2014届高三数学一轮复习:3.6简单的三角恒等变换
- 格式:ppt
- 大小:2.10 MB
- 文档页数:45
简单的三角恒等变换基础巩固组1.函数f (x )=(√3sin x+cos x )(√3cos x-sin x )的最小正周期是( ) A.π2B.πC.3π2D.2π2.(2020陕西榆林一模,理7)已知α∈(0,π),2sin 2α=cos 2α-1,则sin α=( ) A.15B.√55C.-√55D.2√553.已知2sin 2α=1+cos 2α,则tan 2α=( ) A.43B.-43C.43或0D.-43或04.(2020山东德州二模,5)已知α终边与单位圆的交点P (x ,-35),且sin αcos α>0,则√1-sin2α+√2+2cos2α的值等于( ) A.95 B.75 C.65D.35.已知cos 2π3-2θ=-79,则sin π6+θ的值等于( ) A.13B.±13C.-19D.196.已知α∈0,π2,sin α-cos α=√55,则tan α+π4=( )A.-32B.-23C.-3D.-137.(多选)下列各式中,值为12的是( ) A.cos 2π12-sin 2π12B.tan22.5°1-tan 222.5°C.2sin 195°cos 195°D.√1+cos π628.(多选)(2020山东潍坊临朐模拟二,10)已知函数f (x )=sin x sin (x +π3)−14的定义域为[m ,n ](m<n ),值域为[-12,14],则n-m 的值可能是( ) A.5π12B.7π12C.3π4D.11π129.(2020山东历城二中模拟四,14)已知tan α2=√52,则sin π2+α= . 10.(2020山东济南一模,13)已知cos 2α-π3=23,则12-sin 2α-π6的值为 .11.(2020山东潍坊二模,14)已知α∈0,π2,sin α-π4=√55,则tan α= .12.(2020陕西西安中学八模,文14)若α∈0,π2,且2cos 2α=sin α+π4,则sin 2α的值为 .综合提升组13.已知f (x )=sin 2x+sin x cos x ,则f (x )的最小正周期和一个单调递增区间分别为( ) A.π [0,π] B.2π -π4,3π4 C.π-π8,3π8D.2π-π4,π414.已知m=tan (α+β+γ)tan (α-β+γ),若sin 2(α+γ)=3sin 2β,则m=( )A.-1B.34 C.32D.215.已知cos α=13,cos(α+β)=-13,且α,β∈0,π2,则cos(α-β)的值为 . 16.(2020山东泰安一模,13)已知α,β∈3π4,π,sin(α+β)=-35,sin β-π4=1213,则cos α+π4= .创新应用组17.(多选)(2020山东滨州二模,11)已知函数f (x )=(a sin x+cos x )cos x-12的图像的一条对称轴为x=π6,则下列结论中正确的是( ) A.f (x )是最小正周期为π的奇函数 B.(-7π12,0)是f (x )图像的一个对称中心 C.f (x )在区间[-π3,π3]上单调递增D.先将函数y=2sin 2x 图像上各点的纵坐标缩短为原来的12,然后把所得函数图像再向左平移π12个单位长度,即可得到函数f (x )的图像18.(2020河北邢台模拟,理12)已知定义域为R 的函数f (x )满足f 12=12,f'(x )+4x>0,其中f'(x )为f (x )的导函数,则不等式f (sin x )-cos 2x ≥0的解集为 ( )A.-π3+2k π,π3+2k π,k ∈Z B.-π6+2k π,π6+2k π,k ∈Z C.π3+2k π,2π3+2k π,k ∈Z D.π6+2k π,5π6+2k π,k ∈Z参考答案课时规范练21 简单的三角恒等变换1.B f (x )=2sin x+π6×2cos x+π6=2sin 2x+π3,故最小正周期T=2π2=π,故选B .2.D ∵α∈(0,π),∴sin α>0,∵2sin 2α=cos 2α-1,即4sin αcos α=(1-2sin 2α)-1,整理得cos α=-12sin α,代入sin 2α+cos 2α=1,解得sin α=2√55.故选D .3.C 因为2sin 2α=1+cos 2α,所以2sin 2α=2cos 2α.所以2cos α(2sin α-cos α)=0,解得cos α=0或tan α=12.若cos α=0,则α=k π+π2,k ∈Z ,2α=2k π+π,k ∈Z ,所以tan 2α=0.若tan α=12,则tan 2α=2tanα1-tan 2α=43.综上所述,故选C .4.A 已知α终边与单位圆的交点P x ,-35,且sin αcos α>0,∴x<0,故x=-45,∴sin α=-35,cos α=x=-45.则√1-sin2α+√2+2cos2α=|cos α-sin α|+√4cos 2α=15+85=95.故选A . 5.B ∵cos2π3-2θ=-79,∴cos π-π3+2θ=-cosπ3+2θ=-cos 2π6+θ =-1-2sin 2π6+θ=-79,解得sin 2π6+θ=19,∴sinπ6+θ=±13.故选B .6.C ∵sin α-cos α=√55,则(sin α-cos α)2=15,即1-sin 2α=15,得sin 2α=45,∴(sin α+cos α)2=1+sin 2α=1+45=95,则sin α+cos α=3√55,又sin α-cos α=√55,∴sin α=2√55,cos α=√55,∴tan α=2,∴tan α+π4=tanα+11-tanα=2+11-2=-3.7.BC cos 2π12-sin 2π12=cos 2×π12=cos π6=√32,故A 错误;tan22.5°1-tan 222.5°=12·2tan22.5°1-tan 222.5°=12tan 45°=12,故B 正确;2sin 195°cos 195°=2sin(180°+15°)cos(180°+15°)=2sin 15°cos 15°=sin 30°=12,故C 正确; √1+cos π62=√2+√34=√2+√32≠12,故D 错误.故选BC .8.AB f (x )=sin x sin x+π3-14=sin x 12sin x+√32cos x -14 =14(1-cos 2x )+√34sin 2x-14 =12√32sin 2x-12cos 2x =12sin 2x-π6.作出函数f (x )的图像如图所示,在一个周期内考虑问题.易得{m =π2,5π6≤n ≤7π6或{π2≤m ≤5π6,n =7π6满足题意,所以n-m 的值可能为区间[π3,2π3]上的任意实数.故选AB . 9.-19 sin π2+α=cos α=cos 2α2-sin 2α2=cos2α2-sin2α2cos2α2+sin2α2=1-tan2α21+tan2α2=1-541+54=4-54+5=-19.10.13∵cos2α-π3=23,∴12-sin2α-π6=12−1-cos2(α-π6)2=12cos2α-π3=12×23=13.11.3∵α∈0,π2,∴α-π4∈-π4,π4,由sinα-π4=√55,得cosα-π4=2√55.∴sin α=sinα-π4+π4=sinα-π4cosπ4+cosα-π4sinπ4=√55×√22+2√55×√22=3√1010,cos α=√1-sin2α=√1010,∴tan α=3.12.78由2cos 2α=sinα+π4,得2cos 2α=√22sin α+√22cos α,两边平方得4cos22α=12(1+sin 2α),即8(1-sin22α)=1+sin 2α,整理得(7-8sin 2α)(1+sin 2α)=0,又α∈0,π2,所以sin 2α=78或sin 2α=-1(舍去).13.C f(x)=sin2x+sin x cos x=1-cos2x2+12sin 2x=1 2+√22√22sin 2x-√22cos 2x=1 2+√22sin2x-π4,则T=2π2=π.又∵2k π-π2≤2x-π4≤2k π+π2(k ∈Z ),∴k π-π8≤x ≤k π+3π8(k ∈Z )为函数的单调递增区间.故选C . 14.D ∵sin 2(α+γ)=3sin 2β,∴sin[(α+γ+β)-(β-α-γ)]=3sin[(α+γ+β)-(α+γ-β)],∴sin(α+γ+β)cos(β-α-γ)-cos(α+γ+β)sin(β-α-γ)=3sin(α+γ+β)cos(α+γ-β)-3cos(α+γ+β)sin(α+γ-β),即-2sin(α+γ+β)cos(α+γ-β)=-4cos(α+β+γ)sin(α+β-γ),∴12tan(α+γ+β)=tan(α+γ-β), 故m=tan (α+β+γ)tan (α-β+γ)=2,故选D . 15.2327 ∵α∈0,π2,∴2α∈(0,π).∵cos α=13,∴cos 2α=2cos 2α-1=-79,∴sin 2α=√1-cos 22α=4√29. ∵α,β∈0,π2,∴α+β∈(0,π),∴sin(α+β)=√1-cos 2(α+β)=2√23,∴cos(α-β)=cos[2α-(α+β)] =cos 2αcos(α+β)+sin 2αsin(α+β) =-79×-13+4√29×2√23=2327.16.-5665∵α,β∈3π4,π,∴α+β∈3π2,2π,∴cos(α+β)=√1-sin 2(α+β)=45. 又β-π4∈π2,3π4,sin β-π4=1213,∴cos β-π4=-√1-sin 2(β-π4) =-513.∴cos α+π4=cos (α+β)-β-π4=cos(α+β)cos β-π4+sin(α+β)sin β-π4=45×-513+-35×1213=-5665. 17.BD 函数f (x )=(a sin x+cos x )cos x-12=a sin x cos x+cos 2x-12=12a sin 2x+12cos 2x ,因为f (x )图像的一条对称轴为x=π6,所以f (0)=f (π3),即12=12a ×√32+12×(-12),解得a=√3,所以f (x )=√32sin 2x+12cos2x=sin (2x +π6).所以f (x )的最小正周期为π,但不是奇函数,故A 错误;f (-7π12)=sin (-7π6+π6)=f (-π)=0,所以(-7π6,0)是f (x )图像的一个对称中心,故B 正确;x ∈[-π3,π3]时,2x+π6∈[-π2,5π6],所以f (x )在区间[-π3,π3]上不是单调函数,故C 错误;将函数y=2sin 2x 图像上各点的纵坐标缩短为原来的12(横坐标不变),得y=sin 2x 的图像,再把所得函数图像向左平移π12个单位长度,得y=sin 2(x +π12)=sin 2x+π6的图像,即函数f (x )的图像,故D 正确.故选BD .18.D 令g (x )=f (x )+2x 2-1,g'(x )=f'(x )+4x>0,故g (x )在R 上单调递增,且g 12=f 12+2×122-1=0,所以f (sin x )-cos 2x=f (sin x )+2sin 2x-1≥0,即g (sin x )≥g 12,则sin x ≥12,解得π6+2k π≤x ≤5π6+2k π,k ∈Z .故选D .。
知识点总结 51 三角函数概念及三角恒等变换一.角的概念的推广:1.定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.2.角的分类:{按旋转方向的不同分类{正角:按逆时针方向旋转形成的角;负角:按顺时针方向旋转形成的角;零角:没有旋转;按终边位置不同分类{象限角:角的终边在第几象限,就是第几象限的角;轴线角:角的终边在坐标轴上。
3.终边相同的角:所有与角α终边相同的角,连同角α在内,构成的角的集合是S ={β|β=k ·360°+α,k ∈Z }. 即任一与角α终边相同的角,都可以表示成角α与整数个周角的和. 4.几种特殊位置的角的集合 (1)象限角的集合:①第一象限角:{α|2kπ<α<2kπ+π2 ,k ∈Z};②第二象限角:{α|2kπ+π2<α<2kπ+π ,k ∈Z}; ③第三象限角:{α|2kπ+π<α<2kπ+3π2,k ∈Z};④第四象限角:{α|2kπ+3π2<α<2kπ+2π ,k ∈Z};(2)轴线角的集合:①终边在x 轴非负半轴上的角的集合:{α|α=2kπ ,k ∈Z }. ②终边在x 轴非正半轴上的角的集合:{α|α=2kπ+π ,k ∈Z }. ③终边在x 轴上的角的集合:{α|α=kπ ,k ∈Z }. ④终边在y 轴上的角的集合:{α|α=kπ+π2 ,k ∈Z}.⑤终边在坐标轴上的角的集合:{α|α=k ∙π2 ,k ∈Z}. (3)终边在特殊直线上:①终边在y =x 上的角的集合:{α|α=kπ+π4 ,k ∈Z}.②终边在y =-x 上的角的集合:{α|α=kπ−π4 ,k ∈Z}.③终边在坐标轴或四象限角平分线上的角的集合:{α|α=k ∙π4 ,k ∈Z}. 二.弧度制:1.弧度的角:在圆中,把长度等于半径长的弧所对的圆心角叫做1弧度的角,用符号rad 表示.2.正角、负角和零角的弧度数一般的,正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0. 3.角度制与弧度制的换算(1)1°=π180 rad. (2)1 rad =(180π)°4.如果半径为r 的圆的圆心角α所对弧的长为l ,那么,角α的弧度数的绝对值是|α|=lr 相关公式:(1)扇形的弧长公式:l =nπr180=|α|r . (2)扇形的面积公式:S =12lr =nπr 2360=12|α|r 2. 三.三角函数概念(1)利用单位圆定义三角函数:设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么: sin α=y . cos α=x . tan α=yx (x ≠0).(2)利用终边上的点定义三角函数:设α是一个任意角,它的终边过点P (x ,y ),|OP |=r 那么: sin α=yr. cos α=xr. tan α=yx(x ≠0).(3)符号法则:一全二正三切四余 (4)特殊角的三角函数值四.三角恒等变形 1.同角三角函数的基本关系 (1)平方关系:sin 2α+cos 2α=1.(2)商数关系:sinαcosα=tan α(α≠kπ+π2,k ∈Z). 变形:(1)(sin α±cos α)2=1±2sin αcos α=1±sin2α,(2)sin 2α=1-cos 2α=(1+cos α)(1-cos α); (3)cos 2α=1-sin 2α=(1+sin α)(1-sin α); (4)sin α=tan αcos α(α≠kπ+π2,k ∈Z).2.正弦、余弦的诱导公式:奇变偶不变,符号看象限。
第六节 简单的三角恒等变换 简单的三角恒等变换能运用公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆).知识点一 半角公式1.用cos α表示sin 2 α2,cos 2 α2,tan 2 α2.sin 2α2=1-cos α2;cos 2 α2=1+cos α2; tan 2 α2=1-cos α1+cos α.2.用cos α表示sin α2,cos α2,tan α2.sin α2=±1-cos α2;cos α2=± 1+cos α2; tan α2=±1-cos α1+cos α.3.用sin α,cos α表示tan α2.tan α2=sin α1+cos α=1-cos αsin α.易误提醒 应用“sin α2=±1-cos α2”或“cos α2=± 1+cos α2”求值时,可由α2所在象限确定该三角函数值的符号.易混淆由α决定.必记结论 用tan α表示sin 2α与cos 2αsin 2α=2sin αcos α=2sin αcos αsin 2α+cos 2α=2tan αtan 2α+1;cos 2α=cos 2α-sin 2α=cos 2α-sin 2αcos 2α+sin 2α=1-tan 2α1+tan 2α.[自测练习]1.已知cos θ=-15,5π2<θ<3π,那么sin θ2=( )A.105 B .-105 C.155D .-155解析:∵5π2<θ<3π,∴5π4<θ2<3π2.∴sin θ2=-1-cos θ2=-1+152=-155. 答案:D知识点二 辅助角公式a sin α+b cos α=a 2+b 2sin(α+φ)⎝⎛⎭⎫其中tan φ=ba . 易误提醒 在使用辅助角公式易忽视φ的取值,应由点(a ,b )所在象限决定,当φ在第一、二象限时,一般取最小正角,当φ在第三、四象限时,一般取负角.[自测练习]2.函数f (x )=sin 2x +cos 2x 的最小正周期为( ) A .π B.π2 C .2πD.π4解析:f (x )=sin 2x +cos 2x =2sin ⎝⎛⎭⎫2x +π4, ∴T =π. 答案:A3.函数f (x )=sin x -cos ⎝⎛⎭⎫x +π6的值域为( ) A .[-2,2] B .[-3,3] C .[-1,1]D.⎣⎡⎦⎤-32,32 解析:∵f (x )=sin x -cos ⎝⎛⎭⎫x +π6=sin x -cos x cos π6+sin x sin π6=sin x -32cos x +12sin x =3⎝⎛⎭⎫32sin x -12cos x =3sin ⎝⎛⎭⎫x -π6(x ∈R ), ∴f (x )的值域为[-3,3]. 答案:B考点一 三角函数式的化简|化简:(1)sin 50°(1+3tan 10°);(2)2cos 4x -2cos 2x +122tan ⎝⎛⎭⎫π4-x sin 2⎝⎛⎭⎫x +π4.解:(1)sin 50°(1+3tan 10°) =sin 50°(1+tan 60°tan 10°)=sin 50°·cos 60°cos 10°+sin 60°sin 10°cos 60°cos 10°=sin 50°·cos (60°-10°)cos 60°cos 10°=2sin 50°cos 50°cos 10°=sin 100°cos 10°=cos 10°cos 10°=1.(2)原式=2cos 2x (cos 2x -1)+122tan ⎝⎛⎭⎫π4-x ·cos 2⎝⎛⎭⎫π4-x=-4cos 2x sin 2x +14cos ⎝⎛⎭⎫π4-x sin ⎝⎛⎭⎫π4-x =1-sin 22x2sin ⎝⎛⎭⎫π2-2x=cos 22x 2cos 2x =12cos 2x . 考点二 辅助角公式的应用|(1)函数y =sin 2x +2 3sin 2x 的最小正周期T 为________.[解析] y =sin 2x +23sin 2x =sin 2x -3cos 2x +3=2sin(2x -π3)+3,所以该函数的最小正周期T =2π2=π.[答案] π(2)设当x =θ时,函数f (x )=sin x -2cos x 取得最大值,则cos θ=________. [解析] f (x )=sin x -2cos x =5⎝⎛⎭⎫55sin x -255cos x =5sin(x -φ),其中sin φ=255,cos φ=55,当x -φ=2k π+π2(k ∈Z )时函数f (x )取到最大值,即θ=2k π+π2+φ时函数f (x )取到最大值,所以cos θ=-sin φ=-255.[答案] -255(1)利用a sin x +b cos x =a 2+b 2sin(x +φ)把形如y =a sin x +b cos x +k 的函数化为一个角的一种函数的一次式,可以求三角函数的周期、单调区间、值域、最值和对称轴等.(2)化a sin x +b cos x =a 2+b 2sin(x +φ)时φ的求法:①tan φ=ba ;②φ所在象限由(a ,b )点确定.已知函数f (x )=2sin x sin ⎝⎛⎭⎫x +π6. 求函数f (x )的最小正周期和单调递增区间. 解:f (x )=2sin x ⎝⎛⎭⎫32sin x +12cos x =3×1-cos 2x 2+12sin 2x=sin ⎝⎛⎭⎫2x -π3+32. 函数f (x )的最小正周期为T =π. 由-π2+2k π≤2x -π3≤π2+2k π,k ∈Z ,解得-π12+k π≤x ≤5π12+k π,k ∈Z ,所以函数f (x )的单调递增区间是⎣⎡⎦⎤-π12+k π,5π12+k π,k ∈Z .考点三 三角恒等变换的综合应用|三角恒等变换是高考必考内容,考查时多与三角函数的图象与性质、解三角形及平面向量交汇综合考查,归纳起来常见的命题探究角度有:1.三角恒等变换与三角函数性质的综合. 2.三角恒等变换与三角形的综合.3.三角恒等变换与向量的综合.探究一 三角恒等变换与三角函数性质的综合1.已知函数f (x )=3sin(ωx +φ)⎝⎛⎭⎫ω>0,-π2≤φ<π2的图象关于直线x =π3对称,且图象上相邻两个最高点的距离为π.(1)求ω和φ的值; (2)若f ⎝⎛⎭⎫α2=34⎝⎛⎭⎫π6<α<2π3, 求cos ⎝⎛⎭⎫α+3π2的值. 解:(1)因为f (x )的图象上相邻两个最高点的距离为π,所以f (x )的最小正周期T =π,从而ω=2πT=2.又f (x )的图象关于直线x =π3对称,所以2×π3+φ=k π+π2,k =0,±1,±2,…. 因为-π2≤φ<π2,所以k =0,所以φ=π2-2π3=-π6.(2)由(1)得f ⎝⎛⎭⎫α2=3sin ⎝⎛⎭⎫2·α2-π6=34, 所以sin ⎝⎛⎭⎫α-π6=14.由π6<α<2π3,得0<α-π6<π2, 所以cos ⎝⎛⎭⎫α-π6=1-sin 2⎝⎛⎭⎫α-π6=1-⎝⎛⎭⎫142=154. 因此cos ⎝⎛⎭⎫α+3π2=sin α=sin ⎣⎡⎦⎤⎝⎛⎭⎫α-π6+π6=sin ⎝⎛⎭⎫α-π6cos π6+cos ⎝⎛⎭⎫α-π6sin π6=14×32+154×12=3+158. 探究二 三角恒等变换与三角形的结合2.(2016·台州模拟)已知实数x 0,x 0+π2是函数f (x )=2cos 2ωx +sin ⎝⎛⎭⎫2ωx -π6(ω>0)的相邻的两个零点.(1)求ω的值;(2)设a ,b ,c 分别是△ABC 三个内角A ,B ,C 所对的边,若f (A )=32且b tan B +c tan C =2atan A,试判断△ABC 的形状,并说明理由.解:(1)f (x )=1+cos 2ωx +32sin 2ωx -12cos 2ωx =32sin 2ωx +12cos 2ωx +1 =sin ⎝⎛⎭⎫2ωx +π6+1, 由题意得T =π,∴2π2ω=π.∴ω=1.(2)由(1)得f (x )=sin ⎝⎛⎭⎫2x +π6+1, ∴f (A )=sin ⎝⎛⎭⎫2A +π6+1=32, 即sin ⎝⎛⎭⎫2A +π6=12. ∵0<A <π,∴π6<2A +π6<13π6,∴2A +π6=5π6,即A =π3.由b tan B +c tan C =2a tan A 得b cos B sin B +c cos C sin C =2a cos A sin A,所以cos B +cos C =2cos A =1, 又因为B +C =2π3,所以cos B +cos ⎝⎛⎭⎫2π3-B =1, 即sin ⎝⎛⎭⎫B +π6=1,所以B =C =π3. 综上,△ABC 是等边三角形. 探究三 三角恒等变换与向量的综合3.(2015·合肥模拟)已知向量a =⎝⎛⎭⎫cos ⎝⎛⎭⎫θ-π4,1,b =(3,0),其中θ∈⎝⎛⎭⎫π2,5π4,若a·b =1.(1)求sin θ的值; (2)求tan 2θ的值.解:(1)由已知得:cos ⎝⎛⎭⎫θ-π4=13,sin ⎝⎛⎭⎫θ-π4=223,sin θ=sin ⎣⎡⎦⎤⎝⎛⎭⎫θ-π4+π4=sin ⎝⎛⎭⎫θ-π4cos π4+cos ⎝⎛⎭⎫θ-π4·sin π4=4+26.(2)由cos ⎝⎛⎭⎫θ-π4=13得sin θ+cos θ=23,两边平方得:1+2sin θcos θ=29,即sin 2θ=-79,而cos 2θ=1-2sin 2θ=-429,∴tan 2θ=728. 三角恒等变换的综合应用主要是将三角变换与三角函数的性质相结合,通过变换把函数化为y =A sin(ωx +φ)的形式再研究其性质,解题时注意观察角、名、结构等特征,注意利用整体思想解决相关问题.5.三角恒等变换与解三角形的综合的答题模板【典例】 (12分)(2015·高考山东卷)设f (x )=sin x cos x -cos 2⎝⎛⎭⎫x +π4. (1)求f (x )的单调区间;(2)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若f ⎝⎛⎭⎫A 2=0,a =1,求△ABC 面积的最大值.[思路点拨] (1)首先利用二倍角公式及诱导公式将f (x )的解析式化为“一角一函数”的形式,然后求解函数f (x )的单调区间.(2)首先求出角A 的三角函数值,然后根据余弦定理及基本不等式求出bc 的最大值,最后代入三角形的面积公式即可求出△ABC 面积的最大值.[规范解答] (1)由题意知f (x )=sin 2x2-1+cos ⎝⎛⎭⎫2x +π22=sin 2x 2-1-sin 2x2=sin 2x -12.(3分)由-π2+2k π≤2x ≤π2+2k π,k ∈Z ,可得-π4+k π≤x ≤π4+k π, k ∈Z ;(4分)由π2+2k π≤2x ≤3π2+2k π,k ∈Z ,可得π4+k π≤x ≤3π4+k π,k ∈Z , 所以f (x )的单调递增区间是⎣⎡⎦⎤-π4+k π,π4+k π(k ∈Z );(5分)单调递减区间是⎣⎡⎦⎤π4+k π,3π4+k π(k ∈Z ).(6分) (2)由f ⎝⎛⎭⎫A 2=sin A -12=0,得sin A =12,由题意知A 为锐角,所以cos A =32.(8分) 由余弦定理a 2=b 2+c 2-2bc cos A ,(9分) 可得1+3bc =b 2+c 2≥2bc ,(10分) 即bc ≤2+3,且当b =c 时等号成立. 因此12bc sin A ≤2+34.(11分)所以△ABC 面积的最大值为2+34.(12分) [模板形成][跟踪练习] 已知函数f (x )=23sin x cos x +2cos 2x -1(x ∈R ). (1)求函数f (x )的最小正周期及在区间⎣⎡⎦⎤0,π2上的最大值和最小值; (2)已知△ABC 为锐角三角形,A =π3,且f (B )=65,求cos 2B 的值.解:(1)由f (x )=23sin x cos x +2cos 2x -1得 f (x )=3sin 2x +cos 2x =2sin ⎝⎛⎭⎫2x +π6. 所以函数f (x )的最小正周期为π.因为f (x )=2sin ⎝⎛⎭⎫2x +π6在区间⎣⎡⎦⎤0,π6上为增函数,在区间⎣⎡⎦⎤π6,π2上为减函数, 又f (0)=1,f ⎝⎛⎭⎫π6=2,f ⎝⎛⎭⎫π2=-1, 所以f (x )在区间⎣⎡⎦⎤0,π2上的最大值为2,最小值为-1. (2)因为△ABC 为锐角三角形,且A =60°,所以⎩⎨⎧0<B <π2,0<C =2π3-B <π2,即B ∈⎝⎛⎭⎫π6,π2,所以2B +π6∈⎝⎛⎭⎫π2,7π6. 由(1)可知f (B )=2sin ⎝⎛⎭⎫2B +π6=65, 即sin ⎝⎛⎭⎫2B +π6=35,cos ⎝⎛⎭⎫2B +π6=-45, 所以cos 2B =cos ⎝⎛⎭⎫2B +π6-π6 =cos ⎝⎛⎭⎫2B +π6cos π6+sin ⎝⎛⎭⎫2B +π6sin π6 =3-4310.A 组 考点能力演练1.(2015·洛阳统考)已知sin 2α=13,则cos 2⎝⎛⎭⎫α-π4=( ) A .-13B .-23C.13D.23解析:∵cos 2⎝⎛⎭⎫α-π4=1+cos ⎝⎛⎭⎫2α-π22=1+sin 2α2,∴cos 2⎝⎛⎭⎫α-π4=23. 答案:D2.已知2sin θ+3cos θ=0,则tan 2θ=( ) A.59 B.125 C.95D.512解析:∵2sin θ+3cos θ=0,∴tan θ=-32,∴tan 2θ=2tan θ1-tan 2θ=2×⎝⎛⎭⎫-321-94=125.答案:B3.sin 2α=2425,0<α<π2,则2cos ⎝⎛⎭⎫π4-α的值为( )A.15 B .-15C.75D .±15解析:因为sin 2α=cos ⎝⎛⎭⎫π2-2α=2cos 2⎝⎛⎭⎫π4-α-1,所以2cos ⎝⎛⎭⎫π4-α=±1+sin 2α,因为sin 2α=2425,所以2cos ⎝⎛⎭⎫π4-α=±75,因为0<α<π2,所以-π4<π4-α<π4,所以2cos ⎝⎛⎭⎫π4-α=75. 答案:C4.(2015·太原一模)设△ABC 的三个内角分别为A ,B ,C ,且tan A ,tan B ,tan C,2tan B 成等差数列,则cos(B -A )=( )A .-31010B .-1010C.1010D.31010解析:由题意得tan C =32tan B ,tan A =12tan B ,所以△ABC 为锐角三角形.又tan A =-tan(C +B )=-tan C +tan B 1-tan C tan B =-52tan B 1-32tan 2B =12tan B ,所以tan B =2,tan A =1,所以tan(B -A )=tanB -tan A 1+tan B tan A =2-11+2×1=13.因为B >A ,所以cos(B -A )=31010,故选D.答案:D5.若α∈⎝⎛⎭⎫π2,π,且3cos 2α=sin ⎝⎛⎭⎫π4-α,则sin 2α的值为( ) A.118 B .-118C.1718D .-1718解析:依题意得3(cos 2α-sin 2α)=22(cos α-sin α),cos α+sin α=26,(cos α+sin α)2=⎝⎛⎭⎫262=118,即1+sin 2α=118,sin 2α=-1718,故选D.答案:D6.计算sin 250°1+sin 10°=________.解析:sin 250°1+sin 10°=1-cos 100°2(1+sin 10°)=1-cos (90°+10°)2(1+sin 10°)=1+sin 10°2(1+sin 10°)=12. 答案:127.化简sin 2⎝⎛⎭⎫α-π6+sin 2⎝⎛⎭⎫α+π6-sin 2α的结果是________. 解析:法一:原式=1-cos ⎝⎛⎭⎫2α-π32+1-cos ⎝⎛⎭⎫2α+π32-sin 2α =1-12⎣⎡⎦⎤cos ⎝⎛⎭⎫2α-π3+cos ⎝⎛⎭⎫2α+π3-sin 2α=1-cos 2α·cos π3-sin 2α=1-cos 2α2-1-cos 2α2=12. 法二:令α=0,则原式=14+14=12. 答案:128.设sin 2α=-sin α,α∈⎝⎛⎭⎫π2,π,则tan 2α的值是________.解析:∵sin 2α=2sin αcos α=-sin α,∴cos α=-12, 又α∈⎝⎛⎭⎫π2,π,∴sin α=32,tan α=-3, ∴tan 2α=2tan α1-tan 2α=-231-(-3)2= 3. 答案: 39.设函数f (x )=sin ωx +sin ⎝⎛⎭⎫ωx -π2,x ∈R . (1)若ω=12,求f (x )的最大值及相应x 的集合; (2)若x =π8是f (x )的一个零点,且0<ω<10,求ω的值和f (x )的最小正周期. 解:由已知:f (x )=sin ωx -cos ωx =2sin ⎝⎛⎭⎫ωx -π4. (1)若ω=12,则f (x )=2sin ⎝⎛⎭⎫12x -π4.又x ∈R ,则2sin ⎝⎛⎭⎫12x -π4≤2,∴f (x )max =2,此时12x -π4=2k π+π2,k ∈Z , 即x ∈⎩⎨⎧⎭⎬⎫x ⎪⎪x =4k π+3π2,k ∈Z . (2)∵x =π8是函数f (x )的一个零点, ∴2sin ⎝⎛⎭⎫π8ω-π4=0,∴π8ω-π4=k π,k ∈Z , 又0<ω<10,∴ω=2,∴f (x )=2sin ⎝⎛⎭⎫2x -π4,此时其最小正周期为π. 10.(2016·沈阳模拟)已知函数f (x )=sin x -3cos x +2,记函数f (x )的最小正周期为β,向量a =(2,cos α),b =⎝⎛⎭⎫1,tan ⎝⎛⎭⎫α+β2⎝⎛⎭⎫0<α<π4,且a·b =73. (1)求f (x )在区间⎣⎡⎦⎤2π3,4π3上的最值;(2)求2cos 2α-sin 2(α+β)cos α-sin α的值. 解:(1)f (x )=sin x -3cos x +2=2sin ⎝⎛⎭⎫x -π3+2, ∵x ∈⎣⎡⎦⎤2π3,4π3,∴x -π3∈⎣⎡⎦⎤π3,π, ∴f (x )的最大值是4,最小值是2.(2)∵β=2π,∴a·b =2+cos αtan(α+π)=2+sin α=73, ∴sin α=13, ∴2cos 2α-sin 2(α+β)cos α-sin α=2cos 2α-sin 2αcos α-sin α=2cos α =21-sin 2α=423. B 组 高考题型专练1.(2015·高考北京卷)已知函数f (x )=2sin x 2cos x 2-2sin 2x 2. (1)求f (x )的最小正周期;(2)求f (x )在区间[-π,0]上的最小值.解:(1)因为f (x )=22sin x -22(1-cos x ) =sin ⎝⎛⎭⎫x +π4-22,所以f (x )的最小正周期为2π. (2)因为-π≤x ≤0,所以-3π4≤x +π4≤π4. 当x +π4=-π2,即x =-3π4时,f (x )取得最小值. 所以f (x )在区间[-π,0]上的最小值为f ⎝⎛⎭⎫-3π4=-1-22. 2.(2013·高考陕西卷)已知向量a =⎝⎛⎭⎫cos x ,-12,b =(3sin x ,cos 2x ),x ∈R ,设函数f (x )=a·b .(1)求f (x )的最小正周期;(2)求f (x )在⎣⎡⎦⎤0,π2上的最大值和最小值. 解:f (x )=⎝⎛⎭⎫cos x ,-12·(3sin x ,cos 2x ) =3cos x sin x -12cos 2x =32sin 2x -12cos 2x =cos π6sin 2x -sin π6cos 2x =sin ⎝⎛⎭⎫2x -π6. (1)f (x )的最小正周期T =2πω=2π2=π, 即函数f (x )的最小正周期为π.(2)∵0≤x ≤π2,∴-π6≤2x -π6≤5π6. 当2x -π6=π2,即x =π3时,f (x )取得最大值1. 当2x -π6=-π6,即x =0时,f (0)=-12, 当2x -π6=56π,即x =π2时,f ⎝⎛⎭⎫π2=12, ∴f (x )的最小值为-12.因此,f (x )在⎣⎡⎦⎤0,π2上的最大值是1,最小值是-12. 3.(2014·高考天津卷)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知a -c =66b .sin B =6sin C .(1)求cos A 的值;(2)求cos ⎝⎛⎭⎫2A -π6的值. 解:(1)在△ABC 中,由b sin B =c sin C ,及sin B =6sin C ,可得b =6c .又由a -c =66b ,有a =2c .所以cos A =b 2+c 2-a 22bc =6c 2+c 2-4c 226c 2=64. (2)在△ABC 中,由cos A =64,可得sin A =104. 于是,cos 2A =2cos 2A -1=-14, sin 2A =2sin A ·cos A =154. 所以cos ⎝⎛⎭⎫2A -π6=cos 2A ·cos π6+sin 2A ·sin π6=15-38.。
1.公式的常见变形(1)1+cos α=2cos 2α2;1-cos α=2sin 2α2;(2)1+sin α=(sin α2+cos α2)2;1-sin α=(sin α2-cos α2)2.(3)tan α2=sin α1+cos α=1-cos αsin α.2.辅助角公式a sin x +b cos x =a 2+b 2sin(x +φ),其中sin φ=b a 2+b 2,cos φ=aa 2+b 2.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”) (1)y =3sin x +4cos x 的最大值是7.( ) (2)设α∈(π,2π),则1-cos (π+α)2=sin α2.( ) (3)在非直角三角形中有:tan A +tan B +tan C =tan A tan B tan C .( ) (4)设5π2<θ<3π,且|cos θ|=15,那么sin θ2的值为155.( )(5)公式a sin x +b cos x =a 2+b 2sin(x +φ)中φ的取值与a ,b 的值无关.( )1.已知cos α=13,α∈(π,2π),则cos α2=________.2.2sin 235°-1cos 10°-3sin 10°的值为________.3.(教材改编)sin 15°-3cos 15°=________.4.若f (x )=2tan x -2sin 2 x2-1sin x 2cosx2,则f ⎪⎭⎫⎝⎛12π的值为______.5.若锐角α、β满足(1+3tan α)(1+3tan β)=4,则α+β=________.题型一 三角函数式的化简与求值例1 (1)化简:)4(sin )4tan(221cos 2cos 2224x x x x +-+-ππ=________.(2)计算:tan 12°-3(4cos 212°-2)sin 12°=________.思维升华(1)三角函数式的化简要遵循“三看”原则,一看角,二看名,三看式子结构与特征.(2)三角函数式化简要注意观察条件中角之间的联系(和、差、倍、互余、互补等),寻找式子和三角函数公式之间的共同点.(1)cos π9·cos 2π9·cos ⎪⎭⎫ ⎝⎛-923π=________. (2)已知cos ⎪⎭⎫⎝⎛+4πθ=1010,θ∈⎪⎭⎫ ⎝⎛20π,,则sin ⎪⎭⎫ ⎝⎛-32πθ=________.题型二 三角函数的求角问题例2 (1)已知锐角α,β满足sin α=55,cos β=31010,则α+β=________. (2)已知方程x 2+3ax +3a +1=0(a >1)的两根分别为tan α、tan β,且α、β∈⎪⎭⎫⎝⎛-22ππ,,则α+β=________.思维升华 通过求角的某种三角函数值来求角,在选取函数时,有以下原则: (1)已知正切函数值,则选正切函数.(2)已知正弦、余弦函数值,则选正弦或余弦函数.若角的范围是⎪⎭⎫ ⎝⎛20π,,则选正弦、余弦皆可;若角的范围是(0,π),则选余弦较好;若角的范围为⎪⎭⎫⎝⎛-22ππ,,则选正弦较好.(1)若α,β∈(0,π),且tan(α-β)=12,tan β=-17,则2α-β=________.(2)在△ABC 中,tan A +tan B +3=3tan A ·tan B ,则C =________.题型三 三角恒等变换的应用例3 已知函数f (x )=sin(x +θ)+a cos(x +2θ),其中a ∈R ,θ∈⎪⎭⎫⎝⎛-22ππ,. (1)当a =2,θ=π4时,求f (x )在区间[0,π]上的最大值与最小值;(2)若f ⎪⎭⎫⎝⎛2π=0,f (π)=1,求a ,θ的值.思维升华 三角恒等变换的综合应用主要是将三角变换与三角函数的性质相结合,通过变换把函数化为y =A sin(ωx +φ)+k 的形式再研究性质,解题时注意观察角、函数名、结构等特征.(1)(2014·课标全国Ⅱ)函数f (x )=sin(x +φ)-2sin φcos x 的最大值为________.(2)函数f (x )=sin(2x -π4)-22sin 2x 的最小正周期是________.8.化归思想和整体代换思想在三角函数中的应用典例 (14分)(2015·重庆)已知函数f (x )=sin ⎪⎭⎫⎝⎛-x 2πsin x -3cos 2x . (1)求f (x )的最小正周期和最大值; (2)讨论f (x )在⎥⎦⎤⎢⎣⎡326ππ,上的单调性.思维点拨 (1)讨论形如y =a sin ωx +b cos ωx 型函数的性质,一律化成y =a 2+b 2sin(ωx +φ)型的函数. (2)研究y =A sin(ωx +φ)型函数的最值、单调性,可将ωx +φ视为一个整体,换元后结合y =sin x 的图象解决.温馨提醒 (1)讨论三角函数的性质,要先利用三角变换化成y =A sin(ωx +φ),φ的确定一定要准确. (2)将ωx +φ视为一个整体,设ωx +φ=t ,可以借助y =sin t 的图象讨论函数的单调性、最值等.[方法与技巧]1.三角函数的求值与化简要注意观察角、函数名称、式子结构之间的联系,然后进行变换. 2.利用三角函数值求角要考虑角的范围.3.与三角函数的图象与性质相结合的综合问题.借助三角恒等变换将已知条件中的函数解析式整理为f (x )=A sin(ωx +φ)的形式,然后借助三角函数图象解决.[失误与防范]1.利用辅助角公式,a sin x +b cos x 转化时一定要严格对照和差公式,防止弄错辅助角. 2.计算形如y =sin(ωx +φ), x ∈[a ,b ]形式的函数最值时,不要将ωx +φ的范围和x 的范围混淆.A 组 专项基础训练 (时间:40分钟)1.若sin ⎪⎭⎫⎝⎛-απ6=13,则cos ⎪⎭⎫ ⎝⎛+απ232=________. 2.已知sin 2α=23,则cos 2⎪⎭⎫ ⎝⎛+4πα=________.3.若cos ⎪⎭⎫ ⎝⎛+6πα-sin α=335,则sin ⎪⎭⎫⎝⎛+65πα=________. 4.已知向量a =⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛+1,6sin πα,b =(4,4cos α-3),若a ⊥b ,则sin ⎪⎭⎫ ⎝⎛+34πα=________.5.函数f (x )=sin(2x +θ)+3cos(2x +θ)⎪⎭⎫⎝⎛<2πθ的图象关于点⎪⎭⎫⎝⎛06,π对称,则f (x )的单调递增区间为__________________.6.已知tan(π4+θ)=3,则sin 2θ-2cos 2θ的值为________.7.若tan α+1tan α=103,α∈(π4,π2),则sin(2α+π4)的值为________.8.若α、β是锐角,且sin α-sin β=-12,cos α-cos β=12,则tan(α-β)=________.9.已知函数f (x )=A sin ⎪⎭⎫⎝⎛+3πx ,x ∈R ,且f ⎪⎭⎫ ⎝⎛125π=322. (1)求A 的值;(2)若f (θ)-f (-θ)=3,θ∈⎪⎭⎫⎝⎛20π,,求f ⎪⎭⎫⎝⎛-θπ6的值.10.已知函数f (x )=sin ⎪⎭⎫⎝⎛+6πωx +sin ⎪⎭⎫ ⎝⎛-6πωx -2cos 2 ωx2,x ∈R (其中ω>0). (1)求函数f (x )的值域;(2)若函数f (x )的图象与直线y =-1的两个相邻交点间的距离为π2,求函数f (x )的单调递增区间.B 组 专项能力提升 (时间:20分钟)11.设α∈(0,π2),β∈(0,π2),且tan α=1+sin βcos β,则2α-β=________.12.定义运算⎪⎪⎪⎪⎪⎪a b c d =ad -bc ,若cos α=17,⎪⎪⎪⎪⎪⎪sin α sin βcos α cos β=3314,0<β<α<π2,则β=________.13.若f (x )=3sin x -4cos x 的一条对称轴方程是x =a ,则a 的取值范围可以是下列中的____________.(填序号) ①⎪⎭⎫⎝⎛40π,;②⎪⎭⎫ ⎝⎛24ππ,;③⎪⎭⎫ ⎝⎛432ππ,;④⎪⎭⎫⎝⎛ππ,4314.设x ∈⎪⎭⎫⎝⎛20π,,则函数y =2sin 2x +1sin 2x的最小值为________.15.已知函数f (x )=2cos 2ωx -1+23cos ωx sin ωx (0<ω<1),直线x =π3是f (x )图象的一条对称轴.(1)试求ω的值;(2)已知函数y =g (x )的图象是由y =f (x )图象上各点的横坐标伸长到原来的2倍,然后再向左平移2π3个单位长度得到的,若g ⎪⎭⎫⎝⎛+32πα=65,α∈⎪⎭⎫⎝⎛20π,,求sin α的值.。