2016全国大学生数学建模大赛国家一等奖论文A题
- 格式:pdf
- 大小:1.21 MB
- 文档页数:26
地下储油罐的变位分析与罐容表标定摘要加油站地下储油罐在使用一段时间后,由于地基变形等原因会发生纵向倾斜及横向偏转,导致与之配套的“油位计量管理系统”受到影响,必须重新标定罐容表。
本文即针对储油罐的变位时罐容表标定的问题建立了相应的数学模型。
首先从简单的小椭圆型储油罐入手,研究变位对罐容表的影响。
在无变位、纵向变位的情况下分别建立空间直角坐标系,在忽略罐壁厚度等细微影响下,运用积分的方法求出储油量和测量油位高度的关系。
将计算结果与实际测量数据在同一个坐标系中作图,经计算得误差均保持在3.5%以内。
纵向变位中,要分三种情况来进行求解,然后将三段的结果综合在一起与变位前作比较,可以得到变位对罐容表的影响。
通过计算,具体列表给出了罐体变位后油位高度间隔为1cm 的罐容表标定值。
进一步考虑实际储油罐,两端为球冠体顶。
把储油罐分成中间的圆柱体和两边的球冠体分别求解。
中间的圆柱体求解类似于第一问,要分为三种情况。
在计算球冠内储油量时为简化计算,将其内油面看做垂直于圆柱底面。
根据几何关系,可以得到如下几个变量之间的关系:测量的油位高度0h 实际的油位高度h 计算体积所需的高度H于是得到罐内储油量与油位高度及变位参数(纵向倾斜角度α和横向偏转角度β )之间的一般关系。
再利用附表2中的数据列方程组寻找α与β最准确的取值。
αβ一、问题重述通常加油站都有若干个储存燃油的地下储油罐,并且一般都有与之配套的“油位计量管理系统”,采用流量计和油位计来测量进/出油量与罐内油位高度等数据,通过预先标定的罐容表(即罐内油位高度与储油量的对应关系)进行实时计算,以得到罐内油位高度和储油量的变化情况。
许多储油罐在使用一段时间后,由于地基变形等原因,使罐体的位置会发生纵向倾斜和横向偏转等变化(以下称为变位),从而导致罐容表发生改变。
按照有关规定,需要定期对罐容表进行重新标定。
题目给出了一种典型的储油罐尺寸及形状示意图,其主体为圆柱体,两端为球冠体。
2011高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)A 题 城市表层土壤重金属污染分析随着城市经济的快速发展和城市人口的不断增加,人类活动对城市环境质量的影响日显突出。
对城市土壤地质环境异常的查证,以及如何应用查证获得的海量数据资料开展城市环境质量评价,研究人类活动影响下城市地质环境的演变模式,日益成为人们关注的焦点。
按照功能划分,城区一般可分为生活区、工业区、山区、主干道路区及公园绿地区等,分别记为1类区、2类区、……、5类区,不同的区域环境受人类活动影响的程度不同。
现对某城市城区土壤地质环境进行调查。
为此,将所考察的城区划分为间距1公里左右的网格子区域,按照每平方公里1个采样点对表层土(0~10 厘米深度)进行取样、编号,并用GPS 记录采样点的位置。
应用专门仪器测试分析,获得了每个样本所含的多种化学元素的浓度数据。
另一方面,按照2公里的间距在那些远离人群及工业活动的自然区取样,将其作为该城区表层土壤中元素的背景值。
附件1列出了采样点的位置、海拔高度及其所属功能区等信息,附件2列出了8种主要重金属元素在采样点处的浓度,附件3列出了8种主要重金属元素的背景值。
现要求你们通过数学建模来完成以下任务:(1) 给出8种主要重金属元素在该城区的空间分布,并分析该城区内不同区域重金属的污染程度。
(2) 通过数据分析,说明重金属污染的主要原因。
(3) 分析重金属污染物的传播特征,由此建立模型,确定污染源的位置。
(4) 分析你所建立模型的优缺点,为更好地研究城市地质环境的演变模式,还应收集什么信息?有了这些信息,如何建立模型解决问题?分分工会舒服的规划法规f x c f 是否撒的发生的发生fx c f 是否撒的发生的发生f x c f 是否撒的发生的发生fx c f 是否撒的发生的发生fx c f 是否撒的发生的发生f x c f 是否撒的发生的阿斯顿发斯蒂芬斯蒂芬题 目 A 题 城市表层土壤重金属污染分析摘 要:本文研究的是某城区警车配置及巡逻方案的制定问题,建立了求解警车巡逻方案的模型,并在满足D1的条件下给出了巡逻效果最好的方案。
承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则•我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们参赛选择的题号是(从A/B/C/D中选择一项填写):_________________________________ 我们的参赛报名号为(如果赛区设置报名号的话):_______________________________________ 所属学校(请填写完整的全名):________________________________________________________ 参赛队员(打印并签名):1. _______________________________________________2. ____________________________________________3. ____________________________________________指导教师或指导教师组负责人(打印并签名):____________________________日期:—年—月—日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):基于系统综合评价的城市表层土壤重金属污染分析摘要本文针对城市表层土壤重金属污染问题,首先对各重金属元素进行分析,然后对各种重金属元素的基本数据进行统计分析及无量纲化处理,再对各金属元素进行相关性分析,最后针对各个问题建立模型并求解。
2016年数学建模竞赛A题优秀论文基于力学分析的系泊系统设计摘要关于系泊系统的设计问题,需要对稳态下的各个物体进行受力分析和力矩分析,建立力学分析模型来求解问题。
针对问题1,先对稳态下的各个物体进行受力分析和力矩分析,建立满足受力平衡和力矩平衡的力学模型。
再以浮标的吃水深度为搜索变量,采用二分法,计算海水深度为18m时所对应的吃水深度和各物体的倾角。
利用MATLAB软件求解可得,风速为12m/s时,钢桶与竖直方向的夹角为1.2319°,钢管与竖直方向的夹角依次为1.2064°,1.2064°,1.2148°,1.2233°。
浮标的吃水深度和游动半径分别为0.6715m,14.6552m。
风速为24m/s时,钢桶夹角为4.6763°,钢管夹角依次为4.5360°,4.5836°,4.6141°,4.6450°;浮标的吃水深度和游动半径分别为0.6857m,17.7614m。
针对问题2,可利用问题1中建立的数学模型,利用MATLAB进行求解,可得风速为36m/s时,钢桶夹角9.6592°;钢管夹角依次为9.4814°,9.4814°,9.5399°,9.5992°;浮标的吃水深度和游动半径分别为0.7086m,18.4906m;最后一节锚链与水平面的夹角为20.9997°故以钢桶夹角小于5°和锚链夹角小于16°为约束条件,逐步增加重物球的质量,采用二分法向水深18m进行逼近。
当重物球的质量为2280kg时,浮标的吃水深度为0.9848m;钢桶夹角为4.4737°;锚链夹角为15.9748°;为使通讯设备的工作效果增强,重物球的质量可以在2280kg的基础上进行适当增加。
针对问题3,可在问题1的受力分析时加入水流力的作用,以最大风速36m/s,最大水流速度1.5m/s为设计指标,通过控制单一变量的方式可确定链条的型号为Ⅴ型的电焊锚链。
2016年高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)A题系泊系统的设计近浅海观测网的传输节点由浮标系统、系泊系统和水声通讯系统组成(如图1所示)。
某型传输节点的浮标系统可简化为底面直径2m、高2m的圆柱体,浮标的质量为1000kg。
系泊系统由钢管、钢桶、重物球、电焊锚链和特制的抗拖移锚组成。
锚的质量为600kg,锚链选用无档普通链环,近浅海观测网的常用型号及其参数在附表中列出。
钢管共4节,每节长度1m,直径为50mm,每节钢管的质量为10kg。
要求锚链末端与锚的链接处的切线方向与海床的夹角不超过16度错误!未找到引用源。
,否则锚会被拖行,致使节点移位丢失。
水声通讯系统安装在一个长1m、外径30cm的密封圆柱形钢桶内,设备和钢桶总质量为100kg。
钢桶上接第4节钢管,下接电焊锚链。
钢桶竖直时,水声通讯设备的工作效果最佳。
若钢桶倾斜,则影响设备的工作效果。
钢桶的倾斜角度(钢桶与竖直线的夹角)超过5度时,设备的工作效果较差。
为了控制钢桶的倾斜角度,钢桶与电焊锚链链接处可悬挂重物球。
图1 传输节点示意图(仅为结构模块示意图,未考虑尺寸比例)系泊系统的设计问题就是确定锚链的型号、长度和重物球的质量,使得浮标的吃水深度和游动区域及钢桶的倾斜角度尽可能小。
问题1某型传输节点选用II型电焊锚链22.05m,选用的重物球的质量为1200kg。
现将该型传输节点布放在水深18m、海床平坦、海水密度为1.025×103kg/m3的海域。
若海水静止,分别计算海面风速为12m/s和24m/s时钢桶和各节钢管的倾斜角度、锚链形状、浮标的吃水深度和游动区域。
问题2在问题1的假设下,计算海面风速为36m/s时钢桶和各节钢管的倾斜角度、锚链形状和浮标的游动区域。
请调节重物球的质量,使得钢桶的倾斜角度不超过5度,锚链在锚点与海床的夹角不超过16度。
问题3 由于潮汐等因素的影响,布放海域的实测水深介于16m~20m之间。
基于改进悬链线及多目标优化的系泊系统设计摘要本文运用系统分析的方法研究系泊系统,分析了系统参数(风速、水速、水深、构件的尺寸和质量)与系统状态变量(浮标吃水深度、游动区域和锚链形状、钢桶倾斜角度)的关系。
通过汇交力系的平衡方程分析了构件之间的作用力、构件和系统外部的作用力,再通过力矩平衡方程分析了构件的倾斜角度。
问题一是求解问题,在给定水深、风速和链长、球重等系统参数的条件下,求系统的平衡状态。
本文运用了系统整体分析和自底向上的局部隔离法分析。
首先,假设吃水深度为h,得到浮标浮力,对由锚链、钢桶、钢管和浮标组成的系统进行整体分析,根据总重力、总浮力、风对浮标的推力和锚对锚链下端的拉力这四种外力的均衡,得到锚对第一节链环的拉力;再将链环作为研究对象,根据改进的悬链线方程得到所有链环的拉力和倾斜角;接着,根据最后一节链环对钢桶的拉力,利用力平衡方程分析得到钢桶的拉力和倾斜角;然后,类似地依次向上计算4节钢管的拉力和倾斜角;最后,计算所有构件的竖直投影高度,加上浮标吃水深度,即为水深。
通过逐步求精找到满足水深条件的吃水深度,从而确定所有链环、钢桶、钢管的倾斜角度,计算构件水平投影长度,得到浮标游动半径,并利用线段模拟得到锚链的形状。
为了验证模型的误差大小,根据最上一节钢管的拉力分析浮标的受力情况,由浮标浮力得到浮标吃水深度,将其与前面所求吃水深度对比。
具体结果如下:风速(m/s)锚链与海床夹角未拉起锚链长度(m)钢桶倾斜角度浮标游动半径(m)浮标吃水深度(m)校验吃水深度(m)误差率120° 6.720.5272°14.259880.736880.730950.8%240°0.21 2.0475°17.263190.751030.745280.7%问题二是问题一的反问题,给定系统平衡状态满足的两个条件(钢桶倾斜角不超过5°,锚链与海床夹角不超过16°)求系统的参数——重物球的质量。
2016年全国大学生数学建模竞赛A题2016年高教社杯全国大学生数学建模竞赛题目 ,请先阅读“全国大学生数学建模竞赛论文格式规范”,A题系泊系统的设计近浅海观测网的传输节点由浮标系统、系泊系统和水声通讯系统组成(如图1所示)。
某型传输节点的浮标系统可简化为底面直径2m、高2m的圆柱体,浮标的质量为1000kg。
系泊系统由钢管、钢桶、重物球、电焊锚链和特制的抗拖移锚组成。
锚的质量为600kg,锚链选用无档普通链环,近浅海观测网的常用型号及其参数在附表中列出。
钢管共4节,每节长度1m,直径为50mm,每节钢管的质量为10kg。
要求锚链末端与锚的链接处的切线方向与海床的夹角不超过16度,否则锚会被拖行,致使节点移位丢失。
水声通讯系统安装在一个长1m、外00kg。
钢桶上接第4节钢径30cm的密封圆柱形钢桶内,设备和钢桶总质量为1 管,下接电焊锚链。
钢桶竖直时,水声通讯设备的工作效果最佳。
若钢桶倾斜,则影响设备的工作效果。
钢桶的倾斜角度(钢桶与竖直线的夹角)超过5度时,设备的工作效果较差。
为了控制钢桶的倾斜角度,钢桶与电焊锚链链接处可悬挂重物球。
图1 传输节点示意图(仅为结构模块示意图,未考虑尺寸比例)系泊系统的设计问题就是确定锚链的型号、长度和重物球的质量,使得浮标的吃水深度和游动区域及钢桶的倾斜角度尽可能小。
问题1 某型传输节点选用II型电焊锚链22.05m,选用的重物球的质量为1200kg。
现将该型传输节点布放在水深18m、海床平坦、海水密度为1.025×103kg/m3的海域。
若海水静止,分别计算海面风速为12m/s和24m/s时钢桶和各节钢管的倾斜角度、锚链形状、浮标的吃水深度和游动区域。
问题2 在问题1的假设下,计算海面风速为36m/s时钢桶和各节钢管的倾斜角度、锚链形状和浮标的游动区域。
请调节重物球的质量,使得钢桶的倾斜角度不超过5度,锚链在锚点与海床的夹角不超过16度。
问题3 由于潮汐等因素的影响,布放海域的实测水深介于16m~20m之间。
小区开放对道路通行的影响评价模型摘要本文针对小区开放对道路的影响进行了研究,建立了层次分析模型、通行能力评价模型,使用了MATLAB、EXCEL等软件,得出小区开放在不同条件下会对道路交通产生不同的影响。
首先运用层次分析法,分析得出整体一般情况下小区开放有利于周边道路交通的结论。
之后构建了不同类型的小区,并分析得出小区开放的效果与小区结构及周边道路结构、车流量有关,因此小区开放不能盲目采取,要因地制宜。
最后根据分析结果,从交通通行的角度,向城市规划和交通管理部门提出了关于小区开放的合理化建议。
本文的突出特点是使用了层次分析法定量的比较了小区开放前后道路合理性,构建了对于研究该问题具有代表性的三种类型的小区,并建立了影响评估模型,客观的对不同小区结构及周边道路结构、车辆通行的影响进行评价。
针对问题一,首先查阅相关资料选取影响道路通行的指标,并对选取的指标进行筛选,然后运用各项指标进行层次分析,通过小区开放和小区封闭对道路交通和理性的判断来分析小区开放对道路通行的影响最后得出从整体看来,小区开放有利于道路通行。
针对问题二,通过查阅有关道路通行能力的相关资料建立了通行能力评价模型,首先根据模型求出道路基本通行能力的表达式,基本通行能力是理想状态下的通行能力,与实际情况分析对比存在差异。
因此基于差异,通过各实际因素对道路通行能力的影响进行修正,得到实际道路通行能力的数据。
最终计算出小区开放前后实际通行能力的相对系数。
针对问题三,构建了三种类型的小区,不同类型的小区具有不同的结构及不同的周边道路结构、车流量,应用问题二建立的模型分别对三种小区开放和封闭条件下周边道路的实际通行能力进行了计算,通过相对系数评价不同类型的小区开放对道路通行的影响,分析得出小区开放与地理位置、内部结构等因素有关,不能一概而论。
针对问题四,结合前述模型结果分析结果,从交通出行角度对城市规划部门和交通管理部门提出了合理化意见。
小区开放要合理的实施以体现小区开放的意义。
系泊系统的设计摘要本文为系泊系统的设计问题,根据题目要求建立了数学模型,计算出系泊系统在不同条件下的具体参数,并利用模型对系泊系统进行优化分析,使其能运用到更广的领域。
针对问题一,首先分析了锚链的形状,利用微积分原理求出锚链的静态方程,用Matlab 画出锚链形状,得出锚链的形状所符合悬链线方程。
然后把钢管、钢桶看成一个整体,并忽略钢管和钢桶倾斜引起的锚链上端高度的变化,分析出锚链的长度和锚链末端与海平面的夹角对吃水深度的影响,又对钢桶、钢管和浮标进行了受力和力矩分析。
最后建立了数学模型,计算出风速为12m/s 和24m/s 时,钢桶和各节钢管的倾斜角度(见表2),浮标吃水深度分别为0.737m 、0.752m ,浮标的浮动区域(此浮动区域是以锚为圆心的圆)面积分别为、,锚链的形状如图(5-11)、(5-12)所示。
针对问题二,由问题一中建立的系泊系统的模型,计算风速为36m/s 时钢桶和各节钢管的倾斜角度、锚链形状和浮标的游动区域。
得到了钢桶和各节钢管的倾斜角度如(表3),浮标吃水深度:0.787m ,以及游动区域面积:1229.39m 。
由于重物球的质量变化影响锚点与海床的夹角,可以通过调节重物球的质量控制锚点与海床的夹角。
分析得出当锚点与海床的夹角处于临界点(即16度)时,重物球的最小质量为1756.8kg ;当浮标刚好没入水中时,重物球的最大质量为5335.8kg 。
针对问题三,以钢桶、钢管的倾斜角度、锚链形状、浮标的吃水深度和游动区域为目标函数,分析动态优化问题。
与问题一、二不同的是:此问题给定了水深、海水速度、风速的取值范围,属于模型动态变化问题。
所以对模型进行了动态分析,求得钢桶、钢管的倾斜角度、锚链形状、浮标的吃水深度和游动区域的取值范围,进而分析水深、海水速度、风速对结果的影响,这有利于系泊系统的调整和应用。
本文所建立的模型对相关问题在理论上作了证明,虽然对部分模型进行了简化,但是实用性很强,而且易于推广,能够扩展到其他系泊系统。