,可先将切化弦,再结合正弦定理,将该恒等式的边都化为角,然后进行三角函数式的恒等变形,找出角之间的关系;或将角都化成边,然后进行代数恒等变形,可一题多解,多角度思考问题,从而达到对知识的熟练掌握.21.为了得到函数的图象,只需把函数图象上的所有点()A.横坐标缩短到原来的倍,纵坐标不变B.横坐标伸长到原来的2倍,纵坐标不变C.纵坐标缩短到原来的倍,横坐标不变D.纵坐标缩短到原来的2倍,横坐标不变【答案】A【解析】这是一个三角函数的图象变换问题,一般的为了得到函数的图象,只需把函数的图象上所有点的横坐标伸长()或缩短()到原来的倍(纵坐标不变)即可,因此为了得到函数的图象,只需把函数图象上的所有点横坐标缩短到原来的倍,纵坐标不变,故选A.【考点】三角函数的图象变换.【方法点睛】本题是一个三角函数的图象变换问题,属于容易题.一般的要得到函数(其中)的图像可按以下步骤进行:先把的图象向左()或向右()平移个单位,再将所得函数的图象上各点的横坐标扩大()或缩小()为原来的(纵坐标不变),再把所得函数图象上各点的纵坐标扩大()或缩小()为原来的倍(横坐标不变),最后再将所得图像向上()或向下()平移个单位,即可得到函数的图象.22.如图,在中,,,点在边上,且,.(I)求;(II)求的长.【答案】(Ⅰ);(Ⅱ),.【解析】(Ⅰ)由图可知,所以,又,所以,再由两角差的正弦公式可求得;(Ⅱ)由题意可用正弦定理、余弦定理即可求出、的长,在中,有,又从而可求得;在中,由余弦定理得,,从而可求出.试题解析:(Ⅰ)在中,因为,所以,所以(Ⅱ)在中,由正弦定理得,在中,由余弦定理得,所以【考点】1.解三角形;2.两角差的正弦公式.23.设的内角对边分别为,已知,且.(1)求角的大小;(2)若向量与共线,求的值.【答案】(1);(2)。
高中数学三角函数及三角恒等变换精选题目(附解析) 一、三角函数的定义若角α的终边上任意一点P (x ,y )(原点除外),r =|OP |=x 2+y 2,则sin α=y r ,cos α=x r ,tan α=y x (x ≠0).1.已知角α的终边过点P (-3cos θ,4cos θ),其中θ∈⎝ ⎛⎭⎪⎫π2,π,则sin α=________,tan α=________.[解析] ∵θ∈⎝ ⎛⎭⎪⎫π2,π,∴cos θ<0,∴r =x 2+y 2=9cos 2θ+16cos 2θ=-5cosθ,故sin α=y r =-45,tan α=y x =-43.[答案] -45 -43 注:利用三角函数定义求函数值的方法当已知角的终边所经过的点或角的终边所在的直线时,一般先根据三角函数的定义求这个角的三角函数值,再求其他.但当角经过的点不固定时,需要进行分类讨论.求与正切函数有关问题时,不要忽略正切函数自身的定义域.2.已知点M ⎝ ⎛⎭⎪⎫13,a 在函数y =log 3x 的图象上,且角θ的终边所在的直线过点M ,则tan θ=( )A .-13 B .±13 C .-3D .±3解析:选C 因为点M ⎝ ⎛⎭⎪⎫13,a 在函数y =log 3x 的图象上,所以a =log 313=-1,即M ⎝ ⎛⎭⎪⎫13,-1,所以tan θ=-113=-3,故选C.3.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos 2θ=( )A .-45B .-35 C.35D.45解析:选B 在角θ的终边上任取一点P (a,2a )(a ≠0). 则r 2=|OP |2=a 2+(2a )2=5a 2. 所以cos 2θ=a 25a 2=15,cos 2θ=2cos 2 θ-1=25-1=-35.4.若θ是第四象限角,则点P (sin θ,tan θ)在第________象限. 解析:∵θ是第四象限角,则sin θ<0,tan θ<0, ∴点P (sin θ,tan θ )在第三象限. 答案:三二、同角三角函数的基本关系及诱导公式①牢记两个基本关系式sin 2α+cos 2α=1及sin αcos α=tan α,并能应用两个关系式进行三角函数的求值、化简、证明.②诱导公式可概括为k ·π2±α(k ∈Z)的各三角函数值的化简公式.记忆规律是:奇变偶不变,符号看象限.其中的奇、偶是指π2的奇数倍或偶数倍,变与不变是指函数名称的变化.5.已知2+tan (θ-π)1+tan (2π-θ)=-4,求(sin θ-3cos θ)(cos θ-sin θ)的值.[解] 法一:由已知得2+tan θ1-tan θ=-4,∴2+tan θ=-4(1-tan θ), 解得tan θ=2.∴(sin θ-3cos θ)(cos θ-sin θ ) =4sin θcos θ-sin 2θ-3cos 2θ =4sin θcos θ-sin 2θ-3cos 2θsin 2θ+cos 2θ=4tan θ-tan2θ-3tan2θ+1=8-4-34+1=15.法二:由已知得2+tan θ1-tan θ=-4,解得tan θ=2.即sin θcos θ=2,∴sin θ=2cos θ.∴(sin θ-3cos θ)(cos θ-sin θ)=(2cos θ-3cos θ)(cos θ-2cos θ)=cos2θ=cos2θsin2θ+cos2θ=1tan2θ+1=15.注:三角函数式的求值、化简、证明的常用技巧(1)化弦:当三角函数式中三角函数名称较多时,往往把三角函数化为弦,再化简变形.(2)化切:当三角函数式中含有正切及其他三角函数时,有时可将三角函数名称都化为正切,再变形化简.(3)“1”的代换:在三角函数式中,有些会含有常数1,常数1虽然非常简单,但有些三角函数式的化简却需要利用三角函数公式将“1”代换为三角函数式.6.若sin(π+α)=35,且α是第三象限角,则sin⎝⎛⎭⎪⎫π2+α-cos⎝⎛⎭⎪⎫π2+αsin⎝⎛⎭⎪⎫π2-α-cos⎝⎛⎭⎪⎫π2-α=()A.1B.7 C.-7 D.-1解析:选B由sin(π+α)=35,得sin α=-35.又α是第三象限角,所以cos α=-4 5,所以sin⎝⎛⎭⎪⎫π2+α-cos⎝⎛⎭⎪⎫π2+αsin⎝⎛⎭⎪⎫π2-α-cos⎝⎛⎭⎪⎫π2-α=cos α+sin αcos α-sin α=-45+⎝ ⎛⎭⎪⎫-35-45-⎝ ⎛⎭⎪⎫-35=7.7.已知sin θ+cos θ=43,且0<θ<π4,则sin θ-cos θ的值为( )A.23 B .-23 C.13D .-13解析:选B ∵sin θ+cos θ=43,∴1+2sin θcos θ=169,则2sin θcos θ=79.又0<θ<π4,所以sin θ-cos θ<0,故sin θ-cos θ=-(sin θ-cos θ)2=-1-2sin θcos θ=-23,故选B.8.已知α为第三象限角,且sin α+cos α=2m,2sin αcos α=m 2,则m 的值为________.解析:由(sin α+cos α)2=1+2sin αcos α,得4m 2=1+m 2,即m 2=13.又α为第三象限角,所以sin α<0,cos α<0,则m <0,所以m =-33.答案:-339.已知sin(3π-α)=2cos ⎝ ⎛⎭⎪⎫3π2+β,cos(π-α)=63cos(π+β),且0<α<π,0<β<π,求sin α和cos β的值.解:由已知,得sin α=2sin β,① 3cos α=2cos β,②由①2+②2,得sin 2α+3cos 2α=2, 即sin 2α+3(1-sin 2α)=2,所以sin 2α=12. 又0<α<π,则sin α=22. 将sin α=22代入①,得sin β=12.又0<β<π,故cos β=±32.三、简单的三角恒等变换两角和与差的正弦、余弦、正切公式 ①sin(α±β)=sin αcos β±cos αsin β; ②cos(α±β)=cos αcos β∓sin αsin β; ③tan(α±β)=tan α±tan β1∓tan αtan β.二倍角的正弦、余弦、正切公式 ①sin 2α=2sin αcos α;②cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; ③tan 2α=2tan α1-tan 2α.10.已知tan α=2. (1)求tan ⎝ ⎛⎭⎪⎫α+π4的值;(2)求sin 2αsin 2α+sin αcos α-cos 2α-1的值.[解] (1)tan ⎝ ⎛⎭⎪⎫α+π4=tan α+tan π41-tan αtan π4=2+11-2×1=-3.(2)sin 2αsin 2α+sin αcos α-cos 2α-1=2sin αcos αsin 2α+sin αcos α-2cos 2α=2tan αtan 2α+tan α-2=2×24+2-2=1.注:条件求值的解题策略(1)分析已知角和未知角之间的关系,正确地用已知角来表示未知角. (2)正确地运用有关公式将所求角的三角函数值用已知角的三角函数值来表示.(3)求解三角函数中给值求角的问题时,要根据已知求这个角的某种三角函数值,然后结合角的取值范围,求出角的大小.11.若θ∈⎣⎢⎡⎦⎥⎤π4,π2,sin 2θ=378,则sin θ=( )A.35 B.45 C.74D.34解析:选D 因为θ∈⎣⎢⎡⎦⎥⎤π4,π2,所以2θ∈⎣⎢⎡⎦⎥⎤π2,π,所以cos 2θ<0,所以cos 2θ=-1-sin 22θ=-18.又cos 2θ=1-2sin 2θ=-18,所以sin 2θ=916,所以sin θ=34.12.已知sin ⎝ ⎛⎭⎪⎫α+π3+sin α=-435,-π2<α<0,则cos ⎝ ⎛⎭⎪⎫α+8π3等于( )A .-45 B .-35 C.35D.45解析:选D 因为sin ⎝ ⎛⎭⎪⎫α+π3+sin α=-435,所以sin ⎝ ⎛⎭⎪⎫α+π3+sin ⎝ ⎛⎭⎪⎫α+π3-π3=-435,所以sin ⎝ ⎛⎭⎪⎫α+π3+sin ⎝ ⎛⎭⎪⎫α+π3cos π3-cos ⎝ ⎛⎭⎪⎫α+π3sin π3=-435,所以32sin ⎝ ⎛⎭⎪⎫α+π3-32cos ⎝ ⎛⎭⎪⎫α+π3=-435,所以-3⎣⎢⎡⎦⎥⎤12cos ⎝ ⎛⎭⎪⎫α+π3-32sin ⎝ ⎛⎭⎪⎫α+π3=-435,即-3cos ⎝ ⎛⎭⎪⎫α+π3+π3=-435,cos ⎝ ⎛⎭⎪⎫α+2π3=45,所以cos ⎝ ⎛⎭⎪⎫α+8π3=cos ⎝ ⎛⎭⎪⎫α+2π3=45,故选D.13.(2017·全国卷Ⅲ)已知sin α-cos α=43,则sin 2α=( )A .-79B .-29 C.29D.79解析:选A 将sin α-cos α=43的两边进行平方,得sin 2 α-2sin αcos α+cos 2α=169,即sin 2α=-79.14.已知向量a =(1,-3),b =⎝ ⎛⎭⎪⎫sin x ,2cos 2x 2-1,函数f (x )=a ·b .(1)若f (θ)=0,求2cos 2θ2-sin θ-12sin ⎝ ⎛⎭⎪⎫θ+π4的值;(2)当x ∈[0,π]时,求函数f (x )的值域.解:(1)∵a =(1,-3),b =⎝ ⎛⎭⎪⎫sin x ,2cos 2x 2-1,∴f (x )=a ·b =sin x -3⎝ ⎛⎭⎪⎫2cos 2x 2-1=sin x -3cos x .∵f (θ)=0,即sin θ-3cos θ=0,∴tan θ=3,∴2cos 2θ2-sin θ-12sin ⎝ ⎛⎭⎪⎫θ+π4=cos θ-sin θsin θ+cos θ=1-tan θtan θ+1=1-33+1=-2+ 3.(2)由(1)知f (x )=sin x -3cos x =2sin ⎝ ⎛⎭⎪⎫x -π3,∵x ∈[0,π],∴x -π3∈⎣⎢⎡⎦⎥⎤-π3,2π3,当x -π3=-π3,即x =0时,f (x )min =-3; 当x -π3=π2,即x =5π6时,f (x )max =2,∴当x ∈[0,π]时,函数f (x )的值域为[-3,2].。
§ 2 三角恒等变换一、复习要点三角函数式的恒等变换是解答三角函数问题的方法基础.所谓三角式的恒等变换,就是运用有关概念和公式把给定的三角式化为另一等价形式.同一式子的不同形状,可以暴露式子的不同整体性质,我们对式子作恒等变换的目的,就是要把我们所需的整体性质显现出来.对式子的一次变形常常不能得到所需形状,须经过数次变形转化,才能达到目的.如何选择变形起步点?如何一步一步把给定式子转化为所需形状?通过对例题及训练题的分析,总结归纳出思维规律来,这是本节复习的重难点;本节复习的另一重点是,如何把一个三角函数问题化归为三角式的恒等变形问题.三角式的化简、求值问题,是训练三角恒等变换的基本题型.求三角函数的最小正周期、求三角函数最值、证明三角恒等式、解证三角方程或三角不等式问题,一般都要借助三角恒等变换而完成.联想三角公式与基本题型,并把二者与方程、不等式观点综合运用,这是运用三角恒等变换解答三角函数问题的思维关键.例1 (1)函数y=2sinxcosx+2cos2x的最小正周期是();A.(π/2)B.πC.2πD.4π(2)函数y=2sinxsin2x的最大值是();A.(64/27)B.(8/9)C.2D.(/2)(3)若(1/cosθ)-(1/sinθ)=1,则sin2θ的值等于_________.讲解:(1)本题是判定一个较复杂三角函数的最小正周期问题.联想与此问题有关的基础知识与方法,想起我们会求角为ωx+φ的基本三角函数的最小正周期,自然产生这样一个解题念头:希望运用三角公式和概念把原函数式变形为y=Asin(ωx+φ)+B(或y=A²cos(ωx+φ)+B)的形式,然后用熟知方法求出最小正周期.在这一思路指导下,着重观察已知三角函数式的结构特点,朝着既定目标方向,发现用倍角公式与和角公式能完成变形工作,得解法如下:y=2sinxcosx+2cos2x=sin2x+cos2x+1=2sin(2x+(π/6))+1,∴T=(2π/2)=π,故选B.(2)本题是一道无附加条件的最值问题.回忆求三角函数最值的基本模型方法,想到用三角恒等变换向基本模型转化,但转化方向一下看不透,应在变形过程中逐步明朗化.首先想到应用倍角公式,把原式化为y=4sin2xcosx,接着思考第二步变形.想法一:希望把原式化为y=Asin(ωx+φ)+B的形式;想法二:希望把原式化为二次函数模型.这两种转化思维均受阻以后,应重新深入分析y=4sin2xcosx的结构特点,从中找出转化的新出路.注意到y的最大值应在cosx>0时取得,因此:①y=4sin2xcosx可视为正变量的乘积,所以y与y2=16sin4xcos2x同时取得最大值;②由y2的表达形式与sin2x+cos2x=1,联想到均值不等式,产生出想用均值不等式实施转化的思维方向——设法把式子变形为能用均值不等式求最值的形式.构思后,可得如下解法:当cosx>0时,当且仅当sin2x=2cos2x,即cos2x=(1/3)时,等号成立.故选B.(3)这是一道填空题.条件为:sinθ与cosθ满足的一个方程式;目标为:求sin2θ的值.由目标首先联想到正弦倍角公式,得sin2θ=2sinθ²cosθ,看到了目标与条件的内在联系,萌发出解题的方程观点,想到由方程组(1/cosθ)-(1/sinθ)=1,求出sin2θ.sin2θ+cos2θ=1,细思考感觉,先求出sinθ与cosθ的方法比较繁,暂不采取.转而思考:能否对条件中的方程式实施三角恒等变换,产生出关于sin2θ的方程而求得其值.朝着这一既定方向,运用三角恒等变换和解方程的方法,便可获得如下两种解法:解法1 (1/cosθ)-(1/sinθ)=1((1/cosθ)-(1/sinθ))2=11/cos2θ)-(2/sinθcosθ)+(1/sin2θ)=1(1/sin2θcos2θ)-(2/sinθcosθ)=1,即(1/sinθcosθ)2-2(1/sinθcosθ)-1=0.解得(1/sinθcosθ)=1±.又由|sinθcosθ|≤1|(1/sinθcosθ)|≥1,∴(1/sinθcosθ)=1+,∴ sinθcosθ=-1.故sin2θ=2(-1).解法2 (1/cosθ)-(1/sinθ)=1sinθ-cosθ=sinθcosθ1-2( sinθ-cosθ)=1-2sinθcosθ=(sinθ-cosθ)2,即(sinθ-cosθ)2+2(sinθ-cosθ)-1=0.解得 sinθ-cosθ=-1±.又因|sinθ-cosθ|=|sinθcosθ|≤1,∴ sinθ-cosθ=-1.故sin2θ=2sinθcosθ=2(sinθ-cosθ)=2(-1).例2 (1)计算ctg10°-4cos10°的值;(2)化简sin2α+sin2β+2sinαsinβ²cos(α+β).讲解:(1)本题是具体角的两个基本三角函数求差,形状虽简单,但两项角度均非特殊角,其倍、半角也非特殊角,也不能分拆为含特殊角的和或差,所以既无法分别求得其值,又不能用拆分角的方法,通过展开、抵消、合并得出结果.这种情况下,一个有效的策略思想是,先设法将两项分散的信息聚笼贯通,希望从中能看到“某种整体特殊性”或“内在联系”,在这一思想下,想到从“切化弦”并通分入手,得ctg10°-4cos10°=(cos10°/sin10°)-4cos10° =(cos10°-4cos10°sin10°/sin10°).分子中第二项能用倍角公式将角扩大,出现一新角,得(cos10°-2sin20°/sin10°).思路1.经观察可见,分子中两项的角度之和恰为特殊角30°,且分母的角度与分子中第一项的角度均为10°,由这种关系想到拆角法:20°=30°-10°,得(cos10°-2sin(30°-10°)/sin10°)=(cos10°-2[(1/2)cos10°-(/2)sin10°]/sin10°=(sin10°)/sin10°.至此求解思路已贯通.整理以上分析,得出解答如下:原式=(cos10°/sin10°)-4cos10°=(cos10°-2sin20°)/sin10°=(cos10°-2sin(30°-10°))/sin10°=(cos10°-2[(1/2)cos10°-(/2)sin10°]/sin10°)=.思路2.注意到分式化简的基本思想是对分子、分母因式分解,再行约分,而cos10°与2sin20°的系数不同,不便于化积,加之化为同名(sin80°与sin20°)后两角之差的一半为30°,想到拆项处理:(cos10°-2sin20°)/sin10°=(sin80°-sin20°-sin20°)/sin10°=(2cos50°sin30°-sin20°)/sin10°=(cos50°-cos70°)/sin10°)=(2sin60°sin10°)/sin10°=.(2)这是一道二元三角多项式的化简问题.从式子各项中含基本三角函数的名称、幂次、角度及其组合关系看式子的结构特点:第三项比前两项角度复杂,组合关系复杂,而前两项为单角正弦的平方,幂次具有特殊性.由此可以产生出如下三个变形方向:①从分解较复杂的第三项入手,先把和角的三角函数化为单角的三角函数,从角度和幂次方面把第三项向前两项靠拢;②从分解较复杂的第三项入手,先把单角化为和差角,并从角度和幂次方面把第三项向前两项靠拢;③从前两项幂次的特殊性入手,先降幂,再从角度方面向第三项靠拢.若选定第一方向,则先用和角公式展开第三因子,得sin2α+sin2β+2sinαsinβ[cosαcosβ-sinαsinβ]=sin2α+sin2β+2sinαsinβcosαcosβ-2sin2αsin2β.看到第四项与前两项已经相通,拆开第四项与前两项分别合并,得sin2α(1-sin2β)+sin2β(1-sin2α)+2sinαsinβcosαcosβ=sin2αcos2β+sin2βcos2α+2sinαsinβcosαcosβ.仔细观察发现:式子整体已呈现出两数和的平方展开式的形状,即式子的各部分用两数和的平方公式能贯通为一个整体:(sinαcosβ+cosαsinβ)2.再用正弦和角公式,立得化简出结果:sin2(α+β).整理以上变形过程,得出解法一如下:原式=sin2α+sin2β+2sinαsinβ[cosαcosβ-sinαsinβ]=sin2α(1-sin2β)+sin2β(1-sin2α)+2sinαsinβcosαcosβ=sin2αcos2β+cos2αsin2β+2sinαsinβcosαcosβ=(sinαcosβ+cosαsinβ)2=sin2(α+β).若选定第二变形方向,并在变形中运用积化和差公式,可得解法二如下:原式=sin2α+sin2β+[cos(α-β)-cos(α+β)]²cos(α+β)=sin2α+sin2β+cos(α-β)cos(α+β)-cos2(α+β)=sin2α+sin2β+(1/2)(cos2α+cos2β)-cos2(α+β)=sin2α+sin2β+(1/2)(1-2sin2α+1-sin2β)-cos2(α+β)=1-cos2(α+β)=sin2(α+β).若选定第三变形方向,并在变形中运用和差化积公式,可得解法三如下:原式=1-(1/2)(cos2α+cos2β)+2sinαsinβcos(α+β)=1-cos(α+β)cos(α-β)+2sinαsinβcos(α+β)=1-cos(α+β)[cos(α-β)-2sinαsinβ]=1-cos(α+β)[cosαcosβ-sinαsinβ]=1-cos2(α+β)=sin2(α+β).例3 (1)求(1+tg7°+tg8°-tg7°tg8°/1-tg7°-tg8°-tg7°tg8°)的值;(2)若tgθ、ctgθ是方程2x2-2kx=3-k2的两个实根,且π<θ<(5π/4),求cosθ-sinθ的值.讲解:(1)从表达式中含有tg7°+tg8°和tg7°tg8°能想到什么呢?在tg(7°+8°)的展式中将会出现这样的式子!于是想到思路:tg15°=(tg7°+tg8°)/(1-tg7°tg8°).故原式=[(1+tg15°(1-tg7°tg8°)-tg7°tg8°]/[[1-tg15°(1-tg7°tg8°)-tg7°tg8°)]=[(1+tg15°)(1-tg7°tg8°)]/(1-tg15°)(1-tg7°tg8°)) =(1+tg15°)/(1-tg15°)=tg(45°+15°)=.本题中运用的结构联想的思维方法在数学解题中是十分重要的.(2)由这样的条件想到韦达定理是很自然的:tgθ+ctgθ=k,tgθ²ctgθ=(1/2)(k2-3)=1,k2=5,k=±.对吗?注意θ的范围!由此应有k=.由于k的确定,不难求出tgθ=(-1)/2(也要注意由θ的范围,0<tgθ<1),∴(cosθ-sinθ)2=1-sin2θ=1-(2tgθ/1+tg2θ)=(1/5)(5-2).又∵cosθ<sin θ,∴ cosθ-sinθ =-. (本题也可由tgθ+ctgθ=后直接变形得 sinθcosθ=(1/)代入上式)例4 设asinx+bcosx=0,Asin2x+Bcos2x=C(a,b不同时为0).证明:2Aab+(b2-a2)B+(a2+b2)C=0.讲解:本题要证明的是一个条件等式,其条件可看成关于x的两个三角方程组成的方程组.可由前式解出x再代入后式得出求证不等式.但x不是特殊角,这样做计算量大,不可取.若由前式分别求出sinx和cosx再代入后式也可以,但求sinx、cosx时涉及到符号问题,这样处理也很麻烦.运用思维模块对asinx+bcosx进行变形:a sinx+bcosx=((a/)sinx+(b/)cosx).令siny=-(b/),cos y=(a/),则sin(x-y)=0,由此得x=y+kπ(k∈Z),并求出cos2x和sin2x的值(cos2x=cos2(y+kπ)=cos2y=2cos2y-1=…)代入后式即可得求证的结论.如果联想到sin2x、cos2x与tgx的关系,可由前式求得tgx=(b/a)(a=0时另证),用万能公式求得sin2x、cos2x后代入后式也可得证.三、专题训练1.已知cos78°约等于0.20,那么sin66°约等于().A.0.92B.0.85C.0.88D.0.952.复数z= cos 2+i的模为 ().A.-cos2B.-cos2C.cos2D.cos23.函数y=|sinx|+|cosx|的最小正周期是().A.(π/4)B.(π/2)C.πD.2π4.设(1-tgα)/(1+tgα)=3-2,则sin2α的值是 ().A.(/2)B.(2/3)C.(3/4)D.(3/8)5.化简(sin(α/2)+cos(α+β/2)sin(β/2)/cos(α/2)-sin(α+β)/2sin(β/2)),得______________.6.已知α、β为锐角,2tg(α+3)sinβ=7,tgα-6sinβ=1,则sinα=________.7.已知ctgα=2,tg(α-β)=-(2/3),则tg(β-2α)=______________. 8.求下列三角式的值:(1)sin80°ctg20°(tg20°-1);(2)sin(60°-(α/2))cos(30°-(α/2))²(sin(α/2)/sin(3α/2)).9.(1)化简:(1+sinα/ctg(α/2)-tg(α/2)[(3cosα/2cos2((π/4)-(α/2)))-2tg((π/4)-(α/2)];(2)证明:2sin4x+(3/4)sin22x+5cos4x-cos3xcosx=2(1+cos2x).10.已知α、β、γ为锐角,tg(α/2)=tg3(γ/2),2tgβ=tgγ,求证:α,β,γ成等差数列.。
三角函数与三角恒等变换专题复习高考动态 (3)复习建议 (3)专题一:任意角及其三角函数 (4)考点一:终边相同的角的集合 (4)考点二:弧长及面积公式 (6)考点三:任意角的三角函数的定义 (8)考点四:三角函数值的符号及其取值范围 (9)考点五:同角三角函数的基本关系 (11)考点六:诱导公式及其应用 (13)专题二:三角函数的图象与性质 (14)考点一:三角函数的定义域、值域 (14)考点二:三角函数的单调性、周期性 (17)考点三:三角函数的奇偶性、对称性 (20)考点四:三角函数的最值 (22)考点五:三角函数的图象和性质的综合 (24)附1:高考真题回放与示例 (27)附2:高考经典题组训练 (28)专题三:函数y=A sin(ωx+φ)的图象与性质 (29)考点一:y=A sin(ωx+φ)的图象及平移伸缩变换 (30)考点二:求函数y=A sin(ωx+φ)的解析式 (32)考点三:函数y=A sin(ωx+φ)的图象与性质的综合应用 (35)考点四:三角函数模型的应用 (38)考点五:三角函数的综合 (40)附1:高考真题回放与示例 (42)附2:高考经典题组训练 (44)专题四:和差角和二倍角的三角函数 (46)概述: (46)公式汇总 (46)考点一:给角求值 (48)考点二:给值求值 (52)考点三:给值求角 (55)考点四:型 (57)考点五:型 (59)熟悉考查内容与形式,从而有效地复习。
①小题,重在基础:三角函数小题考查的重点在于基础知识:解析式、图象及图象变换、两域(定义域、值域)、四性(单调性、奇偶性、对称性、周期性)以及简单的三角变换(求值、化简及比较大小).②大题,重在本质:有关三角函数的解答题,考查基础知识、基本技能和基本方法.③应用,融入三角形之中:这种考点既能考查解三角形的知识与方法,又能考查运用三角公式进行恒等变换的技能.主要解法是充分利用三角形的内角和定理、正(余)弦定理、面积公式等,并结合三角公式进行三角变换.专题一:任意角及其三角函数任意角的三角函数主要包括,任意角的概念、角度值和弧度制的转换、弧长面积公式、任意角的三角函数的概念、单位圆及其三角函数线、同角三角函数的关系、诱导公式。
高二数学三角函数三角恒等变换解三角形试题答案及解析1..【答案】【解析】故答案为:.【考点】两角和与差的三角公式.2.若函数在区间上单调递增,则的最小值是()A.B.C.D.【答案】D【解析】依题意,,令,在区间上,,单调递增,,所以;【考点】1.导数与单调性;2.化归的思想;3.函数在内是()A.增函数B.减函数C.有增有减D.不能确定【答案】A【解析】函数,可得,所以函数在内是增函数.故选:A.【考点】利用导数研究函数的单调性.4.(12分).已知在△ABC中,内角A,B,C所对的边长分别为a,b,c,且tan A+tan B=.(1)求角B的大小;(2)若,求sinA·sinC的值.【答案】(1);(2)【解析】(Ⅰ)已知等式左边利用同角三角函数间的基本关系化简,整理后根据sinC不为0求出cosB的值,即可确定出B的度数;(Ⅱ)已知等式去分母整理后得到关系式,利用余弦定理列出关系式,把得出关系式及cosB的值代入,并利用正弦定理化简,即可求出sinAsinC的值试题解析:(Ⅰ)已知等式变形得:sinAcosA+sinBcosB=2sinCcosA,去分母得:sinAcosB+sinBcosA=2sinCcosB,即sin(A+B)=2sinCcosB=sinC,∵sinC≠0,∴cosB=12,则B=60°;(Ⅱ)由,整理得:,∵cosB=12,∴,由正弦定理得:sin2B=2sinA·sinC=,则sinA·sinC=【考点】1.同角间三角函数关系;2.正弦定理5.将函数的图象上所有点的横坐标伸长到原来的倍(纵坐标不变),再将所得图象向左平移个单位,则所得函数图象对应的解析式为()A.B.C.D.【答案】D【解析】将函数的图象上所有点的横坐标伸长到原来的倍(纵坐标不变),得到函数的图像,再将所得图象向左平移个单位,则所得函数图象对应的解析式为.故选D.【考点】三角函数图像变换:周期变换、左右平移.6.已知在△ABC中,三个内角A,B,C的对边分别为a,b,c,若△ABC的面积为S,且,则tanC等于()A.B.C.D.【答案】C【解析】【考点】1.余弦定理解三角形;2.同角间三角函数关系7.已知在△ABC中,内角A,B,C所对的边长分别为a,b,c,且tan A+tan B=.(1)求角B的大小;(2)若+=3,求sin Asin C的值.【答案】(1);(2)【解析】(1)由题意切化弦,同分可得,整理可得,即可求得;(2)根据已知式子同分可得,由余弦定理得到,再结合正弦定理即可得到试题解析:(1)由题意可得:因为,所以,又因为,所以(2)有题意可得:即由余弦定理可得:,得到有正弦定理:【考点】1.正余弦定理;2.化简求值8.(本题满分11分)若的内角所对的边分别为,且满足(1)求;(2)当时,求的面积.【答案】(1);(2).【解析】(1)因为正弦定理,所以化为,因为三角形内角有,所以即,所以;(2)由余弦定理,得,而,,得,即,因为三角形的边,所以,则.试题解析:(1)因为由正弦定理,得,又,从而,由于所以(2)解法一:由余弦定理,得,而,,得,即因为,所以,故面积为.解法二:由正弦定理,得从而又由知,所以故,所以面积为.【考点】1.正弦定理与余弦定理;2.三角形的面积公式.9.在中,已知,,则的长为____________________.【答案】【解析】由正弦定理可得【考点】正弦定理解三角形10.(本小题满分10分)在△ABC中,是方程的一个根,(1)求;(2)当时,求△ABC周长的最小值.【答案】(1)(2)【解析】(1)解一元二次方程得到方程的根,结合三角函数有界性得到的值,从而求得大小;(2)由三角形余弦定理结合,可将转化为的表达式,从而求得其最小值,得到周长的最小值试题解析:(1)又是方程的一个根(2)由余弦定理可得:则:当时,c最小且,此时△ABC周长的最小值为.【考点】1.余弦定理解三角形;2.一元二次方程的根11.在△ABC中,角A,B,C所对的边分别为a,b,c,若(b-c)cosA=acosC,则cosA=_____【答案】【解析】由正弦定理可将已知条件转化为【考点】正弦定理与三角函数基本公式12.在△ABC中,cosA=,sinB=,则cosC的值为.【答案】【解析】由cosA=,sinB=得【考点】三角函数基本公式13.在△ABC中,如果,且为锐角,试判断此三角形的形状.【答案】等腰直角三角形.【解析】判定三角形的形状由三角形的三边长或三个角来确定.由可确定.根据正弦定理,可确定角,从而确定三角形的形状.试题解析:因为,所以,又为锐角,所以.,.由正弦定理得:,即展开得:,即,则,所以△ABC是等腰直角三角形.【考点】1.三角形形状;2.正弦定理;14.在△中,分别为角所对的边,若,则此三角形一定是()A.正三角形B.直角三角形C.等腰三角形D.等腰或直角三角形【答案】C【解析】,三角形为等腰三角形【考点】1.正弦定理解三角形;2.三角函数基本公式15.在中,、、分别是三内角A、B、C的对应的三边,已知(1)求角C的大小;(2)满足的是否存在?若存在,求角A的大小.【答案】(1);(2)不存在【解析】(1)由正弦定理将变形可得到关于角C的关系式,进而求得角C的大小;(2)结合角C的大小将变形求解A角,若A角存在则三角形存在试题解析:(1)由正弦定理,得因为由则(2)由(1)知,于是=这样的三角形不存在。
3.2 简单的三角恒等变换主动成长夯基达标 1.已知 cosθ=4 5A.3,π<θ<2π,则 sin 52 B. 5 52等于( )2C.-5 52 D.± 55解析:∵π<θ<2π,∴ < <π.22 ∴sin >0.2∴sin2= 3 1 1cos522 2 5 5.答案:B2.在 tan x 2的定义域内,下列各式中恒成立的一个是()A.tanx 2=11c os x cos xB.tanx 2=- 1 cosx1 cos x C.tan解析: x 2x 2 1 cos x=sin x≠ +kπ,k∈Z ,2D.tan x 2sin x=1 cosx∴x≠π+2kπ. 答案:C 3.已知 cosα=3,且 π<α< 532 ,则 cos 2 的值等于()A.5 5B.- 5 5C.2 5 2 5 D.-553解析:∵π<α<23∴<<.224∴cos<0.2,∴cos23115cos5=.2251答案:B3,cosθ<0,则 tan 4.已知 2π<θ<4π,且 sinθ=521 A.-3 B.3C.-3解析:由题意知 θ 为第三象限角,的值等于()1 3D.7 3π<θ<2 3 ∴< <22 , 7 4. ∴tan29 1 =- 25<0,cosθ=4 5.∴tan24 9 11 cos5 5 =31 cos411 5 5.答案:A 5 5.已知 sinα=131 A.5,且 α 是第二象限角,则 tan 的值是( )21 B.5C.5或D.-5或51 5解析:∵α 是第二象限角,∴是第一,三象限角.2∴tan>0.225 144 12 cosα=1.169169 13∴tan212 25 11 cos13 13=5. 1 cos12111313答案:B6.若α+β=2,则( )A.cos2=-1sin2B.sin2=1sin2C.tan2=±1sin1sinD.tan2=±1sin1sin2解析:因为α,β的象限不确定,所以根号前的符号不确定,排除A,B.tan21cos()1cos 1sin2=±.1cos1sin1cos()2故选C.答案:C7.已知2sinθ=1+cosθ,则tan 的值为( )211A.2B.C. 或0D.2或022sin1解析:若1+cosθ≠0,则tan = = .21cos2 若1+cosθ=0,即cosθ=-1,∴θ=2kπ+π.∴tan2答案:C=0.8.若tanα=2,则sin 2cos 212cos的值是( )A. 76B.32C.16D.-16解析:原式= 2sin cossin2cos22cos2s in22tan1tan2tan224142476.答案:A59.在△ABC中,cos( +A)=4135解析:∵cos(+A)= ,413,那么cos2A=____________.∴sin(4+A)=25121.16913125120∴sin[2( +A)]=2sin( +A)·cos(+A)=2××= .4441313169120∴cos2A=.169120答案:1695 10.若α是第三象限角,且sin(α+β)cosβ-sinβcos(α+β)=-13 =____________. ,则tan23解析:原式化为5 (sin αcos β+cos αsin β)cos β-sin β(cos αcos β-sin αsin β)=-,13 5 5即 sin αcos 2β+cos αsin βcos β-sin βcos βcos α+sin αsin 2β=- ,sin α=-1313∵α 是第三象限角,∴ 是第二,四象限角.2.2512 cos α=1,16913∴tan212 25 11 cos1313=51 cos12 1113 13 . 答案:-56011.已知 sin φ·cosφ=,且 <φ< ,求 sin φ,cos φ 的值.169 4 2 60解:方法一:∵sinφcos φ=,169120∴sin2φ=.169又∵ <φ< , <2φ<π,cos2φ<0,42 2∴cos2φ=sin1 ( ),sin φ>0,cos φ>0.12120 217 7119169 169 169∴sinφ=119 1 1cos 21692212 13,cosφ=119112cos16922513.120289方法二:(sinφ+cosφ)2=1+2sinφcosφ=1+ =169169∵<φ<,sinφ>0,cosφ>0.4217∴sinφ+cosφ= .①1312049又(sinφ-cosφ)2=1-2sinφcosφ=1- = ,169169,4∵ <φ< ,则 sinφ>cosφ>0,4 27∴sinφ-cosφ>0,sinφ-cosφ=.②13125 解①②的方程组得 sinφ= ,cosφ=1313走近高考.12.(2005江西高考,18)已知向量 a =(2cos x 2 ,tan( x 2 + 4 )),b =( 2 sin( x 2 + 4 ),tan(x 2- 4)),令 f(x)=a·b ,求函数 f(x)的最大值、最小正周期,并写出 f(x)在[0,π]上的单调区间. 解 :f(x)=a·b=22 cosx 2sin( x 2 +4)+tan(x 2 + 4 )tan( x 2 - 4)=22cosx 2 ·( 22sin x 2+22cosx 211)+tantanx 2 x 2x tan 1 2 x 1 tan 2=2sin x 2cosx 2+2cos 2x 2-1=sinx+cosx =sin(x+2 ).4所以 f(x)的最大值为 2 ,最小正周期为 2π,f(x)在[0, 调递减.4 ]上单调递增,在[4,π]上单13.(2005天津高考,17)已知 sin(α- 4)=7 2 10,cos2α= 7 25,求 sinα 及 tan(α+3).解:方法一:由题设条件,应用两角差的正弦公式得7 2 10=sin(α- 4)= 2 2 (sinα-cosα),即 sinα-co sα= 7 5.①由题设条件,应用二倍角余弦公式得 7 25=cos2α=cos 2α-sinα=(cosα-sinα)(cosα+sinα)7=- (cosα+sinα),51故 cosα+sinα=.②5 由①式和②式得sinα=35,cosα=-45.5因此,tanα=-34.由两角和的正切公式tan(α+333tan343348254)=13tan3343311143.方法二:由题设条件,应用二倍角余弦公式得7=cos2α=1-2sin2α.259解得sin2α=,即sinα=±2535.由sin(α-4)=7210可得sinα-cosα=75.77由于sinα=+cosα>0,且cosα=sinα-<0,553故α在第二象限,于是sinα=,从而cosα=sinα-5以下同方法一.75=-45.714.(经典回放)已知sinx+cosx= ,0≤x<π,则tanx的值为( )131251212A. D.B. C. 或512557解析:由sinx+cosx= ,两边平方得13120sin2x=- .①169512由0≤x<π知0≤2x<2π.由①知π<2x<2π<x<π.27又由已知sinx+cosx= >0知只能133π<2x<.②2119由①②得cos2x=.1691cos2x12∴tanx=.sin2x5答案:A 2<x<3415.求函数y=cot x2sinx+sin2xxtan的最值.61cossin x 解:y=∵sinx≠0,x·sinx+cos xsin x·2sinxcosx=2(cosx+14)2+78,∴cosx≠±1.∴当cosx=- 14时,y min=78,无最大值.7。
高二数学三角函数三角恒等变换解三角形试题答案及解析1.在中,已知,且,则的轨迹方程()A.B.C.D.【答案】B【解析】由正弦定理得:所以点轨迹是以为焦点,实轴长为4,的双曲线的左支;故选B2.(9分).求证:△ABC是等边三角形的充要条件是,这里是的三条边。
【答案】略【解析】略3.已知函数,则要得到其导函数的图象,只需将函数的图象( ) A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位【答案】 C【解析】略4.函数(其中)的图象如图所示,为了得到的图象,只需把的图象上所有点()A.向左平移个单位长度B.向右平移个单位长度C.向右平移个单位长度D.向左平移个单位长度【答案】C【解析】由图可知则,又,结合可知,即,为了得到的图象,只需把的图象上所有点向右平移个单位长度.【考点】函数图象、图象的平移.5.化为弧度是()A.B.C.D.【答案】B【解析】.故选B.【考点】角度制化弧度制.6.在中,若,,的面积为,则= .【答案】【解析】,,,.【考点】余弦定理.7.将函数的图象上所有点的横坐标伸长到原来的倍(纵坐标不变),再将所得图象向左平移个单位,则所得函数图象对应的解析式为()A.B.C.D.【答案】D【解析】将函数的图象上所有点的横坐标伸长到原来的倍(纵坐标不变),得到函数的图像,再将所得图象向左平移个单位,则所得函数图象对应的解析式为.故选D.【考点】三角函数图像变换:周期变换、左右平移.8.在△ABC中,若lg sin A-lg cos B-lg sin C=lg 2,则△ABC是( )A.等腰三角形B.直角三角形C.等边三角形D.等腰直角三角形【答案】A【解析】,,,.是等腰三角形.故A正确.【考点】1正余弦定理;2两角和差公式.9..三角形ABC中,内角A、B、C的对边分别为a、b、c,若a、b是方程x2-2x+2=0的两根,且2cos(A+B)=1.(1)求角C的度数;(2)求c;(3)求△ABC的面积.【答案】(1)120°;(2);(3)【解析】(1)已知等式左边利用两角和与差的余弦函数公式化简求出A+B的值,进而确定出C的值;(2)由a、b是方程x2-2x+2=0的两根,利用韦达定理表示出a+b与ab,利用余弦定理列出关系式,再利用完全平方公式变形后,将a+b与ab的值代入计算即可求出c的值;(3)由ab及sinC的值,利用三角形面积公式即可求出三角形ABC面积试题解析:(1)∵2cos(A+B)=1,∴cosC=-.∴角C的度数为120°(2)∵a、b是方程x2-2x+2=0的两根,∴a+b=2,ab=2,c2=a2+b2-2abcosC=(a+b)2-2ab(cosC+1)=12-2=10.∴c=(3)S=absinC=【考点】1.余弦定理;2.两角和与差的余弦函数;3.正弦定理10.(本大题满分10分)在锐角△ABC中,.(Ⅰ)求角的大小;(Ⅱ)当时,求面积的最大值.【答案】(Ⅰ)60°;(Ⅱ)【解析】(Ⅰ)由利用两角和与差的三角函数展开可求sin A,进而可求A(Ⅱ)由题 a=2,结合余弦定理,利用基本不等式可求bc的范围,进而可求三角形面积的最大值试题解析:(Ⅰ)因为cosB+cos(A-C)=sin C,所以-cos (A+C)+cos (A-C)=sin C,得2sin A sin C=sinC,故sin A=.因为△ABC为锐角三角形,所以A=60°.(Ⅱ)解:设角A,B,C所对的边分别为a,b,c.由题意知 a=2,由余弦定理得4=b2+c2-2bccos60°=b2+c2-bc≥bc,所以△ABC面积=bcsin60°≤,且当△ABC为等边三角形时取等号,所以△ABC面积的最大值为.【考点】1.两角和与差的余弦函数;2.余弦定理11.如图,一辆汽车在一条水平的公路上向正西行驶,到处时测得公路北侧一山顶D在西偏北的方向上,行驶600m后到达处,测得此山顶在西偏北的方向上,仰角为,则此山的高度__________m.【答案】【解析】设此山高h(m),在△BCD中,利用仰角的正切表示出BC,进而在△ABC中利用正弦定理求得h.设此山高h(m),则,在△ABC中,∠BAC=30°,∠CBA=105°,∠BCA=45°,AB=600.根据正弦定理得【考点】解三角形的实际应用12.在中,内角对边的边长分别是.已知.(Ⅰ)若的面积等于,求;(Ⅱ)若,求的面积.【答案】(Ⅰ),;(Ⅱ)【解析】(Ⅰ)由余弦定理及已知条件得,,又因为的面积等于,得,联立方程组,即可求出结果;(Ⅱ)由题意得,即,分和两种情况讨论,即可求解.试题解析:(Ⅰ)由余弦定理及已知条件得,,又因为的面积等于,所以,得.联立方程组解得,.(Ⅱ)由题意得,即,当时,,,,,当时,得,由正弦定理得,联立方程组解得,.所以的面积.【考点】1.余弦定理;2.正弦定理.13.数列{a}为等差数列,若a+a=,则的值为()A.B.C.D.【答案】D【解析】为等差数列,所以,所以,故正确选项为D.【考点】1、等差数列性质的运用;2、角的正切值.14.在△中,如果,,,那么△的面积等于.【答案】或【解析】由得或,所以或,所以三角形面积为或【考点】1.正弦定理解三角形;2.三角形面积公式15.在△中,分别为角所对的边,若,且,则()A.B.C.D.【答案】A【解析】【考点】1.正弦定理解三角形;2.三角函数基本公式16.设锐角三角形ABC的内角A、B、C的对边分别为a、b、c,a=2bsinA.(1)求B的大小;(2)若a=3,c=5,求b.【答案】(1)(2)【解析】(1)由于锐角△ABC中,a=2bsinA,利用正弦定理将等式两边的边化成相应角的正弦即可;(2)由(1)得B=30°,又,c=5,利用余弦定理可求得b,试题解析:(1)由a=2bsinA,得sinA=2sinBsinA,所以sinB=.由△ABC为锐角三角形,得B=.(2)根据余弦定理,得b2=a2+c2-2acosB=27+25-45=7,所以b=.---6分【考点】正余弦定理解三角形17.已知点 D 为ΔABC 的边 BC 上一点.且 BD =2DC,∠ACD=30°,AD =.求:(I)求CD的长;(II)求ΔABC的面积.【答案】(I)2;(II).【解析】(I)直接根据正弦定理求解即可;(II)利用两角和的正弦公式求得的值,利用面积公式求得的值,再由求得结果.试题解析:解:(I)因为,所以.在中,,根据正弦定理有所以.(II)由,可得.又在中,,.所以,所以.【考点】1、正弦定理;2、两角和的正弦公式;3、三角形的面积公式.18.(2011•韶关一模)已知△ABC中,a、b、c分别是角A、B、C的对边,a=,b=,B=60°,那么∠A等于()A.135° B.45° C.135°或45° D.60°【答案】B【解析】结合已知条件a=,b=,B=60°,由正弦定理可得,可求出sinA,结合大边对大角可求得A解:a=,b=,B=60°,由正弦定理可得,a<b A<B=60°A=45°故选B【考点】正弦定理.19.在中,,则()A.B.C.D.【答案】A【解析】【考点】余弦定理解三角形20.ΔABC中,角的对边分别是,a=1,b=,∠A=30°,则∠B等于A.60°B.60°或120°C.120°D.无解【答案】B【解析】由正弦定理得【考点】正弦定理解三角形21.(2015秋•福建期末)已知函数f(x)=(sin2x﹣cos2x+)﹣sin2(x﹣),x∈R.(1)求函数f(x)的弹道递增区间;(2)在△ABC中,角A,B,C的对边分别为a,b,c,且f(B)=1,b=2,求△ABC的面积的最大值.【答案】(1)函数f(x)的单调递增区间[kπ﹣,kπ+],k∈Z;(2)△ABC的面积的最大值为.【解析】(1)f(x)解析式利用二倍角的余弦函数公式化简,再利用两角和与差的正弦函数公式化为一个角的正弦函数,利用正弦函数的单调性确定出f(x)的递增区间即可;(2)f(B)=1,求出B的度数,利用余弦定理列出关系式,把b,cosB的值代入,并利用基本不等式求出ac的最大值,即可确定出三角形面积的最大值.解:(1)f(x)=(﹣cos2x)﹣[1﹣cos(2x﹣)]=sin2x﹣cos2x=sin(2x﹣),令﹣+2kπ≤2x﹣≤+2kπ,k∈Z,得到kπ﹣≤x≤kπ+,k∈Z,则函数f(x)的单调递增区间[kπ﹣,kπ+],k∈Z;(2)由f(B)=1,得到sin(2B﹣)=1,∴2B﹣=,即B=,由余弦定理得:b2=a2+c2﹣2accosB,即4=a2+c2﹣ac≥2ac﹣ac=ac,即ac≤4,∴S=acsinB=ac≤,△ABC则△ABC的面积的最大值为.【考点】余弦定理;三角函数中的恒等变换应用.22.某船开始看见灯塔在南偏东30°方向,后来船沿南偏东60°的方向航行45km后,看见灯塔在正西方向,则这时船与灯塔的距离是()A.15km B.30km C.15 km D.15km【答案】A【解析】如图所示,设灯塔位于A处,船开始的位置为B,航行45海里后处C处,根据题意算出∠BAC和∠BAC的大小,在△ABC中利用正弦定理计算出AC长,可得该时刻船与灯塔的距离.解:设灯塔位于A处,船开始的位置为B,航行45km后处C处,如图所示∠DBC=60°,∠ABD=30°,BC=45∴∠ABC=60°﹣30°=30°,∠BAC=180°﹣60°=120°.△ABC中,由正弦定理,可得AC===15(km).即船与灯塔的距离是15(km).故选:A【考点】正弦定理的应用;余弦定理.23.已知,则()A.B.C.2D.【答案】B【解析】由于得所以故选B.【考点】同角三角函数基本关系式与诱导公式.24.在△ABC中,a=15,b=10,A=60°,则cos B=()A.B.C.-D.-【答案】A【解析】由正弦定理得,又,所以,所以.故选A.【考点】正弦定理,同角间的三角函数关系.25.在中,,则边上的高所在直线方程为________.【答案】【解析】由题意得,直线的斜率为,所以边上的高所在直线的斜率为,由直线的点斜式方程可知边上的高所在直线方程为,整理得.【考点】两直线的位置关系及直线方程的求解.26.设a>0,角α的终边经过点P(﹣3a,4a),那么sinα+2cosα的值等于.【答案】﹣【解析】试题分析:利用任意角三角函数定义求解.解:∵a>0,角α的终边经过点P(﹣3a,4a),∴x=﹣3a,y=4a,r==5a,∴sinα+2cosα==﹣.故答案为:﹣.【考点】任意角的三角函数的定义.27.在中,若,那么一定是()A.锐角三角形B.钝角三角形C.直角三角形D.形状不确定【答案】B【解析】由,则,所以角都为锐角,又,得,即,又,所以,所以角为钝角,所以三角形为钝角三角形,故选B.【考点】三角函数的基本关系式及三角函数的恒等变换.28.已知函数 .(1)求的最大值;(2)若,求的值.【答案】(1);(2).【解析】(1)利用辅助角公式,化简,即可求解的最大值;(2)由,得,平方即可求解的值.试题解析:(1)的最大值为.(2),即,,【考点】三角函数的性质及三角函数的化简求值.29.化简()A.B.C.D.【答案】A【解析】由题意得,故选A.【考点】三角函数的基本关系式.30.已知△ABC的角A,B,C所对的边分别为a,b,c,且acos B+bsin A=c.(1)求角A的大小;(2)若a=1,=3,求b+c的值.【答案】(1)(2)2+.【解析】(1)先由正弦定理将变化为角:sin Acos B+sin Bsin A=sinC,再利用诱导公式得sin Acos B+sin Bsin A=sin (A+B),由两角和正弦公式得sin BsinA=cos Asin B,所以tan A=,故A=.(2)先由向量数量积得bccos=3,即bc=2,再由余弦定理得:1=b2+c2-2bccos,两者结合得b+c=2+.试题解析:解(1)由acos B+bsin A=c,得sin Acos B+sin Bsin A=sin (A+B),即sin BsinA=cos Asin B,所以tan A=,故A=.(2)由=3,得bccos=3,即bc=2,①又a=1,∴1=b2+c2-2bccos,②由①②可得(b+c)2=7+4,所以b+c=2+.【考点】正余弦定理,诱导公式31.中,已知,的平分线把三角形分成面积为的两部分,则等于 ( )A.B.C.D.【答案】A【解析】因为的平分线把三角形分成面积为的两部分,,即,又,所以,由正弦定理得,所以,故选A.【考点】1.三角形内角平分线性质定理;2.正弦定理;3.二倍角公式.32.的三边分别是,,,则的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定【答案】C【解析】由题意得,设边长分别为,由余弦定理,得,所以为钝角,所以为钝角三角形,故选C.【考点】余弦定理的应用.33.已知函数,其中,若对x∈R恒成立,且,则等于()A.B.C.D.【答案】C【解析】若对x∈R恒成立,所以,即,又,所以或,当时,,不任命题意,当时,,符合题意,所以,故选C.【考点】三角函数和图象与性质.34.将函数的图像向右平移单位得到函数的图像,则A.B.C.D.【答案】D【解析】由题意,若时,,故选D.【考点】三角函数图像平移.35.已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<)的最小正周期为π,且其图象向右平移个单位后得到函数g(x)=sin(ωx)的图象,则函数f(x)的图象()A.关于直线x=对称B.关于直线x=对称C.关于点(,0)对称D.关于点(,0)对称【答案】A【解析】由条件利用正弦函数的周期性,以及正弦函数的图象的对称性,得出结论.解:由函数f(x)=sin(ωx+φ)(ω>0,|φ|<)的最小正周期为π,可得=π,求得ω=2,f(x)=sin(2x+φ).其图象向右平移个单位后得到函数g(x)=sin(2x)的图象,故有sin[2(x﹣)+φ]=sin2x,故可取φ=,f(x)=sin(2x+).令2x+=kπ+,k∈Z,求得x=+,故函数f(x)的图象的对称轴方程为x=+,k∈Z.令2x+=kπ,k∈Z,求得x=﹣,故函数f(x)的图象的对称中心为(﹣,0),k∈Z,故选:A.36.若,则= .【答案】【解析】令,因,故,所以,故应填.【考点】函数的概念和二倍角公式.37.已知函数(,)的最大值为,且最小正周期为.(Ⅰ)求函数的解析式及其对称轴方程;(Ⅱ)若,求的值.【答案】(Ⅰ),对称轴为();(Ⅱ).【解析】(Ⅰ)运用等价转化的方法将问题进行转化与化归;(Ⅱ)借助题设条件将复合命题分类转化进行求解.试题解析:(Ⅰ),由题意的周期为,所以,得最大值为,故,又,令,解得的对称轴为().(Ⅱ)由知,即,【考点】三角函数的图像和性质及三角变换公式的运用.【易错点晴】本题以函数的最大值和最小正周期为背景,考查的是三角函数中形如的正弦函数的图象和性质.解答时先从题设中的条件入手,先运用倍角公式将其化简为的形式,再运用所学知识求出其中的参数的值,最后再解决题设中提出的问题即可.需要强调是对称轴的方程是是取得最值的的值,即,学生在求解时很容易错写成从而致错.38.如图,为测得河对岸塔的高,先在河岸上选一点,使在塔底的正东方向上,测得点的仰角为,再由点沿北偏东,方向走10米到位置,测得,则塔的高度为()A.10米B.米C.米D.米【答案】D【解析】由题设可知,故,运用正弦定理可得,则,所以应选D.【考点】正弦定理及运用.39.函数f(x)=cos2x的周期是.【答案】π【解析】解:f(x)=cos2x,∵ω=2,∴T==π.故答案为:π.【点评】本题考查了三角函数的周期性及其求法,熟练掌握周期公式是解本题的关键,是基础题.40.在DABC中,a、b、c分别是角A、B、C的对边.若=2,,则=( )A. B. C. D.【答案】C【解析】由正弦定理可得,,又,由余弦定理可得,,又,所以.【考点】1.正弦定理;2.余弦定理.41.已知函数.(1)求及的单调递增区间;(2)求在闭区间的最值.【答案】(1),;(2)最大值为,最小值为.【解析】(1)将原函数由倍角公式和辅助角公式,可得化为,看成整体,利用正弦函数的单调递区间求得此函数的单调增区间;(2)先求出对应的的范围,再进一步得出对应的正弦值的取值,可得函数值的取值范围,可得函数最值.试题解析:(1),则,,单调递增区间,(2)由,则,所以最大值为1,最小值为.【考点】1.三角恒等变换;2.三角函数性质.【知识点睛】本题主要考查辅助角公式及三角函数的性质.对于函数的单调区间的确定,基本思路是把视做一个整体,由解出的范围所得区间即为增区间,由解出的范围,所得区间即为减区间.若函数中,可用诱导公式先将函数变为,则的增区间为原函数的减区间,减区间为原函数的增区间.42.如图,测量河对岸的塔高时,选与塔底在同一水平面内的两个测点与,测得,米,并在点测得塔顶的仰角为,则塔高.【答案】【解析】在中,由正弦定理,得,在中,.【考点】三角形的实际应用.【方法点晴】本题主要考查了三角形的实际应用问题,其中解答中涉及到三角形的正弦定理、直角三角形的性质、三角函数的定义等知识的考查,着重考查了学生分析问题和解答问题的能力,以及学生的推理与运算能力,试题比较基础,属于基础题,本题的解答中正确的理解题意,恰当选择三角形,利用正、余弦定理求解是解答的关键.43.已知,,分别为三个内角,,的对边,.(1)求;(2)若,的面积为,求,.【答案】(1)(2)【解析】(1)由正弦定理有,可以求出A;(2)由三角形面积以及余弦定理,可以求出b、c试题解析:(1)由及正弦定理得由于,所以,又,故.(2)的面积,故,而故,解得.【考点】正余弦定理解三角形44.已知函数.(1)求的单调增区间;(2)若为的一个零点,求的值.【答案】(1);(2).【解析】(1)先利用二倍角公式、两角和差的正弦公式将函数表达式转化为的形式,再利用三角函数的性质进行求解;(2)先利用同角三角函数基本关系式求出的余弦值,再利用和两角和的余弦公式进行求解.试题解析:(Ⅰ),所以的最小正周期为,因为函数的单调递增区间是;(Ⅱ),,,.【考点】1.三角恒等变换;2.三角函数的图象与性质.45.在△中,若,则△的形状是()A.直角三角形B.等腰或直角三角形C.等腰三角形D.等边三角形【答案】B【解析】由可得,即,故或,即或,所以是等腰或直角三角形,故应选B.【考点】同角三角函数的关系与正弦定理的综合运用.【易错点晴】本题以三角形的变角之间的关系为背景考查的是三角形形状的判别的综合问题.求解时充分借助题设条件中的有效信息,利用先将题设条件化为,再运用正弦定理和二倍角公式将其化为,最后得到或,即或,所以是等腰或直角三角形.46.在中,面积,则A.B.7C.55D.49【答案】C【解析】由面积公式得【考点】三角形面积47.已知△ABC中,三内角A.B.C成等差数列,边A.B.C依次成等比数列,则△ABC是()A.直角三角形B.等边三角形C.锐角三角形D.钝角三角形【答案】B【解析】:∵△ABC中,三内角A.B.C的度数成等差数列,∴A+C=2B,又A+B+C=180°,∴B=60°.又边A.B.c依次成等比数列,∴b2=ac,在△ABC中,由余弦定理得:b2=a2+c2-2accosB= a2+c2-2accos60°,∴a2+c2-2accos60°=ac,∴(a-c)2=0,∴a=c,∴A=C,又B=60°,∴△ABC为等边三角形【考点】三角形的形状判断48.如图,在凸四边形中,为定点,,为动点,满足.(1)写出与的关系式;(2)设△BCD和△ABD的面积分别为和,求的最大值.【答案】(1)(2)【解析】(Ⅰ)在三角形BCD和三角形BCD中,利用余弦定理表示出BD2,两者相等表示即可得到cosC与cosA的关系式;(Ⅱ)利用三角形面积公式变形出S与T,进而表示出,将第一问表示出的cosA代入得到关于cosC的二次函数,利用二次函数性质即可求出的最大值试题解析:(Ⅰ)连接BD,∵CD=,AB=BC=DA=1,∴在△BCD中,利用余弦定理得:BD2=BC2+CD2-2BC•CDcosC=4-2cosC;在△ABD中,BD2=2-2cosA,∴4-2cosC=2-2cosA,则cosA=cosC-1(II)…由题意易知,,所以当时,有最大值.【考点】余弦定理,三角形面积公式,同角三角函数间的基本关系49.在中,,则的取值范围是()A.B.C.D.【答案】C【解析】由于,根据正弦定理可知,故.又,则的范围为.故本题正确答案为C.【考点】三角形中正余弦定理的运用.50.在中,a、b、c分别是角A、B、C的对边,且=-.(1)求角B的大小;(2)若b=,a+c=4,求的面积.【答案】(1);(2).【解析】(1)借助题设条件运用余弦定理求解;(2)借助题设运用余弦定理和三角形面积公式探求. 试题解析(1)由余弦定理知:cos B=,cos C=.将上式代入=-得:·=-,整理得:a2+c2-b2=-ac.∴cos B===-.∵B为三角形的内角,∴B=.(2)将b=,a+c=4,B=代入b2=a2+c2-2accos B,得b2=(a+c)2-2ac-2accos B,∴13=16-2ac,∴ac=3.∴S=acsin B=.△ABC【考点】正弦定理余弦定理等有关知识的综合运用.51.在中,,,,则的面积为()A.B.C.D.【答案】C【解析】由得【考点】解三角形52.已知的三边长成公比为的等比数列,则其最大角的余弦值为________【答案】【解析】设三边为,所以【考点】余弦定理解三角形53.在某海滨城市附近海面有一台风,据测,当前台风中心位于城市(如图)的东偏南方向的海面处,并以的速度向西偏北方向移动,台风侵袭的范围为圆形区域,当前半径为,并以的速度不断增大,问几小时后该城市开始受到台风的侵袭?受到台风的侵袭的时间有多少小时?【答案】,.【解析】先用参数时间表示出的长度,在从中使用余弦定理求出值,进而得到时间差. 试题解析:解:设经过小时台风中心移动到点时,台风边沿恰经过城,由题意可得:,,因为,,所以,由余弦定理得:即,即,解得:,,答:12小时后该城市开始受到台风气侵袭,受到台风的侵袭的时间有12小时.【考点】解三角形的应用.54.在中,点在边上,,,,,则的长为 .【答案】【解析】如图所示,延长,过作,垂足为,因为,所以,因为,所以,解得,在中,,由得,在中,,则.【考点】三角形中的几何运算.【方法点晴】本题主要考查了三角形的几何运算,其中解答中涉及到直角三角形的勾股定理、平行线的性质等知识点的综合考查,注重考查了学生分析问题和解答问题的能力,以及推理与运算能力,本题的解得中正确作出辅助线,合理利用直角三角形的勾股定理是解答的关键,试题有一定的难度,属于中档试题.55.在中,若.(1)求角的大小;(2)如果,求的面积.【答案】(1);(2).【解析】(1)由已知可得,解得的值,结合的范围,即可得解的值;(2)由已知及余弦定理化简可得,利用三角形面积公式即可得解.试题解析:(1)∵,∴,∴原式可化为,∴,∴,解得,∴(2)由余弦定理,∴∴【考点】解三角形.56.已知分别为的三个内角的对边,.(1)求;(2)若,的面积为,求.【答案】(1);(2).【解析】(1)借助题设条件运用正弦定理三角变换公式求解;(2)借助题设运用余弦定理及三角形面积公式建立方程组探求.试题解析:(1)由正弦定理得,,,,,,.(2),所以,,则,所以.【考点】正弦定理、余弦定理、三角变换公式及三角形面积公式等有关知识的综合运用.57.在中,,则角的大小为()A.30°B.45°C.60°D.90°【答案】A【解析】由正弦定理得,,且,则,故选A.【考点】正弦定理.58.在中,角A,B,C的对边分别是,其中为最大边,若,则角B的取值范围是()A.B.C.D.【答案】D【解析】原式等价于,所以,所以,又因为角是最大角,所以,所以,故选D.【考点】正余弦定理59.在直角△中,两条直角边分别为、,斜边和斜边上的高分别为、,则的取值范围是.【答案】【解析】∵直角△中,两条直角边分别为,∴斜边,斜边上的高,因此,,∵,∴(等号取不到),即,又,设,则,,可得,∵在区间)上,∴在区间上是增函数,可得当时,的最大值为.综上所述,的取值范围是.所以答案应填:.【考点】1、正弦定理;2、基本不等式.【思路点睛】根据勾股定理和三角形面积公式,将化为关于的表达式,利用基本不等式可得.再设,则可将表示成关于的函数,研究的单调性得到在区间上是增函数,从而得到的最大值是.由此即可得到的取值范围.本题在直角三角形中,求斜边与斜边上高之和与两条直角边之和的比值范围.着重考查了勾股定理、基本不等式求最值和函数的单调性等知识,属于中档题.60.在三角形中若.则满足条件的三角形的个数有()A.3B.2C.1D.0【答案】B【解析】由正弦定理得,由于所以有两种可能,故选B.【考点】解三角形.61.将函数的图象向右平移个单位后得到的图象,则__________.【答案】【解析】由题意,得,所以=.【考点】三角函数图象的平移变换.62.在中,分别为所对的边,若函数有极值点,则的范围是()A.B.C.D.【答案】D【解析】由已知可得有两个不等实根.【考点】1、余弦定理;2、函数的极值.【方法点晴】本题考查余弦定理,函数的极值,涉及函数与方程思想思想、数形结合思想和转化化归思想,考查逻辑思维能力、等价转化能力、运算求解能力,综合性较强,属于较难题型. 首先利用转化化归思想将原命题转化为有两个不等实根,从而可得.63.在中,角、、所对的边分别为、、.已知,且.(1)求的值;(2)若,求周长的范围.【答案】(1);(2).【解析】(1)利用三角形内角和定理化简已知条件得到,利用正弦定理求得;(2)利用正弦定理,将三角形的三条边转化为角的形式,然后利用辅助角公式化简,最后根据三角函数值域的求法求得周长的取值范围.试题解析:(1):由得到得到:,由于,故由正弦定理得到;(2)由正弦定理得到,故得到,于是64.已知、、分别是的三个内角、、的对边.(1)若面积求、的值;(2)若,且,试判断的形状.【答案】(1),,(2)等腰直角三角形.【解析】(1)解三角形问题,一般利用正余弦定理进行边角转化.首先根据面积公式解出b边,得,再由由余弦定理得:,所以,(2)判断三角形形状,利用边的关系比较直观. 因为,所以由余弦定理得:,所以,在中,,所以,所以是等腰直角三角形.解:(1), 2分,得 3分由余弦定理得:, 5分所以 6分(2)由余弦定理得:,所以 9分在中,,所以 11分所以是等腰直角三角形; 12分【考点】正余弦定理65.已知的终边过点,且,则__________.【答案】-4【解析】,解得,则,解得.66.已知均为锐角,则__________【答案】【解析】由于都是锐角,所以,所以,,所以.点睛:在三角函数恒等变换中,灵活应用三角公式是解题的关键,要注意公式中“单角”与得“复角”是相对的,例如以下角的变换经常用到:,,.67.求证:.【答案】详见解析.【解析】左边根据商的关系可将正切化为正弦、余弦,通分、配方后再根据正弦、余弦的二倍角公式可得结果.试题解析:左边=右边.68. (1)已知f(x)=,求f(-)的值(2)已知-π<x<0,sin(π+x)-cos x=-.①求sin x-cos x的值;②求的值.【答案】(1)-1.(2)①-.②-.【解析】(1)解析式利用诱导公式化简,再利用同角三角函数间基本关系变形,将代入计算即可求出值;(2)①利用,将和平方,即可求出结果,注意与的大小关系;②利用二倍角公式和同角三角函数的基本关系,代入相应的值即可求出结果..试题解析:(1)f(x)==-tan2x,f(-)=-tan2(-)=-tan2π=-1.解①由已知,得sin x+cos x=, sin2x+2sin x cos x+cos2x=,整理得2sin x cos x=-.∵(sin x-cos x)2=1-2sin x cos x=.由-π<x<0,知sin x<0,又sin x+cos x>0,∴cos x>0,sin x-cos x<0,故sin x-cos x=-.②====-.69.已知,且.(I)将表示为的函数,若记此函数为,求的单调递增区间;(Ⅱ)已知分别为的三个内角对应的边长,若,且,求的面积.【答案】(1),递增区间为(2)【解析】(1)先根据向量数量积得函数,再根据二倍角公式及配角公式将函数化为基本三角函数,最后根据正弦函数性质求单调增区间,(2)先求角A,再根据余弦定理求,最后根据面积公式求面积试题解析:(I)由得,所以由得,即函数的单调递增区间为(Ⅱ),即,,又,,由余弦定理得,即,,又,,.70.要得到函数y=sin x的图象,只需将函数y=cos(x-)的图象向右平移___个单位长度.【答案】【解析】,所以将的图象向右平移个单位长度即可得到的图象,故答案为.71.已知(1)求tanα;求cos(-a)·cos(-p+a)的值.【答案】(1)5(2)【解析】(1)对已知等式化简可得,故而可得的值;(2)利用诱导公式将所求式子化为,将其化为正切的形式,根据(1)可得结果.试题解析:(1)因为,化简得sinα=5cosα.当cosα=0时不符合题意,所以cosα≠0,所以tanα=5.(2)cos(-α)·cos(-π+α)=-sinαcosα=72.函数的最小正周期为_____________.【答案】2【解析】函数.最小正周期为2.73.已知函数f(x)=sin(ωx+)-1(ω>0)的最小正周期为,则f(x)图象的一条对称轴方程是()A.x=B.x=C.x=D.x=【答案】A【解析】是的一条对称轴.74.已知(1)求sin(α-β)的值(2)求tan(α+β)的值.【答案】(1);(2).【解析】(1)由题意结合两角和差正余弦公式即可求得的值为;(2)首先求得,然后利用两角和的正切公式可得的值为.试题解析:(1)∵∴cosα=-=-,sinβ=-=-,∴sin(α-β)=sinαcosβ-cosαsinβ==-(2)∵tan=-,tan=,∴tan(α+β)==75.函数的部分图象是( )A.B.C.D.【答案】D【解析】解答:。
2020年高考数学一轮复习讲练测(浙江版)第四章三角函数与解三角形第03讲简单的三角恒等变换 ---讲1.掌握两角和与两角差的正弦、余弦、正切公式,掌握正弦、余弦、正切二倍角的公式.2.掌握简单的三角函数式的化简、求值及恒等式证明.3.高考预测:(1)和(差)角公式;(2)二倍角公式;(3)和差倍半的三角函数公式的综合应用.(4)对于三角恒等变换,高考命题主要以公式的基本运用(正用、逆用、变用)、计算为主,其中多以与角的范围、三角函数的性质、三角形等知识结合考查.4.备考重点:(1) 掌握和差倍半的三角函数公式;(2) 掌握三角函数恒等变换的常用技巧.知识点1.两角和与差的三角函数公式的应用两角和与差的正弦、余弦、正切公式C(α-β):cos(α-β)=cosαcosβ+sinαsinβ;C(α+β):cos(α+β)=cosαcos_β-sin_αsinβ;S(α+β):sin(α+β)=sinαcosβ+cosαsinβ;S(α-β):sin(α-β)=sin_αcos_β-cosαsinβ;T(α+β):tan(α+β)=tan α+tan β1-tan αtan β;T(α-β):tan(α-β)=tan α-tan β1+tan αtan β.变形公式:tan α±tan β=tan(α±β)(1∓tanαtanβ);.函数f(α)=acos α+bsin α(a,b为常数),可以化为f(α)=a2+b2sin(α+φ)或f(α)=a2+b2cos(α-φ),其中φ可由a ,b 的值唯一确定.【典例1】(2019·江西高考模拟(文))如图,点A 为单位圆上一点, 3XOA π∠= 点A 沿单位圆逆时针方向旋转角α到点B(-45,35)则cos α=( )A .410B .410+ C D .310+ 【答案】A 【解析】 由题意得:故选A 【总结提升】三角公式化简求值的策略(1)使用两角和、差及倍角公式,首先要记住公式的结构特征和符号变化规律.例如两角差的余弦公式可简记为:“同名相乘,符号反”.(2)使用公式求值,应注意与同角三角函数基本关系、诱导公式的综合应用. (3)使用公式求值,应注意配方法、因式分解和整体代换思想的应用. 【变式1】(2019·四川高考模拟(理))已知4cos 5=-α,()π,0∈-α,则 ( )A .17B .7C .17-D .7-【答案】C 【解析】∴则故选:C .知识点2.二倍角公式的运用公式的应用二倍角的正弦、余弦、正切公式: S 2α:sin 2α=2sin_αcos_α;C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; T 2α:tan 2α=2tan α1-tan 2α.变形公式:cos 2α=1+cos 2α2,sin 2α=1-cos 2α21+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2 【典例2】(2017·全国高考真题(文))已知,则( ).A .B .C .D .【答案】A【解析】.所以选A. 【总结提升】明确各个角之间的关系(包括非特殊角与特殊角、已知角与未知角),熟悉角的变换技巧,及半角与倍角的相互转化,如:2α=(α+β)+(α-β),α=(α+β)-β=(α-β)+β,40°=60°-20°,⎝ ⎛⎭⎪⎫π4+α+⎝ ⎛⎭⎪⎫π4-α=π2,α2=2×α4等.【变式2】(2019·河南高考模拟(理))已知,则tan2α=( )A .-B .C .D .2【答案】A 【解析】 由题,则故tan2α=故选:A考点1 两角和与差的正弦函数、余弦函数公式的应用【典例3】(2019·北京高考模拟(文))如图,在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,终边分别是射线OA 和射线OB .射线OA ,OC 与单位圆的交点分别为34,55A ⎛⎫⎪⎝⎭,(1,0)C -.若6BOC π∠=,则()cos βα-的值是( )A B .310+C D 【答案】C 【解析】依题意,有:3cos 5α=,4sin 5α=,,1sin 2β=,()cos βα-=.故答案为:C.【总结提升】三角函数求值的两种类型:(1)给角求值:关键是正确选用公式,以便把非特殊角的三角函数转化为特殊角的三角函数. (2)给值求值:关键是找出已知式与待求式之间的联系及函数的差异. ①一般可以适当变换已知式,求得另外函数式的值,以备应用; ②变换待求式,便于将已知式求得的函数值代入,从而达到解题的目的.【变式3】(2019·河南鹤壁高中高考模拟(文))平面直角坐标系xOy 中,点()00,P x y 是单位圆在第一象限内的点,xOP α∠=,若,则00y x +为_____.【解析】 由题意知:0,2πα⎛⎫∈ ⎪⎝⎭,,由,得,考点2 两角和与差的正切公式的应用【典例4】(2018年全国卷II 文)已知,则__________.【答案】.,解方程得.【规律方法】1.运用两角和与差的三角函数公式时,不但要熟练,准确,而且要熟悉公式的逆用及变形,如tan α+tan β=tan(α+β)·(1-tan αtan β)和二倍角的余弦公式的多种变形等.2.应熟悉公式的逆用和变形应用,公式的正用是常见的,但逆用和变形应用则往往容易被忽视,公式的逆用和变形应用更能开拓思路,培养从正向思维向逆向思维转化的能力,只有熟悉了公式的逆用和变形应用后,才能真正掌握公式的应用.提醒:在T (α+β)与T (α-β)中,α,β,α±β都不等于k π+π2(k ∈Z ),即保证tan α,tan β,tan(α+β)都有意义;若α,β中有一角是k π+π2(k ∈Z ),可利用诱导公式化简.【变式4】(2019·黑龙江哈尔滨三中高考模拟(理))已知α是第二象限角,且,则tan 2α的值为( ) A .45B .237-C .247-D .249-【答案】C 【解析】 由,得3sin 5α=. 因为α是第二象限角,所以4cos 5α=-...故选C.考点3 二倍(半)角公式的应用【典例5】(2016·全国高考真题(理))若,则sin 2α=( )A .725B .15 C .15-D .725-【解析】,且,故选D.【总结提升】转化思想是实施三角变换的主导思想,恒等变形前需清楚已知式中角的差异、函数名称的差异、运算结构的差异,寻求联系,实现转化.注意三角函数公式逆用和变形用的2个问题 (1)公式逆用时一定要注意公式成立的条件和角之间的关系.(2)注意特殊角的应用,当式子中出现12,1,32,3等这些数值时,一定要考虑引入特殊角,把“值变角”构造适合公式的形式.【变式5】(2019·湖北高三月考(文))已知α是第一象限角,sin α=2425,则tan 2α=( ) A .43-B .43C .34-D .34【答案】D 【解析】∵α是第一象限角,sin α=2425=, π2+,k ∈Z , ∴k π2α<<k ππ4+,k ∈Z , ∴0<tan2α<1,∴sin α=2sin2αcos ,整理得:212tan 2α-25tan 2α+120=,解得tan 423α=(舍去)或tan 2α=34.故选D . 考点4简单的三角恒等变换---化简与证明【典例6】求证:.【解析】左边=sin αcos α+)24sin()24cos(απαπ++=右边.故原式得证.【总结提升】1.三角函数式化简的方法(1)弦切互化,异名化同名,异角化同角,降幂或升幂.(2)在三角函数式的化简中“次降角升”和“次升角降”是基本的规律,根号中含有三角函数式时,一般需要升次,去掉根号.2.三角恒等式的证明方法(1)从等式的比较复杂的一边化简变形到另一边,相当于解决化简题目.(2)等式两边同时变形,变形后的结果为同一个式子.(3)先将要证明的式子进行等价变形,再证明变形后的式子成立.提醒:开平方时正负号的选取易出现错误,所以要根据已知和未知的角之间的关系,恰当地把角拆分,根据角的范围确定三角函数的符号.3.三角函数式的化简遵循的三个原则(1)一看“角”,这是最重要的一环,通过看角之间的差别与联系,把角进行合理的变换,从而正确使用公式.(2)二看“名”,看函数名称之间的差异,从而确定使用的公式,常见的有“切化弦”或“弦化切”.(3)三看“形”,分析结构特征,可以帮助我们找到变形的方向,常见的有“遇到分式要通分”“整式因式分解”“二次式配方”“遇到平方要降幂”等.【变式6】(2018届河南省郑州外国语学校高三第十五次调研)已知,满足,则的最大值为______.【答案】.【解析】由,得化为,,,的最大值为,故答案为.。
高二数学三角函数三角恒等变换解三角形试题答案及解析1.已知、、为△的三边,且,则角等于()A.B.C.D.【答案】B【解析】略2.(本小题满分13分)已知、、分别为的三边、、所对的角,的面积为,且.(Ⅰ)求角的大小;(Ⅱ)若,求周长的最大值.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)利用面积公式及,建立等式关系求出角C;(Ⅱ)方法1:由(Ⅰ)确定角C,用角B表示角A,由正弦定理,求出a,b关于角A的关系,这样周长就是表示成了关于角A的函数,求出该函数的最大值;方法2:利用余弦定理,配方,利用基本不等式,,解出的范围,即可求出周长最大值.试题解析:(Ⅰ)∵△的面积为,且∴∴,又∵ C为三角形内角,∴.(Ⅱ)解法1:由正弦定理得:,∵,,,从而.综上:.解法2:由余弦定理即,(当且仅当时取到等号)综上:.【考点】 1.面积公式;2.正弦定理;3.余弦定理.3.若函数在区间上单调递增,则的最小值是()A.B.C.D.【答案】D【解析】依题意,,令,在区间上,,单调递增,,所以;【考点】1.导数与单调性;2.化归的思想;4.设在的内角的对边分别为且满足,则.【答案】4【解析】由正弦定理可将变形为.,.【考点】1正弦定理;2两角和差公式.5.(本小题满分12分)在中,.(1)求角的大小;(2)若,,求.【答案】(1);(2).【解析】(1)将已知条件用余弦二倍角公式展开再化简可得,从而可得角.(2)根据正弦定理将转化为边间的关系,再根据余弦定理得另一组间的关系式,解方程组可得的值.由三角形面积公式即可求得其面积.试题解析:解:(1)由已知得:,,(2)由可得:解得:【考点】1.正弦定理;2.余弦定理.6.在△ABC中,,,,则等于()A.B.C.或D.或【答案】C【解析】由三角形面积公式可得,所以等于或【考点】三角形面积公式7.将函数y=sin(6x+的图象上各点向右平移个单位,则得到新函数的解析式为()A.y=sin B.y=sin C.y=sin D.y=sin【答案】A【解析】新函数解析式为y=sin sin故选A.【考点】图像平移.【方法点睛】图像的左右平移:(1)①当时,函数的图像向左平移个单位得到函数的图像;②当时,函数的图像向右平移个单位得到函数的图像.(2)①当时,函数的图像向左平移个单位得到函数的图像;②当时,函数的图像向右平移个单位得到函数的图像.8.在△ABC中,角A,B,C的对边分别为a,b,c,且A,B,C成等差数列.(1)若b=,a=3,求c的值;(2)设t=sinAsinC,求t的最大值.【答案】(1)4;(2)【解析】(1)由A,B,C成等差数列求得B的值,再由余弦定理求得c的值;(2)根据,利用两角和差的正弦公式化简函数t的解析式,再利用正弦函数的定义域和值域,求得t的最大值.试题解析:(1)由2B=A+C,及,得.又b=,a=3,,所以.所以c=4(c=-1舍去).因为,所以,因为,所以.所以当,即时,t有最大值.【考点】余弦定理;等差数列的通项公式;两角和与差的正弦函数9.已知α为第二象限角,且sin α=,则tan(π+α)的值是()A.B.C.D.【答案】B【解析】为第二象限角, ,.故B正确.【考点】1同角三角函数关系式;2诱导公式.10.(2015秋•海口校级期中)已知△ABC三个顶点的坐标分别为A(﹣3,1)、B(3,﹣3)、C(1,7),请判断△ABC的形状.【答案】△ABC是直角三角形【解析】由三角形的三个顶点的坐标分别求出三边长,再由勾股定理的逆定理能得到这个三角形是直角三角形.解:∵△ABC的三个顶点的坐标分别为A(3,4),B(5,2),C(﹣1,﹣4),∴|AB|==2,|BC|==6,|AC|==4,∴AC2=BC2+AB2,∴△ABC是直角三角形.【考点】三角形的形状判断.11.(2015秋•河南期末)已知△ABC的三内角A,B,C成等差数列,且AB=1,BC=4,则该三角形面积为()A.B.2C.2D.4【答案】A【解析】由A,B,C成等差数列A+B+C=π可求B,利用三角形的面积公式S=bcsinA可求.解:∵△ABC三内角A,B,C成等差数列,∴B=60°又AB=1,BC=4,∴;故选A.【考点】三角形的面积公式.12.在中,,那么三边之比∶∶等于()A.1∶2∶3B.3∶2∶1C.1∶∶2D.2∶∶1【答案】C【解析】【考点】正弦定理解三角形13.边长为5、7、8的三角形的最大角与最小角之和为()A.90°B.120°C.135°D.150°【答案】B【解析】长为7的边对应的角满足,,所以最大角与最小角之和为120°【考点】余弦定理解三角形14.(2015秋•福建期末)已知函数f(x)=(sin2x﹣cos2x+)﹣sin2(x﹣),x∈R.(1)求函数f(x)的弹道递增区间;(2)在△ABC中,角A,B,C的对边分别为a,b,c,且f(B)=1,b=2,求△ABC的面积的最大值.【答案】(1)函数f(x)的单调递增区间[kπ﹣,kπ+],k∈Z;(2)△ABC的面积的最大值为.【解析】(1)f(x)解析式利用二倍角的余弦函数公式化简,再利用两角和与差的正弦函数公式化为一个角的正弦函数,利用正弦函数的单调性确定出f(x)的递增区间即可;(2)f(B)=1,求出B的度数,利用余弦定理列出关系式,把b,cosB的值代入,并利用基本不等式求出ac的最大值,即可确定出三角形面积的最大值.解:(1)f(x)=(﹣cos2x)﹣[1﹣cos(2x﹣)]=sin2x﹣cos2x=sin(2x﹣),令﹣+2kπ≤2x﹣≤+2kπ,k∈Z,得到kπ﹣≤x≤kπ+,k∈Z,则函数f(x)的单调递增区间[kπ﹣,kπ+],k∈Z;(2)由f(B)=1,得到sin(2B﹣)=1,∴2B﹣=,即B=,由余弦定理得:b2=a2+c2﹣2accosB,即4=a2+c2﹣ac≥2ac﹣ac=ac,即ac≤4,∴S=acsinB=ac≤,△ABC则△ABC的面积的最大值为.【考点】余弦定理;三角函数中的恒等变换应用.15.如图中,已知点在边上,且,,,.(Ⅰ)求的长;(Ⅱ)求.(注:)【答案】(Ⅰ)(Ⅱ)【解析】(I)通过垂直关系,求出cos∠BAD的值,在△ABD中,由余弦定理求AD的长;(Ⅱ)在△ABD中,由正弦定理,求出sin∠ADB,通过三角形是直角三角形,即可求cosC试题解析:(Ⅰ)由知,在△ABD中,由余弦定理知即解得或显然,故(Ⅱ)由得在△ABD中,由正弦定理知,故【考点】余弦定理;正弦定理的应用16.在△ABC中,若,则是A.直角三角形B.锐角三角形C.钝角三角形D.不能确定【答案】C【解析】由正弦定理得,因此角最大,,为钝角,三角形为钝角三角形.故选C.【考点】三角形形状的判断.17.的值是()A.B.C.D.【答案】B【解析】由,故选B.【考点】两角差的余弦函数.18.将函数的图象上各点的纵坐标伸长为原来的2倍(横坐标不变),所得函数的解析式为()A.B.C.D.【答案】A【解析】纵坐标伸长为原来的倍(横坐标不变),即.【考点】三角函数图象变换.19.已知函数,其中,若对x∈R恒成立,且,则等于()A.B.C.D.【答案】C【解析】若对x∈R恒成立,所以,即,又,所以或,当时,,不任命题意,当时,,符合题意,所以,故选C.【考点】三角函数和图象与性质.20.如图,正方形的边长为,延长至,使,连接、,则.【答案】【解析】记,则,在中,,由勾股定理有,所以,,由两角差的正弦公式有.【考点】1.勾股定理;2.两角差的正弦公式.21.若,则= .【答案】【解析】令,因,故,所以,故应填.【考点】函数的概念和二倍角公式.22.()A.B.C.D.【答案】C【解析】因,故应选C.【考点】三角函数的诱导公式及运用.23.已知函数.(1)求及的单调递增区间;(2)求在闭区间的最值.【答案】(1),;(2)最大值为,最小值为.【解析】(1)将原函数由倍角公式和辅助角公式,可得化为,看成整体,利用正弦函数的单调递区间求得此函数的单调增区间;(2)先求出对应的的范围,再进一步得出对应的正弦值的取值,可得函数值的取值范围,可得函数最值.试题解析:(1),则,,单调递增区间,(2)由,则,所以最大值为1,最小值为.【考点】1.三角恒等变换;2.三角函数性质.【知识点睛】本题主要考查辅助角公式及三角函数的性质.对于函数的单调区间的确定,基本思路是把视做一个整体,由解出的范围所得区间即为增区间,由解出的范围,所得区间即为减区间.若函数中,可用诱导公式先将函数变为,则的增区间为原函数的减区间,减区间为原函数的增区间.24.已知,则的值为()A.B.C.D.【答案】B【解析】由得:,所以。
第23讲简单三角恒等变换夯实基础【p48】【学习目标】1.能利用两角和与差以及二倍角的正弦、余弦、正切公式进行简单的三角恒等变换;2.能利用上述公式及三角恒等变换的基本思想方法对三角函数式进行化简、求值及恒等式的证明.【基础检测】1.化简:错误!=________.【解析】原式=错误!=2错误!cosα.【答案】2错误!cosα2.已知tanα+tanβ=2,tan(α+β)=4,则tanα·tanβ=__________________________________________________________ ______________.【解析】tanα·tanβ=1-错误!=1-错误!=错误!.【答案】错误!3.若tanθ+错误!=4,则sin 2θ=()A。
错误!B.错误!C.错误!D。
错误!【解析】∵tanθ+错误!=错误!+错误!=错误!=错误!=4,∴sin 2θ=错误!.【答案】D4.已知α∈错误!,tanα=错误!,则cos错误!+2sin2错误!=()A。
错误!B。
错误!C.1 D.-错误!或错误!【解析】∵α∈错误!,tanα=错误!,∴sinα=-错误!,cosα=-错误!,则cos错误!+2sin2错误!=-sinα+(1-cosα)=错误!+错误!=错误!。
【答案】B5.化简tan 70°cos 10°(错误!tan 20°-1)的值为( )A.1 B.2C.-1 D.-2【解析】原式=sin 70°cos 70°·cos10°错误!=错误!·错误!=错误!×2sin(20°-30°)=-错误!=-1.【答案】C【知识要点】1.三角变换的一般方法(1)角的变换,一般包括角的分解和角的组合,如α=(α+β)-β,错误!+x=错误!-错误!,α=2·错误!等;(2)函数名称的变换,一般包括将三角函数统一成弦,以减少函数种类,对齐次式也可化成切;(3)注意结构的变换,如升幂与降幂,辅助角公式等;(4)角变换中以角的变换为中心;解题时,一看角,二看名称,三看结构.2.三角变换的常见题型(1)化简:灵活选用和、差、倍、辅助角公式进行三角恒等变换是化简三角函数式的难点,解题时应注意降次,减少角的种类及三角函数的种类,注意角的范围及三角函数的正负.(2)求值:给值求值时,注意要求角与已知角及特殊角的关系.(3)证明:证明三角恒等式的实质是消除等式两边的差异,有目的地化繁为简,左右归一.典 例 剖 析 【p 48】考点1 三角函数的化简问题错误!(1)化简:错误!;(2)已知-错误!<x <0,sin x +cos x =错误!。
第三讲 三角函数与三角恒等变换
班级________姓名________
1、下列角中,终边在第四象限的角是 ( ) (A)-
3
π
(B)
3
π (C)-32π
(D)32π
2、=︒150sin ( ) A.
21 B. 23 C. 2
1
- D. 23-
3、已知sin α=
13
12
,且α是第一象限的角,则cos(π-α)= ( ) (A)1312 (B)135 (C)1312- (D)13
5
-
4、角α的终边经过点P(3,4),则sin α= ( ) (A)
5
4 (B)
5
3 (C)
3
4 (D)
4
3 5、已知cos α=1,0≤α<2π,则α= ( ) (A)0
(B)
2
π (C)π (D)
2
3π 6、己知sin α=
5
3
,则tan α= ( ) (A) 43 (B) ±43 (C) 34 (D) ±3
4
7、下列说法正确的是 ( ) (A)终边相同的角一定相等 (B)锐角是第一象限角
(C)第二象限角为钝角 (D)小于︒90的角一定为锐角
8、已知sin α=53,90o <α<180o
,那么sin2α= ( ) A .2524- B .2524 C.257 D.257
-
9、已知5
3
2sin =α,则cos α= ( )
(A)-
25
7
(B)
25
7
(C)
53
(D)5
4 10、函数 y = cos x ,∈x [-6
π
,2π]的值域是 ( ) (A )[0,1] (B )[-1,1] (C )[0,
2
3
] (D )[-
2
1
,1] 11、函数)
6
2sin(π-=x y 取得最大值时的一个x 值是 ( ) (A)
2π (B)
3
π (C)
6
π (D)0
12、f ( x ) = sin
2
x
是 ( )
(A )最小正周期为π的奇函数 (B )最小正周期为4π的奇函数 (C )最小正周期为π的偶函数 (D )最小正周期为4π的偶函数 13、将函数y =cos(
21x +6π
)的图象经过怎样的平移,可以得到函数y =cos(21x)的图( ) (A) 向左平移6π个单位长度 (B) 向右平移6
π
个单位长度
(C) 向右平移3
π
个单位长度 (D) 向左平移12π个单位长度
14、函数y=cos 2
x -sin 2
x 的最小正周期是 ( ) A. 4π B. 2π C. π D.
2
π
15、已知tan θ=
3
1
,则tan2θ= 。
16、已知21cos -
=θ,θ为第三象限角,则)3
sin(θπ
+=________ 17、=︒︒15cos 15sin ___________
18、右图表示周期函数y =f (x )的变化规律,由图象可以观察
出f (x )的最小正周期是_______.
19、如图,单摆的摆球离开平衡位置的位移S (厘米)和 时间 t (秒)的函数关系是)3
2(sin 21π
+=
t S ,则摆球往复摆动一次所 需要的时间是 秒. 20、已知tan α21
,求α
-αα+αcos 3sin cos sin 2=_______________
y
x
2π
O
(第18题)
(第19题)。