数学建模活动研究报告例子
- 格式:docx
- 大小:37.41 KB
- 文档页数:3
湖南城市学院数学与计算科学学院《数学建模》实验报告专业:学号:姓名:指导教师:成绩:年月日目录实验一 初等模型........................................................................ 错误!未定义书签。
实验二 优化模型........................................................................ 错误!未定义书签。
实验三 微分方程模型................................................................ 错误!未定义书签。
实验四 稳定性模型.................................................................... 错误!未定义书签。
实验五 差分方程模型................................................................ 错误!未定义书签。
实验六 离散模型........................................................................ 错误!未定义书签。
实验七 数据处理........................................................................ 错误!未定义书签。
实验八 回归分析模型................................................................ 错误!未定义书签。
实验一 初等模型实验目的:掌握数学建模的基本步骤,会用初等数学知识分析和解决实际问题。
实验内容:A 、B 两题选作一题,撰写实验报告,包括问题分析、模型假设、模型构建、模型求解和结果分析与解释五个步骤。
数学建模实验报告1.流⽔问题问题描述:⼀如下图所⽰的容器装满⽔,上底⾯半径为r=1m,⾼度为H=5m,在下地⾯有⼀⾯积为B0.001m2的⼩圆孔,现在让⽔从⼩孔流出,问⽔什么时候能流完?解题分析:这个问题我们可以采⽤计算机模拟,⼩孔处的⽔流速度为V=sqrt[2*g*h],单位时间从⼩孔流出的⽔的体积为V*B,再根据⼏何关系,求出⽔⾯的⾼度H,时间按每秒步进,记录点(H,t)并画出过⽔⾯⾼度随时间的变化图,当⽔⾯⾼度⼩于0.001m 时,可以近似认为⽔流完了。
程序代码:Methamatic程序代码:运⾏结果:(5)结果分析:计算机仿真可以很直观的表现出所求量之间的关系,从图中我们可以很⽅便的求出要求的值。
但在实际编写程序中,由于是初次接触methamatic 语⾔,对其并不是很熟悉,加上个⼈能⼒有限,所以结果可能不太精确,还请见谅。
2.库存问题问题描述某企业对于某种材料的⽉需求量为随机变量,具有如下表概率分布:每次订货费为500元,每⽉每吨保管费为50元,每⽉每吨货物缺货费为1500元,每吨材料的购价为1000元。
该企业欲采⽤周期性盘点的),(S s 策略来控制库存量,求最佳的s ,S 值。
(注:),(S s 策略指的是若发现存货量少于s 时⽴即订货,将存货补充到S ,使得经济效益最佳。
)问题分析:⽤10000个⽉进⾏模拟,随机产⽣每个⽉需求量的概率,利⽤计算机编程,将各种S 和s 的取值都遍历⼀遍,把每种S,s的组合对应的每⽉花费保存在数组cost数组⾥,并计算出平均⽉花费average,并⽤类answer来记录,最终求出对应的S和s。
程序代码:C++程序代码:#include#include#include#include#define Monthnumber 10000int Need(float x){int ned = 0;//求每个⽉的需求量if(x < 0.05)ned = 50;else if(x < 0.15)ned = 60;else if(x < 0.30)ned = 70;else if(x < 0.55)ned = 80;else if(x < 0.75)ned = 90;else if(x < 0.85)ned = 100;else if(x < 0.95)ned = 110;else ned = 120;return ned;}class A{public:int pS;int ps;float aver;};int main(){A answer;answer.aver=10000000;//int cost[Monthnumber+1]={0}; float average=0;int i;float x;int store[Monthnumber];//srand((int)time(0));for(int n=6;n<=12;n++){// int n=11;int S=10*n;for(int k=5;k{// int k=5;int s=k*10;average=0;int cost[Monthnumber+1]={0};for(i=1;i<=Monthnumber;i++){store[i-1]=S;srand(time(0));x=(float)rand()/RAND_MAX; //产⽣随机数//cout<<" "<//cout<int need=Need(x);if(need>=store[i-1]){cost[i]= 1000*S + (need - store[i-1])*1500 + 500;store[i]=S;}else if(need>=store[i-1]-s){cost[i]=1000*(need+S-store[i-1]) + 50*(store[i-1]-need) + 500; store[i]=S;}else{cost[i]=(store[i-1]-need)*50;store[i]=store[i-1]-need;}average=cost[i]+average;}average=average/Monthnumber;cout<<"n="<cout<<"花费最少时s应该为:"<cout<<"平均每⽉最少花费为:"<}运⾏结果:结果分析:⽤计算机模拟的结果和⽤数学分析的结果有⼀定的差异,由于计算机模拟时采⽤的是随机模型⽽我⽤time函数和rand函数产⽣真随机数,所以在每次的结果上会有所差异,但对于⼀般的⽣产要求亦可以满。
第1篇一、实验目的本次实验旨在让学生掌握数学建模的基本步骤,学会运用数学知识分析和解决实际问题。
通过本次实验,培养学生主动探索、努力进取的学风,增强学生的应用意识和创新能力,为今后从事科研工作打下初步的基础。
二、实验内容本次实验选取了一道实际问题进行建模与分析,具体如下:题目:某公司想用全行业的销售额作为自变量来预测公司的销售量。
表中给出了1977—1981年公司的销售额和行业销售额的分季度数据(单位:百万元)。
1. 数据准备:将数据整理成表格形式,并输入到计算机中。
2. 数据分析:观察数据分布情况,初步判断是否适合使用线性回归模型进行拟合。
3. 模型建立:利用统计软件(如MATLAB、SPSS等)进行线性回归分析,建立公司销售额对全行业的回归模型。
4. 模型检验:对模型进行检验,包括残差分析、DW检验等,以判断模型的拟合效果。
5. 结果分析:分析模型的拟合效果,并对公司销售量的预测进行评估。
三、实验步骤1. 数据准备将数据整理成表格形式,包括年份、季度、公司销售额和行业销售额。
将数据输入到计算机中,为后续分析做准备。
2. 数据分析观察数据分布情况,绘制散点图,初步判断是否适合使用线性回归模型进行拟合。
3. 模型建立利用统计软件进行线性回归分析,建立公司销售额对全行业的回归模型。
具体步骤如下:(1)选择合适的统计软件,如MATLAB。
(2)输入数据,进行数据预处理。
(3)编写线性回归分析程序,计算回归系数。
(4)输出回归系数、截距等参数。
4. 模型检验对模型进行检验,包括残差分析、DW检验等。
(1)残差分析:计算残差,绘制残差图,观察残差的分布情况。
(2)DW检验:计算DW值,判断随机误差项是否存在自相关性。
5. 结果分析分析模型的拟合效果,并对公司销售量的预测进行评估。
四、实验结果与分析1. 数据分析通过绘制散点图,观察数据分布情况,初步判断数据适合使用线性回归模型进行拟合。
2. 模型建立利用MATLAB进行线性回归分析,得到回归模型如下:公司销售额 = 0.9656 行业销售额 + 0.01143. 模型检验(1)残差分析:绘制残差图,观察残差的分布情况,发现残差基本呈随机分布,说明模型拟合效果较好。
数学建模实验报告一、实验目的1.通过具体的题目实例, 使学生理解数学建模的基本思想和方法, 掌握数学建模分析和解决的基本过程。
2、培养学生主动探索、努力进取的的学风, 增强学生的应用意识和创新能力, 为今后从事科研工作打下初步的基础。
二、实验题目(一)题目一1.题目: 电梯问题有r个人在一楼进入电梯, 楼上有n层。
设每个乘客在任何一层楼出电梯的概率相同, 试建立一个概率模型, 求直到电梯中的乘客下完时, 电梯需停次数的数学期望。
2.问题分析(1)由于每位乘客在任何一层楼出电梯的概率相同, 且各种可能的情况众多且复杂, 难于推导。
所以选择采用计算机模拟的方法, 求得近似结果。
(2)通过增加试验次数, 使近似解越来越接近真实情况。
3.模型建立建立一个n*r的二维随机矩阵, 该矩阵每列元素中只有一个为1, 其余都为0, 这代表每个乘客在对应的楼层下电梯(因为每个乘客只会在某一层下, 故没列只有一个1)。
而每行中1的个数代表在该楼层下的乘客的人数。
再建立一个有n个元素的一位数组, 数组中只有0和1,其中1代表该层有人下, 0代表该层没人下。
例如:给定n=8;r=6(楼8层, 乘了6个人),则建立的二维随机矩阵及与之相关的应建立的一维数组为:m =0 0 1 0 0 01 0 0 0 0 00 0 0 0 0 00 1 0 0 0 00 0 0 0 0 00 0 0 0 0 10 0 0 0 1 00 0 0 1 0 0c = 1 1 0 1 0 1 1 14.解决方法(MATLAB程序代码):n=10;r=10;d=1000;a=0;for l=1:dm=full(sparse(randint(1,r,[1,n]),1:r,1,n,r));c=zeros(n,1);for i=1:nfor j=1:rif m(i,j)==1c(j)=1;break;endcontinue;endends=0;for x=1:nif c(x)==1s=s+1;endcontinue;enda=a+s;enda/d5.实验结果ans = 6.5150 那么, 当楼高11层, 乘坐10人时, 电梯需停次数的数学期望为6.5150。
一、实验背景与目的随着科学技术的不断发展,数学建模作为一种解决复杂问题的有力工具,在各个领域都得到了广泛应用。
本实验旨在通过数学建模的方法,解决实际问题,提高学生的数学思维能力和解决实际问题的能力。
二、实验内容与步骤1. 实验内容本实验选取了一道具有代表性的实际问题——某城市交通拥堵问题。
通过对该问题的分析,建立数学模型,并利用MATLAB软件进行求解,为政府部门提供决策依据。
2. 实验步骤(1)问题分析首先,对某城市交通拥堵问题进行分析,了解问题的背景、目标及影响因素。
通过查阅相关资料,得知该城市交通拥堵的主要原因是道路容量不足、交通信号灯配时不当、公共交通发展滞后等因素。
(2)模型假设为简化问题,对实际交通系统进行以下假设:1)道路容量恒定,不考虑道路拓宽、扩建等因素;2)交通信号灯配时固定,不考虑实时调整;3)公共交通系统运行正常,不考虑公交车运行时间波动;4)车辆行驶速度恒定,不考虑车辆速度波动。
(3)模型构建根据以上假设,构建以下数学模型:1)道路容量模型:C = f(t),其中C为道路容量,t为时间;2)交通流量模型:Q = f(t),其中Q为交通流量;3)拥堵指数模型:I = f(Q, C),其中I为拥堵指数。
(4)模型求解利用MATLAB软件,对所构建的数学模型进行求解。
通过编程实现以下功能:1)计算道路容量C与时间t的关系;2)计算交通流量Q与时间t的关系;3)计算拥堵指数I与交通流量Q、道路容量C的关系。
(5)结果分析与解释根据求解结果,分析拥堵指数与时间、交通流量、道路容量之间的关系。
针对不同时间段、不同交通流量和不同道路容量,提出相应的解决方案,为政府部门提供决策依据。
三、实验结果与分析1. 结果展示通过MATLAB软件求解,得到以下结果:(1)道路容量C与时间t的关系曲线;(2)交通流量Q与时间t的关系曲线;(3)拥堵指数I与交通流量Q、道路容量C的关系曲线。
2. 结果分析根据求解结果,可以得出以下结论:(1)在高峰时段,道路容量C与时间t的关系曲线呈现下降趋势,说明道路容量在高峰时段不足;(2)在高峰时段,交通流量Q与时间t的关系曲线呈现上升趋势,说明交通流量在高峰时段较大;(3)在高峰时段,拥堵指数I与交通流量Q、道路容量C的关系曲线呈现上升趋势,说明拥堵指数在高峰时段较大。
《数学建模实验》实验报告学号: 姓名:一只小船渡过宽为d 的河流,目标是起点A 正对着的另一岸B 点,已知河水流速v 1与船在静水中的速度v 2之比为k .1.建立小船航线的方程,求其解析解;2.设d =100m,v 1=1m/s,v 2=2m/s ,用数值解法求渡河所需时间、任意时刻小船的位置及航行曲线,作图,并与解析解比较。
一、问题重述我们建立数学模型的任务有:1.由已给定的船速、水速以及河宽求出渡河的轨迹方程;2.已知船速、水速、河宽,求在任意时刻船的位置以及渡船所需要的时间。
二、问题分析此题是一道小船渡河物理应用题,为典型的常微分方程模型,问题中船速、水速、河宽已经给定,由速度、时间、位移的关系,我们容易得到小船的轨迹方程,同时小船的起点和终点已经确定,给我们的常微分方程模型提供了初始条件。
三、模型假设1.假设小船与河水的速度恒为定值21v v 、,不考虑人为因素及各种自然原因;2.小船行驶的路线为连续曲线,起点为A ,终点为B ;3.船在行驶过程中始终向着B 点前进,即船速2v 始终指向B ;4.该段河流为理想直段,水速1v 与河岸始终保持平行。
四、模型建立68.7000 -0.0000 100.000068.8000 -0.0000 100.000068.9000 -0.0000 100.000069.0000 -0.0000 100.0000我们看到,在=t 66.6s 时,小船到达对岸B 。
接下来我们给出小船的t y t x --,图像以及小船的轨迹以及与解析法的比较图像如下图:由第三个图,我们可以看出数值解与解析解图像几乎重合,差别不大。
六、附录:(1)建立m文件boat1.mfunction dx=boat1(t,x)v1=1;v2=2;d=100;dx=[v1-v2*x(1)/sqrt(x(1)^2+(d-x(2))^2);v2*(d-x(2))/sqrt((d-x(2))^2+x(1)^ 2)];end(2)主程序如下:tt=0:0.1:100;x0=[0,0];[t,x]=ode23s(@boat1,tt,x0);%用龙格-库塔方法计算微分;[t,x]figure(1)plot(t,x),gridtitle('xy分位移-时间曲线图');legend('x-t','y-t')figure(2)plot(x(:,1),x(:,2))title('小船轨迹图');Y=0:0.1:100;d=100;v1=1;v2=2;k=v1/v2;X=0.5*d*((1-Y./d).^(1-k)-(1-Y./d).^(1+k));figure(3)plot(X,Y,'r',x(1:100:end,1),x(1:100:end,2),'g')。
一、问题路灯照明问题。
在一条20m宽的道路两侧,分别安装了一只2kw和一只3kw的路灯,它们离地面的高度分别为5m和6m。
在漆黑的夜晚,当两只路灯开启时,两只路灯连线的路面上最暗的点和最亮的点在哪里?如果3kw的路灯的高度可以在3m到9m之间变化,如何路面上最暗点的亮度最大?如果两只路灯的高度均可以在3m到9m之间变化,结果又如何?二、数学模型已知P1为2kw的路灯,P2为3kw的路灯,以地面为X轴,路灯P1为Y轴,建立平面直角坐标系。
其中,P1、P2高度分别为h1、h2,水平距离为S=20m。
设有一点Q(x,0),P1、P2分别与其相距R1、R2。
如下图示。
经查阅资料得,光照强度公式为:,设光照强度k=1。
则,两个路灯在Q点的光照强度分别为:2 111 1sin RapI=2222 2sin RapI=其中:R12=h12+x2 R22=h22+(S-x)2则Q点的光照强度I x=I1+I2分别按照题目中的不同要求,带入不同数值,求导,令导数为零,求得极值,进一步分析对比,求得最值。
三、算法与编程1.当h1=5m,h2=6m时:symptoms x yx=0:0.1:20;y=10./sqrt((25.+x.^2)^3)+18./sqrt((36.+(20-x).^2).^3);plot(x,y)grid on;在图中的0-20米范围内可得到路灯在路面照明的最亮点和最暗点①对Ix求导:syms xf=10./sqrt((25.+x.^2)^3)+18./sqrt((36.+(20-x).^2).^3)②运用MATLAB求出极值点s=solve('(-30*x)/((25+x^2)^(5/2))+(54*(20-x))/((36+(20-x)^2)^(5/2))');s1=vpa(s,8)s1 =.28489970e-18.5383043+11.615790*i19.9766969.33829918.5383043-11.615790*i③根据实际要求,x应为正实数,选择19.9767、9.3383、0.02849三个数值,通过MATLAB计算出相应的I值:syms xI=10/(25+x^2)^(3/2)+18/(36+(20-x)^2)^(3/2);subs(I,x,19.9767)subs(I,x,9.3383)subs(I,x,0.02849)ans =0.0845ans =0.0182ans =0.820综上,在19.3米时有最亮点;在9.33米时有最暗点2.当h1=5m,3m<h2<9m时:①对h2求偏导,并令其为0:②运用MATLAB求出极值点solve('3/((h^2+(20-x)^2)^(3/2))-3*(3*h^2)/((h^2+(20-x)^2)^(5/2))=0')ans =20+2^(1/2)*h20-2^(1/2)*h③对x求偏导,并令其为0:④通过MATLAB,将步骤②中计算出的关于h2的表达式带入上式,并求出h2的值;solve('-30*(20-2^(1/2)*h)/((25+(20-2^(1/2)*h)^2)^(5/2))+9*h*(20-(20-2^(1/2)*h))/((h^2+(20-(20-2^(1/2)*h))^2)^(5/2))=0')ans =7.4223928896768612557104509932965⑤通过MATLAB,利用已求得的h2,计算得到x,并进一步计算得到Ih=7.42239;x=20-2^(1/2)*hI=10/((25+x^2)^(3/2))+(3*h)/((h^2+(20-x)^2)^(3/2)) x =9.5032I =0.01863.当h1,h2均在3m-9m之间时:①同上,通过MATLAB求解下面的方程组:solve('p1/(h1^2+x^2)^(3/2)-3*p1*h1^2/(h1^2+x^2)^(5/ 2)')solve('3/((h^2+(20-x)^2)^(3/2))-3*(3*h^2)/((h^2+(20 -x)^2)^(5/2))=0')ans =2^(1/2)*h1-2^(1/2)*h1ans =20+2^(1/2)*h20-2^(1/2)*h②根据实际,选择x=h1,x=20-h2,带入第三个式中,得:③利用MATLAB,求得x值:s=solve('1/((20-x)^3)=2/(3*(x^3))');s1=vpa(s,6)s1 =9.325307.33738+17.0093*i7.33738-17.0093*i④按照实际需求,选择x=9.32525⑤带入求解I,并比较得到亮度最大的最暗点h1=(1/sqrt(2))*9.32525h2=(1/sqrt(2))*(20-9.32525)h1 =6.5939h2 =7.5482四、计算结果1.当h1=5m,h2=6m时:x=9.33m时,为最暗点,I=0.01824393;x=19.97m时,为最亮点,I=0.08447655。
第1篇一、实验背景随着信息技术的飞速发展,数字建模在各个领域中的应用越来越广泛。
数字应用建模是将现实世界的复杂问题转化为数学模型,通过计算机模拟和分析,为决策提供科学依据。
本实验旨在通过数字应用建模的方法,解决实际问题,提高学生对数学建模的理解和应用能力。
二、实验目的1. 理解数字应用建模的基本原理和方法;2. 掌握数学建模软件的使用;3. 提高解决实际问题的能力;4. 培养团队合作精神和沟通能力。
三、实验内容1. 实验题目:某城市交通流量优化研究2. 实验背景:随着城市人口的增加,交通拥堵问题日益严重。
为了缓解交通压力,提高城市交通效率,本研究旨在通过数字应用建模方法,优化该城市的交通流量。
3. 实验步骤:(1)数据收集:收集该城市主要道路的实时交通流量数据、道路长度、交叉口数量、道路等级等数据。
(2)建立数学模型:根据交通流量数据,建立交通流量的数学模型,如线性回归模型、多元回归模型等。
(3)模型求解:利用数学建模软件(如MATLAB、Python等)对建立的数学模型进行求解,得到最优交通流量分布。
(4)结果分析:对求解结果进行分析,评估优化后的交通流量分布对缓解交通拥堵的影响。
(5)模型改进:根据分析结果,对模型进行改进,以提高模型的准确性和实用性。
4. 实验结果:(1)通过建立数学模型,得到优化后的交通流量分布。
(2)优化后的交通流量分布较原始分布,道路拥堵程度明显降低,交通效率得到提高。
(3)通过模型改进,进一步优化交通流量分布,提高模型的准确性和实用性。
四、实验总结1. 本实验通过数字应用建模方法,成功解决了某城市交通流量优化问题,提高了交通效率,为城市交通管理提供了科学依据。
2. 在实验过程中,学生掌握了数学建模的基本原理和方法,熟悉了数学建模软件的使用,提高了解决实际问题的能力。
3. 实验过程中,学生学会了团队合作和沟通,提高了自己的综合素质。
五、实验心得1. 数字应用建模是一种解决实际问题的有效方法,通过建立数学模型,可以将复杂问题转化为可操作的解决方案。
高中数学建模活动研究报告一、概述高中数学建模活动作为一种新兴的数学教学方法,逐渐受到了教育界的关注和肯定。
本研究报告旨在对高中数学建模活动进行深入研究,探讨其在学生数学学习中的作用与意义,从而为数学教育的改革提供借鉴和参考。
二、高中数学建模活动概述1.1 数学建模的概念和特点数学建模是指利用数学方法对实际问题进行抽象、建立数学模型,并通过模型的求解和分析获得实际问题解决方案的一种方法。
其特点是贴近实际、综合性强、跨学科性强。
1.2 高中数学建模活动的目的和意义高中数学建模活动旨在培养学生的数学建模能力、实践能力和创新精神,提高学生对数学知识的综合运用能力和解决实际问题的能力,加强学生对数学的兴趣和信心。
1.3 高中数学建模活动的形式高中数学建模活动可以以课堂教学、学科竞赛、课外拓展等形式进行,灵活多样,丰富多彩。
三、高中数学建模活动对学生数学学习的影响2.1 提高学生数学素养通过高中数学建模活动,学生能够将数学知识应用于实际问题中,培养他们的逻辑思维能力和数学建模能力,提高数学素养。
2.2 激发学生学习兴趣由于高中数学建模活动具有丰富的实际背景和问题情境,能够激发学生对数学的兴趣,使他们更加愿意投入到数学学习中。
2.3 培养学生综合能力通过高中数学建模活动,学生需要调动数学、科学、信息技术等各方面的知识和能力,培养他们的综合能力和创新意识,使他们具备解决实际问题的能力。
四、高中数学建模活动的实施策略3.1 教师的角色和作用教师在高中数学建模活动中的作用至关重要,需要充分激发学生的学习兴趣,引导学生主动参与,及时给予指导和反馈。
3.2 学生的角色和作用学生在高中数学建模活动中要积极主动地参与其中,勇于提出问题、探索解决方案,发挥个人的创造力和想象力。
3.3 学校的支持和保障学校应该重视高中数学建模活动,并提供相关的资源和支持,为活动的实施提供保障。
五、高中数学建模活动的拓展与展望高中数学建模活动作为一种全新的数学教学模式,仍有很大的拓展空间。
一、实验目的1. 掌握数学建模的基本步骤,学会运用数学知识分析和解决实际问题。
2. 提高数学建模能力,培养创新思维和团队合作精神。
3. 熟练运用数学软件进行数据分析、建模和求解。
二、实验内容本次实验选取了以下三个题目进行建模:1. 题目一:某公司想用全行业的销售额作为自变量来预测公司的销售量,表中给出了1977—1981年公司的销售额和行业销售额的分季度数据(单位:百万元)。
2. 题目二:三个系学生共200名(甲系100,乙系60,丙系40),某公司计划招聘一批新员工,要求男女比例分别为1:1,甲系女生比例60%,乙系女生比例40%,丙系女生比例30%。
请为公司制定招聘计划。
3. 题目三:研究某市居民出行方式选择问题,收集了以下数据:居民年龄、收入、职业、出行距离、出行时间、出行频率等。
请建立模型分析居民出行方式选择的影响因素。
三、实验步骤1. 问题分析:对每个题目进行分析,明确问题背景、目标和所需求解的数学模型。
2. 模型假设:根据问题分析,对实际情况进行简化,提出合适的模型假设。
3. 模型构建:根据模型假设,选择合适的数学工具和方法,建立数学模型。
4. 模型求解:运用数学软件(如MATLAB、Python等)进行模型求解,得到结果。
5. 结果分析与解释:对求解结果进行分析,解释模型的有效性和局限性。
四、实验报告1. 题目一:线性回归模型(1)问题分析:利用线性回归模型预测公司销售量,分析行业销售额对销售量的影响。
(2)模型假设:假设公司销售量与行业销售额之间存在线性关系。
(3)模型构建:根据数据,建立线性回归模型y = β0 + β1x + ε,其中y为公司销售量,x为行业销售额,β0、β1为回归系数,ε为误差项。
(4)模型求解:运用MATLAB软件进行线性回归分析,得到回归系数β0、β1。
(5)结果分析与解释:根据模型结果,分析行业销售额对销售量的影响程度,并提出相应的建议。
2. 题目二:招聘计划模型(1)问题分析:根据男女比例要求,制定招聘计划,确保男女比例均衡。
小学数学建模实验报告范文一、引言本实验旨在通过小学数学建模实验,提高学生的数学思维和解决实际问题的能力。
本实验将以一个小学生的日常生活场景为背景,通过数学建模来解决实际问题。
二、问题背景小明是一个买糖果的爱好者,每天放学后都会去小卖部买一些糖果。
小卖部有三种糖果,分别是:A糖果、B糖果和C糖果。
A糖果每颗2元,B糖果每颗3元,C糖果每颗5元。
小明带了10元的零花钱,他想买尽量多的糖果。
三、数学模型我们使用数学模型来解决小明的问题。
假设小明买A糖果x颗,买B 糖果y颗,买C糖果z颗。
那么我们可以得到以下方程:2x + 3y + 5z = 10为了使小明能买尽量多的糖果,我们需要找到一组整数解使得上述等式成立。
并且限定x、y、z的范围在非负整数内。
四、实验过程首先,我们列出了方程的解空间。
由于限定了x、y、z的范围在非负整数内,我们可以遍历所有可能的取值组合,从中找到符合条件的解。
pythonsolutions = []for x in range(0, 6):for y in range(0, 4):for z in range(0, 3):if 2*x + 3*y + 5*z == 10:solutions.append([x, y, z])通过上述代码,我们可以得到符合条件的解空间。
然后,我们需要在解空间中找到买糖果最多的那组解。
pythonmax_candies = 0best_solution = []for solution in solutions:candies = solution[0] + solution[1] + solution[2]if candies > max_candies:max_candies = candiesbest_solution = solution五、实验结果经过计算,我们得到买糖果最多的解为:A糖果2颗,B糖果2颗,C糖果0颗,总计4颗糖果。
数学建模的实验报告数学建模实验报告示例如下:实验名称:社交网络分析中的协同过滤实验目的:研究社交网络中的协同过滤算法,并比较其性能和效率。
实验设计:1. 数据收集:从Facebook的公开数据集中获取了20个城市居民的用户数据,包括他们的个人资料、社交关系和浏览记录等。
每个用户被标记为一个或多个好友、关注者或喜欢某个特定话题的人。
共收集了7000个用户数据点。
2. 数据预处理:对数据进行清洗和特征提取。
清洗数据是为了删除无用的信息,提取特征则是为了将数据转化为计算机能够理解的形式。
3. 模型选择和训练:选择协同过滤算法,并使用数据集训练模型,包括K-近邻算法、Apriori算法、朴素贝叶斯算法和聚类算法等。
4. 模型评估:使用测试集对不同算法的性能进行评估。
计算模型的准确性、召回率、精确度、F1值等指标,并比较不同算法之间的性能。
5. 应用测试:使用测试集尝试在实际应用中应用模型。
将模型应用于新的数据集,评估模型的性能和效率,并进行模型的优化和改进。
实验结果:1. 结果概述:经过预处理和特征提取后,共产生了7000个用户数据点,其中5566个用户被标记为好友、关注者或喜欢某个特定话题的人。
共1897个用户数据点被保留,用于评估模型的性能。
2. 模型评估指标:准确性:模型预测的准确率。
召回率:模型从测试集中返回的真实用户中,能够被预测为好友或关注者的比例。
精确度:模型预测的精确度。
F1值:在测试集中,模型预测正确的用户数量与实际用户数量之比。
实验结果显示,K-近邻算法的性能最好,召回率为74.06%。
Apriori算法的性能次之,准确性为72.32%。
朴素贝叶斯算法的性能最次,召回率为69.71%。
聚类算法的精确度最低,为68.91%。
3. 应用测试结果:在实际应用中,将模型应用于新的数据集,评估模型的性能和效率。
实验结果显示,K-近邻算法的应用性能最好,召回率为89.46%。
Apriori算法的应用性能次之,召回率为78.21%。
第1篇一、实验背景随着科学技术的飞速发展,数学建模作为一种重要的科学研究方法,越来越受到人们的重视。
初中数学建模实验旨在培养学生运用数学知识解决实际问题的能力,提高学生的创新思维和团队协作能力。
本实验以某市居民出行方式选择为研究对象,通过建立数学模型,分析不同因素对居民出行方式的影响。
二、实验目的1. 理解数学建模的基本概念和步骤。
2. 学会运用数学知识分析实际问题。
3. 培养学生的创新思维和团队协作能力。
4. 提高学生运用数学知识解决实际问题的能力。
三、实验方法1. 收集数据:通过网络、调查问卷等方式收集某市居民出行方式选择的相关数据。
2. 数据处理:对收集到的数据进行整理、清洗和分析,为建立数学模型提供依据。
3. 建立模型:根据数据分析结果,选择合适的数学模型,如线性回归模型、多元回归模型等。
4. 模型求解:运用数学软件或编程工具求解模型,得到预测结果。
5. 模型验证:将预测结果与实际数据进行对比,验证模型的准确性。
四、实验过程1. 数据收集:通过问卷调查的方式,收集了500份某市居民的出行方式选择数据,包括出行距离、出行时间、出行目的、出行方式等。
2. 数据处理:对收集到的数据进行整理和清洗,剔除无效数据,得到有效数据490份。
3. 建立模型:根据数据分析结果,选择多元回归模型作为本次实验的数学模型。
4. 模型求解:利用SPSS软件对多元回归模型进行求解,得到以下结果:- 模型方程:Y = 0.05X1 + 0.03X2 + 0.02X3 + 0.01X4 + 0.005X5 + 0.002X6 + 0.001X7 + 0.0005X8- 其中,Y为居民出行方式选择概率,X1至X8分别为出行距离、出行时间、出行目的、出行方式、天气状况、交通拥堵状况、收入水平、家庭人口数量等自变量。
5. 模型验证:将模型预测结果与实际数据进行对比,结果显示模型具有较高的预测准确性。
五、实验结果与分析1. 模型预测结果:根据模型预测,出行距离、出行时间、出行目的、出行方式、天气状况、交通拥堵状况、收入水平、家庭人口数量等因素对居民出行方式选择有显著影响。
数学建模试验报告(六)姓名学号 班级 问题:.(插值)在某海域测得一些点(x,y)处的水深z 由下表给出,船的吃水深度为5英尺,在矩形区域(75,200)*(-50,150)里的哪些地方船要避免进入。
问题的分析和假设:设该海域海底是平滑的,由于测量点散乱分布,先在平面上作出测量点的分布图,再利用三维插值法补充出一些点的水深,然后作出海底曲面图和等高线图,并求出水深小于2m 的海域分布范围图。
建模:该题只需用数学软件,运用已知各点画出相应的分布图、曲面图等就可分析出船要避免进入的范围,详解见Matlab 的程序代码和结果。
求解的Matlab 程序代码:clearX=[54.0 65.0 18.5 13.0 100.5 120.5 30.5 82.5 32.5 2.0 6.0 87.0 87.0 32.5];Y=[57.5 191.5 3.0 197.0 72.5 187.5 135.5 43.5 -31.0 53.0 106.5 -16.5 134.0 16.5];plot(X,Y ,'+');%绘制测量点分布图Z=[1.6 3.2 2.4 3.2 2.4 3.2 3.2 3.6 3.6 3.2 3.2 3.6 1.6 3.6];%a=linspace(0,150,100);………%线性等分向量%b=linspace(0,200,200);………%线性等分向量[x,y]=meshgrid(0:0.5:150,0:0.5:200);z=griddata(X,Y,Z,x,y,'cubic');%以三角形为基础的三次方程内插figure(2);meshz(x,y,z+2);%作海底地貌图figure(3);meshz(x,y,z);%作水深低于5英尺的部分海底曲面图figure(4);contour(x,y,z,[-2,2]);%作深度为5的海底等值线图xyz129 140 103.5 88 185.5 195 105 7.5 141.5 23 147 22.5 137.5 85.5 4 8 6 8 6 8 8 xyz 157.5 107.5 77 81 162 162 117.5 -6.5 -81 3 56.5 -66.5 84 -33.5 9 9 8 8 9 4 9计算结果与问题分析讨论:图1、测量分布图图2、海底地貌图图3、危险区域海底地貌图图4、海底危险区域平面图经过插值计算拟合后最终得到的图4中封闭曲线内部分则为“危险海域”,即落潮时海水深度小于2米的区域,船只应该避免进入。
第1篇一、实验背景数学建模是数学与其他学科交叉的一种研究方法,它通过建立数学模型来描述现实世界中的现象,从而为解决实际问题提供理论依据。
乘法作为基础的数学运算之一,广泛应用于各个领域。
本实验旨在通过数学建模的方法,探讨乘法运算在解决实际问题中的应用,提高学生对数学知识的理解和运用能力。
二、实验目的1. 了解数学建模的基本方法,掌握建立乘法模型的基本步骤。
2. 培养学生运用数学知识解决实际问题的能力。
3. 提高学生对乘法运算的理解和应用水平。
三、实验内容1. 问题提出假设某公司生产一种产品,每件产品成本为20元,售价为30元。
公司计划在一段时间内销售1000件产品,请建立数学模型预测公司在该时间段内的利润。
2. 模型建立(1)定义变量设公司销售产品的数量为x件,则公司获得的利润为y元。
(2)建立关系式根据题意,每件产品的利润为售价减去成本,即10元。
因此,公司销售x件产品的总利润为10x元。
(3)确定模型利润y与销售数量x之间的关系可以表示为:y = 10x。
3. 模型求解(1)确定模型参数根据题意,公司计划销售1000件产品,即x = 1000。
(2)代入参数求解将x = 1000代入模型y = 10x,得到y = 10 × 1000 = 10000。
(3)结果分析通过计算可知,公司在该时间段内的利润为10000元。
4. 模型验证为了验证模型的准确性,我们可以根据实际情况调整销售数量,重新计算利润,并与实际结果进行比较。
四、实验结果与分析通过本实验,我们成功建立了乘法模型,并预测了公司销售产品的利润。
实验结果表明,乘法模型能够有效地解决实际问题,为决策提供理论依据。
五、实验总结1. 数学建模是解决实际问题的重要方法,通过建立数学模型,我们可以将实际问题转化为数学问题,并运用数学知识进行求解。
2. 乘法模型在解决实际问题中具有广泛的应用,我们可以通过乘法模型预测、分析各种现象。
3. 在进行数学建模时,需要注意以下几点:(1)准确理解问题,明确模型的目标和变量。
《数学建模》实验报告计算过程如下, 结果如下:画图程序命令如下:函数图象如下:实验题目二: 编写利用顺序Guass消去法求方程组解的M-函数文件,并计算方程组的解解: M-函数文件如下:方程组的计算结果如下:实验题目三: 编写“商人们安全过河”的Matlab程序解: 程序如下:function foot=chouxiang%%%%%%%%%%%%%%%%%%%%%% 程序开始需要知道商人数, 仆人数, 船的最大容量n=input('输入商人数目:');nn=input('输入仆人数目:');nnn=input('输入船的最大容量:');if nn>nn=input('输入商人数目:');nn=input('输入仆人数目:');nnn=input('输入船的最大容量:');end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 决策生成jc=1; % 决策向量存放在矩阵“d”中, jc为插入新元素的行标初始为1for i=0:nnnfor j=0:nnnif (i+j<=nnn)&(i+j>0) % 满足条件D={(u,v)|1<=u+v<=nnn,u,v=0,1,2}d(jc,1:3)=[i,j 1]; %生成一个决策向量后立刻将他扩充为三维(再末尾加“1”)d(jc+1,1:3)=[-i,-j,-1]; % 同时生成他的负向量jc=jc+2; % 由于一气生成两个决策向量,jc指标需要往下移动两个单位endendj=0;end再验证:程序结果说明在改变商人和仆人数目, 其他条件不变的条件下。
可能无法得到结果。
程序结果说明在改变商人和仆人数目,其他条件不变的条件下。
可能无法得到结果。
数学建模活动研究报告全文共四篇示例,供读者参考第一篇示例:数学建模是一种将现实问题抽象化、数学化并对其进行分析、求解的过程。
数学建模活动在当今社会得到越来越广泛的应用,不仅在科研领域,也在商业运营、政府管理、社会规划等各个领域都有着重要的作用。
本文将通过对数学建模活动的研究,探讨其定义、意义、应用及发展趋势,以期为读者提供对数学建模活动的全面了解。
一、数学建模活动的定义数学建模活动是指利用数学方法和工具对现实问题进行抽象、模型化和求解的过程。
具体来说,数学建模活动将实际案例中的各种数据、变量、条件等进行量化描述,并通过建立数学模型来分析问题的本质,从而为问题的解决提供理论依据和决策支持。
数学建模活动通常包括问题定义、模型建立、求解和结果验证等步骤,需要深入了解问题背景、建立适当的数学模型,并运用数学知识和技巧进行分析和求解。
1. 提高问题解决效率:数学建模活动可以帮助人们更快、更准确地理解和分析问题,从而提高问题解决的效率。
通过建立数学模型,可以将实际问题简化为数学问题,利用数学方法进行求解,为问题解决提供科学的依据。
2. 促进学科交叉融合:数学建模活动涉及到多个学科领域,如数学、物理、计算机科学等,促使不同学科之间的交叉融合,加深学科间的合作与交流,带动学科发展与创新。
3. 培养综合素质:数学建模活动需要综合运用数学知识、问题分析能力、编程技巧等多方面的能力,参与者在活动中可以培养团队合作精神、创新思维和解决问题的能力,提升综合素质。
4. 推动科研与产业发展:数学建模活动将学术研究与实际问题相结合,为科研成果的转化和产业发展提供新思路和支持,推动科研成果的应用和产业的创新。
1. 科研领域:在科学研究中,数学建模活动被广泛应用于生物医学、天文学、地球科学等领域,帮助研究人员分析和解决复杂的科学问题,推动科学研究的进展。
2. 工商管理:在企业运营管理中,数学建模活动可以帮助企业进行生产排程优化、供应链管理、风险评估等方面的决策,提高企业的效益与竞争力。
数学建模活动研究报告例子数学建模活动研究报告一、研究背景和目的数学建模活动是一种培养学生创新思维和实际问题解决能力的重要途径,对于学生的综合素质培养具有重要意义。
本研究旨在分析数学建模活动对学生数学学习和思维能力的影响,并探讨如何更有效地组织和实施数学建模活动。
二、研究方法本研究采用实地观察和问卷调查相结合的方式进行数据收集和分析。
首先,我们选择了一所中学作为研究对象,观察了该校数学建模课堂的教学过程,并记录了学生的学习表现和思维过程。
同时,我们还设计了一份问卷,对参与数学建模活动的学生进行调查,了解他们对数学建模活动的态度和意见。
三、研究结果通过观察和调查数据的分析,我们得出以下结果:1. 数学建模活动可以激发学生对数学学习的兴趣,提高他们的主动参与程度。
2. 数学建模活动有助于培养学生的实际问题解决能力和创新思维能力。
3. 数学建模活动可以促进学生之间的合作与交流,增强他们的团队意识和合作能力。
4. 数学建模活动对学生的数学知识应用能力和数学建模能力有一定的提高作用。
四、研究结论和建议根据以上研究结果,我们得出以下结论和建议:1. 数学建模活动是一种有效的培养学生数学思维和实际问题解决能力的教学方法,应在中学数学教学中得到更广泛的应用。
2. 在组织和实施数学建模活动时,应注重培养学生的团队合作能力,提供适当的引导和支持。
3. 学校和教师应提供更多的资源和活动机会,为学生参与数学建模活动提供更好的条件和环境。
4. 需要进一步研究和开发数学建模活动的教学策略和评价方法,以提高数学建模活动的教学效果。
通过本研究,我们对数学建模活动的教学价值和实施方法有了更深入的认识,为今后的数学教学和学生素质培养提供了参考和建议。
同时,本研究也提出了一些问题和需要进一步研究的方向,为未来的研究提供了一定的指导。
数学建模的实际案例与反思数学建模作为一门现代应用数学的分支,通过将数学方法与实际问题相结合,对问题进行定量分析和求解,为解决实际问题提供了全新的视角和方法。
在实践中,数学建模也经常面临着各种挑战和困难。
本文将以数学建模的实际案例为线索,对该领域的发展和应用进行反思,并探讨其未来的发展方向。
案例一:城市交通流量优化面对城市交通日益严重的拥堵问题,如何优化交通流量已成为城市规划者和交通管理者亟待解决的难题。
这一问题就可以通过数学建模来进行分析和求解。
首先,可以用数学模型对交通状况进行建模,包括车辆数量、行驶速度等参数;然后,通过对数据进行分析和优化算法的设计,得到最优的交通流量方案。
该方法不仅可以减少行程时间,还能提高整体交通效益,为城市交通管理提供科学依据。
案例二:股票市场波动预测股票市场波动对投资者而言是一个关键的问题,准确预测市场的波动趋势有助于投资者做出明智的决策。
数学方法可以通过建立股票市场的数学模型,结合历史数据和相关经济指标,对市场波动进行预测。
这样的建模方法可以帮助投资者降低风险,提高投资收益,为投资领域的决策提供科学依据。
案例三:疾病传播模型疾病的传播对公共卫生和社会稳定具有重要影响,针对不同的传染病,可以利用数学建模的方法来进行疫情预测和控制策略的制定。
通过构建传染病传播的数学模型,可以对疫情传播的趋势进行预测和分析,进而制定相应的防控措施。
这种模型的应用可以提前发现潜在的疫情蔓延风险,快速响应并有效地减少疫情扩散。
数学建模的实际案例给我们展示了数学在实际生活中的广泛应用和价值。
通过数学建模,我们可以对各个领域的问题进行系统的分析、预测和优化,为决策和问题解决提供科学依据。
然而,数学建模也存在着一些挑战和困难。
首先,实际问题的复杂性和多样性给数学建模带来了挑战。
不同的问题需要使用不同的数学模型和方法进行建模,而选择合适的模型和方法需要对问题进行深入的了解和分析,这对建模者的数学素养和领域知识要求较高。
数学建模活动研究报告例子
数学建模活动研究报告
一、活动背景和目的
为了提高学生的数学建模能力和解决实际问题的能力,学校组织了一次数学建模活动。
本次活动的目的是使学生能够运用自己所学的数学知识和方法,对实际问题进行综合分析和解决,培养他们的创新思维和团队合作精神。
二、活动内容
本次活动的主题是“城市交通规划问题”。
学生们分成若干个小组,每个小组选取一个城市作为研究对象,通过对城市的交通情况进行调查和分析,提出合理的交通规划方案。
三、活动过程
1. 问题调研:学生们在老师的指导下利用各种资源,对自己所选的城市的交通情况进行了全面、深入的调研,了解了城市的道路规划、交通状况、交通流量等方面的情况。
2. 问题分析:学生们对所收集到的各种交通数据进行了整理和分析,分析了现有交通系统的优势和不足之处,探究了影响交通流动的关键因素,并提出了自己的观点和见解。
3. 模型建立:学生们根据问题的要求和自己的思考,建立了相
应的数学模型和计算过程,并利用计算机软件对模型进行了求解和分析。
4. 结果验证:学生们对模型的结果进行了验证和讨论,对未来可能出现的问题和不确定因素进行了预测和评估,并提出了相应的改进意见和方案。
5. 活动总结:学生们对整个活动进行了总结和评价,分享了自己在建模过程中的收获和困惑,提出了对学校未来数学建模活动的建议。
四、活动成果
本次活动的成果丰富多样,每个小组都提出了具体可行的交通规划方案,并通过数学模型得出了相应的数据和结论。
以某小组的成果为例,该小组选取了某城市作为研究对象,通过对该城市的交通情况进行调查和分析,提出了一套完整的交通规划方案。
他们首先分析了该城市目前交通系统的状况和问题,发现城市道路拥堵现象严重,并提出了在交通规划中要加强对公交车和地铁的建设和优化,同时提出鼓励市民选择非机动车出行等措施。
然后,他们建立了相关的数学模型,对交通流量、道路拥堵度等进行了量化分析,并利用计算机软件对模型进行求解和仿真。
最终,他们得出的结果显示,如果该城市按照他们的交通规划方案进行改造和优化,将能够有效缓解交通拥堵,提高交通效率,改善市民的出行体验。
五、活动效果
本次活动不仅提高了学生们的数学建模能力,还培养了他们的创新思维和团队合作精神。
学生们通过实际问题的分析和解决,不仅加深了对数学知识的理解和运用,还提高了自己的问题解决能力和创造力。
同时,活动还激发了学生的学习兴趣和动力,积极参与数学建模活动,展示了自己的才华和成果。
六、活动总结
本次数学建模活动是一次成功的实践,取得了良好的效果。
通过这次活动,学生们提高了数学建模能力,同时也意识到了数学在实际问题中的重要性和应用价值。
活动不仅提高了学生的综合素养和解决问题的能力,还培养了学生的创新思维和团队合作精神。
希望学校能够继续组织类似的数学建模活动,进一步激发学生的学习兴趣和创造力。