2015届成都一诊数学试题四份
- 格式:doc
- 大小:593.50 KB
- 文档页数:4
2015年四川省成都市锦江区中考数学一诊试卷一、选择题(每小题3分,共30分)1.下列四个几何体中,已知某个几何体的主视图、左视图、俯视图分别为长方形、长方形、圆,则该几何体是()A.球体B.长方体C.圆锥体D.圆柱体2.已知,则的值为()A.B.C.D.3.如果关于x的一元二次方程kx2﹣6x+9=0有两个不相等的实数根,那么k的取值范围是()A.k<1 B.k≠0 C.k<1且k≠0 D.k>14.如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则tanA=()A.B.C.D.5.如图,点D、E分别在线段AB、AC上且∠ABC=∠AED,若DE=4,AE=5,BC=8,则AB的长为()A.B.10 C.D.6.已知反比例函数图象经过点(1,﹣1),(m,1),则m等于()A.2 B.﹣2 C.1 D.﹣17.如图,圆O是△ACD的外接圆,AB是圆O的直径,∠BAD=60°,则∠C的度数是()A.30°B.40°C.50°D.60°8.一个布袋里装有3个红球、2个白球,每个球除颜色外均相同,从中任意摸出一个球,则摸出的球是红球的概率是()A.B.C.D.9.用配方法解方程x2﹣2x﹣5=0时,原方程应变形为()A.(x+1)2=6 B.(x﹣1)2=6 C.(x+2)2=9 D.(x﹣2)2=910.小智将如图两水平线L1、L2的其中一条当成x轴,且向右为正向;两铅直线L3、L4的其中一条当成y轴,且向上为正向,并在此坐标平面上画出二次函数y=ax2+2ax+1的图形.关于他选择x、y轴的叙述,下列何者正确?()A.L1为x轴,L3为y轴B.L1为x轴,L4为y轴C.L2为x轴,L3为y轴D.L2为x 轴,L4为y轴二、填空题(每小题4分,共16分)11.已知y=(a﹣1)是反比例函数,则a= .12.已知α是锐角,且tan(90°﹣α)=,则α=.13.如图,电灯P在横杆AB的正上方,AB在灯光下的影子为CD,AB∥CD,AB=2m,CD=6m,点P到CD的距离是3m,则P到AB的距离是m.14.把二次函数y=x2向左平移1个单位,再向下平移2个单位,则平移后二次函数的解析式为.三、计算题(15小题每小题12分,16小题6分,共18分)15.(12分)(1)计算:(﹣)﹣1﹣3tan30°(1﹣)0+﹣|1﹣|(2)解方程:x(x+6)=16.16.(6分)如图,AB是圆O的直径,弦CD⊥AB于点E,点P在圆O上且∠1=∠C.(1)求证:CB∥PD;(2)若BC=3,BE=2,求CD的长.四、解答题(每小题8分,共32分)17.(8分)小明、小颖和小凡做“石头、剪刀、布”游戏,游戏规则如下:由小明和小颖玩“石头、剪刀、布”游戏,如果两人的手势相同,那么小凡获胜;如果两人手势不同,那么按照“石头胜剪刀,剪刀胜布,布胜石头”的规则决定小明和小颖中的获胜者.假设小明和小颖每次出这三种手势的可能性相同:(1)用树状图或列表法求出小凡获胜的概率;(2)你认为这个游戏对三人公平吗?为什么?18.(8分)如图,某校综合实践活动小组的同学欲测量公园内一棵树DE的高度,他们在这棵树的正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°,朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°.已知A点的高度AB为3米,台阶AC的坡度为1:(即AB:BC=1:),且B、C、E三点在同一条直线上.请根据以上条件求出树DE的高度(侧倾器的高度忽略不计).19.(8分)如图,经过点A(﹣2,0)的一次函数y=ax+b(a≠0)与反比例函数y=(k≠0)的图象相交于P、Q两点,过点P作PB⊥x轴于点B.已知tan∠PAB=,点B的坐标为(4,0).(1)求反比例函数和一次函数的解析式;(2)连接BQ,求△PBQ的面积.20.(8分)如图,已知在△ABC中,AB=AC=10,BC=16,点D是边BC的中点,E是线段BA上一动点(与点B、A不重合),直线DE交CA的延长线于F点.(1)当DF=DC时,求AF的值;(2)设BE=x,AF=y.①求y关于x的函数解析式,并写出x的取值范围;②当△AEF为以FA为腰的等腰三角形时,求x的值.B卷一、填空题(每小题4分,共20分)21.已知x2﹣2x﹣=0,则x3﹣2x2+(1﹣x)的值是.22.若线段AB=4cm,点C是线段AB的一个黄金分割点,则AC的长为cm.23.对于实数a,b,定义运算“﹡”:a﹡b=.例如4﹡2,因为4>2,所以4﹡2=42﹣4×2=8.若x1,x2是一元二次方程x2﹣5x+6=0的两个根,则x1﹡x2= .24.如图,M为双曲线y=(x>0)上的一点,过点M作x轴、y轴的垂线,分别交直线y=﹣x+m于点D、C两点.若直线y=﹣x+m与y轴交于点A,与x轴交于点B,则AD?BC的值为.25.已知:如图,Rt△ABC外切于圆O,切点分别为E、F、H,∠ABC=90°,直线FE、CB交于D点,连接AO、HE.现给出以下四个结论:①∠FEH=90°﹣∠C;②DE=AE;③AB2=AO?DF;④AE?CH=S△ABC,其中正确结论的序号为.二、解答题(8分)26.(8分)“低碳生活,绿色出行”,自行车正逐渐成为人们喜爱的交通工具.某运动商城的自行车销售量自2013年起逐月增加,据统计,该商城1月份销售自行车64辆,3月份销售了100辆.(1)若该商城前4个月的自行车销量的月平均增长率相同,问该商城4月份卖出多少辆自行车?(2)考虑到自行车需求不断增加,该商城准备投入3万元再购进一批两种规格的自行车,已知A型车的进价为500元/辆,售价为700元/辆,B型车进价为1000元/辆,售价为1300元/辆.根据销售经验,A型车不少于B型车的2倍,但不超过B型车的2.8倍.假设所进车辆全部售完,为使利润最大,该商城应如何进货?三、解答题(10分)27.(10分)如图,以BC为直径,以O为圆心的半圆交△CFB的边CF于点A,BM平分∠ABC交AC于点M,AD⊥BC于点D,AD交BM于点N,ME⊥BC于点E,BC2=CF?AC,cos∠ABD=,AD=12.(1)求证:FB是圆O的切线;(2)求证:=;(3)连接AE,求AE?MN的值.四、解答题(12分)28.(12分)己知二次函数(t>1)的图象为抛物线C 1.(1)求证:无论t取何值,抛物线C1与x轴总有两个交点;(2)已知抛物线C1与x轴交于A、B两点(A在B的左侧),将抛物线C1作适当的平移,得抛物线C2:,平移后A、B的对应点分别为D(m,n),E(m+2,n),求n的值.(3)在(2)的条件下,将抛物线C2位于直线DE下方的部分沿直线DE向上翻折后,连同C2在DE上方的部分组成一个新图形,记为图形G,若直线(b<3)与图形G有且只有两个公共点,请结合图象求b的取值范围.1.D.2.C.3.C.4.D.5.B.6.D.7.A.8.C.9.B.10.D.11.﹣1.12.30°.13.1.14.y=(x+1)2﹣2.15.(1)计算:(﹣)﹣1﹣3tan30°(1﹣)0+﹣|1﹣|(2)解方程:x(x+6)=16.解:(1)原式=﹣3××1+2﹣(﹣1)=﹣2﹣++1=﹣1;(2)方程可化为x2+6x=16,移项得,x2+6x﹣16=0,(x﹣2)(x+8)=0,解得x1=2,x2=﹣8.16.如图,AB是圆O的直径,弦CD⊥AB于点E,点P在圆O上且∠1=∠C.(1)求证:CB∥PD;(2)若BC=3,BE=2,求CD的长.(1)证明:如图,∵∠1=∠C,∠P=∠C,∴∠1=∠P,∴CB∥PD.(2)解:∵CE⊥BE,∴CE2=CB2﹣BE2,而CB=3,BE=2,∴CE=;而AB⊥CD,∴DE=CE,CD=2CE=2.17.小明、小颖和小凡做“石头、剪刀、布”游戏,游戏规则如下:由小明和小颖玩“石头、剪刀、布”游戏,如果两人的手势相同,那么小凡获胜;如果两人手势不同,那么按照“石头胜剪刀,剪刀胜布,布胜石头”的规则决定小明和小颖中的获胜者.假设小明和小颖每次出这三种手势的可能性相同:(1)用树状图或列表法求出小凡获胜的概率;(2)你认为这个游戏对三人公平吗?为什么?解:(1)列出表格,如图所示:石头剪刀布石头(石头,石头)(剪刀,石头)(布,石头)剪刀(石头,剪刀)(剪刀,剪刀)(布,剪刀)布(石头,布)(剪刀,布)(布,布)所有等可能的情况有9种,其中两人的手势相同的情况有3种,则P(小凡获胜)==;(2)小明获胜的情况有3种,小颖获胜的情况有3种,∴P(小明获胜)=P(小颖获胜)==,则这个游戏对三人公平.18.如图,某校综合实践活动小组的同学欲测量公园内一棵树DE的高度,他们在这棵树的正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°,朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°.已知A点的高度AB为3米,台阶AC的坡度为1:(即AB:BC=1:),且B、C、E三点在同一条直线上.请根据以上条件求出树DE的高度(侧倾器的高度忽略不计).解:如图,过点A作AF⊥DE于F,则四边形ABEF为矩形,∴AF=BE,EF=AB=3米,设DE=x,在Rt△CDE中,CE==x,在Rt△ABC中,∵=,AB=3,∴BC=3,在Rt△AFD中,DF=DE﹣EF=x﹣3,∴AF==(x﹣3),∵AF=BE=BC+CE,∴(x﹣3)=3+x,解得x=9(米).答:树高为9米.19.如图,经过点A(﹣2,0)的一次函数y=ax+b(a≠0)与反比例函数y=(k≠0)的图象相交于P、Q两点,过点P作PB⊥x轴于点B.已知tan∠PAB=,点B的坐标为(4,0).(1)求反比例函数和一次函数的解析式;(2)连接BQ,求△PBQ的面积.解:(1)∵BO=4,AO=2,∴AB=6,∵tan∠PAB==,∴PB=9,∴P点坐标为:(4,9),把P(4,9),代入反比例函数解析式y=,得k=36,∴反比例函数解析式为y=;把点A(﹣2,0),P(4,9),代入y=ax+b得:,解得:,故一次函数解析式为y=x+3.(2)过点Q作QM⊥y轴于点M,由,解得:或,∴Q点坐标为:(﹣6,﹣6),∴S△PQB=?PB?QM=×9×(6+4)=45.20.如图,已知在△ABC中,AB=AC=10,BC=16,点D是边BC的中点,E是线段BA 上一动点(与点B、A不重合),直线DE交CA的延长线于F点.(1)当DF=DC时,求AF的值;(2)设BE=x,AF=y.①求y关于x的函数解析式,并写出x的取值范围;②当△AEF为以FA为腰的等腰三角形时,求x的值.解:(1)∵AB=AC,∴∠B=∠C,∵DF=DC,∴∠B=∠C,∴∠B=∠F,∴△ABC∽△DFC,∴=,∴=,∴CF=12.8,∴AF=CF﹣AC=12.8﹣10=2.8;(2)①取AB的中点M,连接DM,如图所示,∵D是边BC的中点,∴DM∥AC,DM=AC=5,∴△AFE∽△MDE,∴=,∴=,∴y=,函数定义域为5<x<10;②当点E位于线段AB上时,如图所示:若AF=AE,即=10﹣x,解得:x=10(舍去),若AF=EF,cos∠FAE=,则有5×=?(x﹣5),解得:x=,综上所述,当△AEF为以FA腰的等腰三角形时,x=.一、填空题(每小题4分,共20分)21..22.2(﹣1)或6﹣2.23.3或﹣3.24..25.已知:如图,Rt△ABC外切于圆O,切点分别为E、F、H,∠ABC=90°,直线FE、CB交于D点,连接AO、HE.现给出以下四个结论:①∠FEH=90°﹣∠C;②DE=AE;③AB2=AO?DF;④AE?CH=S△ABC,其中正确结论的序号为①③④.解:①连接OE,OH,OF,则OE⊥AB,OH⊥BC,得出∠FOH=180°﹣∠C,根据圆周角定理得∠FEH=∠FOH=90∠C;故①正确;②由①得四边形OEBH是正方形,则圆的半径=BE,∴OF=BE,又∵∠DBE=∠AFO,∠BED=∠AEF=∠AFE,在△BDE与△FAO中,,∴△BDE≌△FAO(SAS),∴BD=AF,∵BD<DE,∴DE≠AF,故②错误;③∵Rt△ABC外切于⊙O,切点分别为E、F、H,∴BE=BH,AF=AE,根据②得BD=AF,∴BD=AE(等量代换),∴AB=DH;连接OB、FH.∵∠D=∠BAO,∠EFH=∠OBA=45°,∴△DFH∽△ABO,则DH?AB=AO?DF,又AB=DH,所以AB2=AO?DF,故③正确;④设△ABC的三边分别为a,b,c,则AE=,CH=,AE?CH===S△ABC.故S△ABC=AB?BC=AE?CH;故④正确;故答案为:①③④.二、解答题(8分)26.“低碳生活,绿色出行”,自行车正逐渐成为人们喜爱的交通工具.某运动商城的自行车销售量自2013年起逐月增加,据统计,该商城1月份销售自行车64辆,3月份销售了100辆.(1)若该商城前4个月的自行车销量的月平均增长率相同,问该商城4月份卖出多少辆自行车?(2)考虑到自行车需求不断增加,该商城准备投入3万元再购进一批两种规格的自行车,已知A型车的进价为500元/辆,售价为700元/辆,B型车进价为1000元/辆,售价为1300元/辆.根据销售经验,A型车不少于B型车的2倍,但不超过B型车的2.8倍.假设所进车辆全部售完,为使利润最大,该商城应如何进货?解:(1)设平均增长率为a,根据题意得:64(1+a)2=100解得:a=0.25=25%或a=﹣2.25四月份的销量为:100?(1+25%)=125(辆).答:四月份的销量为125辆.(2)设购进A型车x辆,则购进B型车辆,根据题意得:2×≤x≤2.8×解得:30≤x≤35利润W=(700﹣500)x+(1300﹣1000)=9000+50x.∵50>0,∴W随着x的增大而增大.当x=35时,不是整数,故不符合题意,∴x=34,此时=13(辆).答:为使利润最大,该商城应购进34辆A型车和13辆B型车.三、解答题(10分)27.如图,以BC为直径,以O为圆心的半圆交△CFB的边CF于点A,BM平分∠ABC 交AC于点M,AD⊥BC于点D,AD交BM于点N,ME⊥BC于点E,BC2=CF?AC,cos∠ABD=,AD=12.(1)求证:FB是圆O的切线;(2)求证:=;(3)连接AE,求AE?MN的值.解:(1)如图,∵BC2=CF?AC,∴,而∠C=∠C,∴△BCF∽△ACB,∴∠FBC=∠BAC;而BC为半⊙O的直径,∴∠BAC=90°,∠FBC=90°,∴FB是圆O的切线.(2)由射影定理得:BF2=AF?CF,BC2=AC?CF,∴①;∵AD⊥BC,ME⊥BC,∴AD∥ME,∴②;由①②知:=.(3)如图,连接AE;∵BM平分∠ABE,且MA⊥AB,ME⊥BE,∴MA=ME,AN∥ME;设∠ABM=∠DBN=α,则∠AMN=90°﹣α,∠ANM=∠BND=90°﹣α,∴∠AMN=∠ANM,AM=AN,∴AN=ME;而AN∥ME,∴四边形AMEN为平行四边形;而AM=AN,∴四边形AMEN为菱形,AE⊥MN;∵cos∠ABD=,AD=12.∴;设BD=3λ,则AB=5λ;由勾股定理得:(5λ)2=(3λ)2+122,解得:λ=3,BD=9,AB=15;由勾股定理可证:BE=BA=15,∴DE=15﹣9=6;而BN平分∠ABD,∴,而BD=9,AB=15,AD=12,解得:AN=;由面积公式得:∴AE?MN=2××6=90.四、解答题(12分)28.己知二次函数(t>1)的图象为抛物线C1.(1)求证:无论t取何值,抛物线C1与x轴总有两个交点;(2)已知抛物线C1与x轴交于A、B两点(A在B的左侧),将抛物线C1作适当的平移,得抛物线C2:,平移后A、B的对应点分别为D(m,n),E(m+2,n),求n的值.(3)在(2)的条件下,将抛物线C2位于直线DE下方的部分沿直线DE向上翻折后,连同C2在DE上方的部分组成一个新图形,记为图形G,若直线(b<3)与图形G有且只有两个公共点,请结合图象求b的取值范围.解:(1)令y1=0,得△=(﹣2t)2﹣4(2t﹣1)=4t2﹣8t+4=4(t﹣1)2,∵t>1,∴△=4(t﹣1)2>0,∴无论t取何值,方程x2﹣2tx+(2t﹣1)=0总有两个不相等的实数根,∴无论t取何值,抛物线C1与x轴总有两个交点.(2)解方程x2﹣2tx+(2t﹣1)=0得,x1=1,x2=2t﹣1,∵t>1,∴2t﹣1>1.得A(1,0),B(2t﹣1,0),∵D(m,n),E(m+2,n),∴DE=AB=2,即2t﹣1﹣1=2,解得t=2.∴二次函数为,显然将抛物线C1向上平移1个单位可得抛物线C2:,故n=1.(3)由(2)得抛物线C 2:,D(1,1),E(3,1),翻折后,顶点F(2,0)的对应点为F'(2,2),如图,当直线经过点D(1,1)时,记为l3,此时,图形G与l3只有一个公共点;当直线经过点E(3,1)时,记为l2,此时,图形G与l2有三个公共点;当b<3时,由图象可知,只有当直线l:位于l2与l3之间时,图形G与直线l有且只有两个公共点,∴符合题意的b的取值范围是.参与本试卷答题和审题的老师有:lanchong;137-hui;mmll852;MMCH;Liuzhx;郝老师;HJJ;知足长乐;守拙;zcl5287;lbz;sks;HLing;caicl;zhjh;zcx;dbz1018;CJX;sjw666;73zzx;心若在;sd2011;王学峰;sjzx(排名不分先后)菁优网2016年12月9日2020-2-8。
成都市2015届高中毕业班第一次诊断性检测数学试题(文科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集{|0}=≥U x x,集合{1}=P,则UP=ð(A)[0,1)(1,)+∞(B)(,1)-∞(C)(,1)(1,)-∞+∞(D)(1,)+∞2.若一个几何体的正视图和侧视图是两个全等的正方形,则这个几何体的俯视图不可能是(A)(B)(C)(D)3.命题“若22≥+x a b,则2≥x ab”的逆命题是(A)若22<+x a b,则2<x ab(B)若22≥+x a b,则2<x ab(C)若2<x ab,则22<+x a b(D)若2≥x ab,则22≥+x a b4.函数31,0()1(),03xx xf xx⎧+<⎪=⎨≥⎪⎩的图象大致为(A)(B)(C)(D)5.复数5i(2i)(2i)=-+z(i是虚数单位)的共轭复数为(A)5i3-(B)5i3(C)i-(D)i6.若关于x的方程240+-=x ax在区间[2,4]上有实数根,则实数a的取值范围是消费支出/元(A )(3,)-+∞ (B )[3,0]- (C )(0,)+∞ (D )[0,3] 7.已知53cos()25+=πα,02-<<πα,则sin 2α的值是 (A )2425 (B )1225 (C )1225- (D )2425-8.已知抛物线:C 28y x =,过点(2,0)P 的直线与抛物线交于A ,B 两点,O 为坐标原点,则OA OB ⋅的值为(A )16- (B )12- (C )4 (D )0 9.已知m ,n 是两条不同直线,α,β是两个不同的平面,且n ⊂β,则下列叙述正确的是(A )若//m n ,m ⊂α,则//αβ (B )若//αβ,m ⊂α,则//m n (C )若//m n ,m α⊥,则αβ⊥ (D )若//αβ,m n ⊥,则m α⊥ 10.如图,已知正方体1111ABCD A B C D -棱长为4,点H 在棱1AA 上,且11HA =.点E ,F 分别为棱11B C ,1C C 的中点,P 是侧面11BCC B 内一动点,且满足⊥PE PF .则当点P 运动时, 2HP 的最小值是 (A)7(B)27-(C)51-(D)14-二、填空题:本大题共5小题,每小题5分,共25分. 11.已知100名学生某月饮料消费支出情况的频率分布直方图如右图所示.则这100名学生中,该月饮料消费支出超过150元的人数是________.12.若非零向量a ,b 满足a b a b +=-,则a ,b 的夹ABCD1A 1B 1C 1D HPEF角的大小为__________.13.在∆ABC 中,内角,,A B C 的对边分别为,,a b c ,若2=c a ,4=b ,1cos 4=B .则边c 的长度为__________.14.已知关于x 的不等式()(2)0---≤x a x a 的解集为A ,集合{|22}=-≤≤B x x .若“x A ∈”是“x B ∈”的充分不必要条件,则实数a 的取值范围是__________. 15.已知函数21()()2f x x a =+的图象在点n P (,())n f n (*n ∈N )处的切线n l 的斜率为n k ,直线n l 交x 轴,y 轴分别于点(,0)n n A x ,(0,)n n B y ,且11y =-.给出以下结论: ①1a =-;②记函数()=n g n x (*n ∈N ),则函数()g n 的单调性是先减后增,且最小值为1;③当*n ∈N 时,1ln(1)2n n n y k k++<+; ④当*n ∈N时,记数列的前n 项和为n S ,则1)n n S n -<. 其中,正确的结论有 (写出所有正确结论的序号)三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分)口袋中装有除编号外其余完全相同的5个小球,编号依次为1,2,3,4,5.现从中同时取出两个球,分别记录下其编号为,m n . (Ⅰ)求“5+=m n ”的概率; (Ⅱ)求“5≥mn ”的概率.17.(本小题满分12分)如图,在多面体ECABD 中,EC ⊥平面ABC ,//DB EC ,ABC ∆为正三角形,F 为EA 的中点,2EC AC ==,1BD =.(Ⅰ)求证:DF //平面ABC ; (Ⅱ)求多面体ECABD 的体积. 18.(本小题满分12分)已知数列{}n a 的前n 项和为n S ,且122+=-n n S ;数列{}n b 满足11b =,12n n b b +=+.*n ∈N .(Ⅰ)求数列{}n a 和{}n b 的通项公式;(Ⅱ)记n n n c a b =,*n ∈N .求数列{}n c 的前n 项和n T .19.(本小题满分12分)某大型企业一天中不同时刻的用电量y (单位:万千瓦时)关于时间t (024t ≤≤,单位:小时)的函数()y f t =近似地满足()sin()(0,0,0)f t A t B A ωϕωϕπ=++>><<,下图是该企业一天中在0点至12点时间段用电量y 与时间t 的大致图象. (Ⅰ)根据图象,求A ,ω,ϕ,B 的值; (Ⅱ)若某日的供电量()g t (万千瓦时)与时间t (小时)近似满足函数关系式205.1)(+-=t t g (012t ≤≤).当该日内供电量小于该企业的用电量时,企业就必须停产.请用二分法计算该企业当日停产的大致时刻(精确度0.1). 参考数据:20.(本小题满分13分)已知椭圆Γ:12222=+by a x (0>>b a )的右焦点为)0,22(,且过点.(Ⅰ)求椭圆Γ的标准方程;(Ⅱ)设直线:()l y x m m =+∈R 与椭圆Γ交于不同两点A 、B ,且AB =点0(,2)P x 满足=PA PB ,求0x 的值.21.(本小题满分14分) 已知函数()ln 2mf x x x=+,()2g x x m =-,其中m ∈R ,e 2.71828= 为自然对数的底数.(Ⅰ)当1m =时,求函数()f x 的极小值;(Ⅱ)对1[,1]e x ∀∈,是否存在1(,1)2m ∈,使得()()1>+f x g x 成立?若存在,求出m 的取值范围;若不存在,请说明理由;(Ⅲ)设()()()F x f x g x =,当1(,1)2m ∈时,若函数()F x 存在,,a b c 三个零点,且a b c <<,求证: 101ea b c <<<<<.数学(文科)参考答案及评分意见第Ⅰ卷(选择题,共50分)一、选择题:(本大题共10个小题,每小题5分,共50分)1.A ; 2.C ; 3.D ;4.A ;5.C ;6.B ;7.D ;8.B ;9.C ;10.B .第Ⅱ卷(非选择题,共100分)二、填空题:(本大题共5个小题,每小题5分,共25分)11.30 12.90︒ 13.4 14.[2,0]- 15.①②④ 三、解答题:(本大题共6个小题,共75分) 16.(本小题满分12分)解:同时取出两个球,得到的编号,m n 可能为: (1,2),(1,3),(1,4),(1,5) (2,3),(2,4),(2,5) (3,4),(3,5)(4,5)…………………………………………………………………………………6分(Ⅰ)记“5+=m n ”为事件A ,则 21()105==P A .……………………………………………………………………………3分(Ⅱ)记“5≥mn ”为事件B ,则 37()11010=-=P B .…………………………………………………………………… 3分 17.(本小题满分12分)(Ⅰ)证明:作AC 的中点O ,连结BO .在∆AEC 中,//=FO 12EC ,又据题意知,//=BD 12EC . ∴//=FO BD ,∴四边形FOBD 为平行四边形. ∴//DF OB ,又⊄DF 面ABC ,⊂OB 平面ABC .∴//DF 面ABC .………………………6分 (Ⅱ)据题意知,多面体ECABD 为四棱锥-A ECBD . 过点A 作⊥AH BC 于H .∵⊥EC 平面ABC ,⊂EC 平面ECBD , ∴平面⊥ECBD 平面ABC .又⊥AH BC ,⊂AH 平面ABC ,平面 ECBD 平面=ABC BC , ∴⊥AH 面ECBD .∴在四棱锥-A ECBD 中,底面为直角梯形ECBD,高=AH .∴1(21)232-+⨯=⨯=A ECBD V ∴多面体ECABD6分 18.(本小题满分12分) 解:(Ⅰ)∵122+=-n n S ① 当2≥n 时,122-=-n n S ② ①-②得,2=n n a (2≥n ).∵当2≥n 时,11222--==nn n n a a ,且12=a .∴数列{}n a 是以2为首项,公比为2的等比数列,∴数列{}n a 的通项公式为1222-=⋅=n n n a .………………………………………4分又由题意知,11b =,12n n b b +=+,即12+-=n n b b ∴数列{}n b 是首项为1,公差为2的等差数列,∴数列{}n b 的通项公式为1(1)221=+-⨯=-n b n n .……………………………2分(Ⅱ)由(Ⅰ)知,(21)2=-n n c n ……………………………………………………1分 ∴231123252(23)2(21)2-=⨯+⨯+⨯++-⋅+-⋅ n n n T n n 231121232(25)2(23)2(21)2-+=⨯+⨯++-⋅+-⋅+-⋅ n n n n T n n n ④由 -④得2311222222222(21)2-+-=+⨯+⨯++⋅+⋅--⋅ n n n n T n (1)分23112(12222)(21)2-+-=++++--⋅ n nn n T n∴12222(21)212+-⋅-=⨯--⋅-n n n T n (1)分∴111224222+++-=⋅--⋅+n n n n T n 即1(32)24+-=-⋅-n n T n ∴1(23)24+=-+n n T n∴数列{}n c 的前n 项和1(23)24+=-+n n T n ………………………………………3分19.(本小题满分12分) 解:(Ⅰ)由图知12T =,6πω=.………………………………………………………1分2125.15.22m i n m a x =-=-=y y A ,225.15.22min max =+=+=y y B .……………2分 ∴0.5sin()26y x πϕ=++.又函数0.5sin()26y x πϕ=++过点(0,2.5).代入,得22k πϕπ=+,又0ϕπ<<,∴2πϕ=.…………………………………2分综上,21=A ,6πω=,2πϕ=,21=B . ………………………………………1分即2)26sin(21)(++=ππt t f . (Ⅱ)令)()()(t g t f t h -=,设0)(0=t h ,则0t 为该企业的停产时间. 由0)11()11()11(<-=g f h ,0)12()12()12(>-=g f h ,则)12,11(0∈t . 又0)5.11()5.11()5.11(<-=g f h ,则)12,5.11(0∈t . 又0)75.11()75.11()75.11(>-=g f h ,则)75.11,5.11(0∈t .又0)625.11()625.11()625.11(<-=g f h ,则)75.11,625.11(0∈t .又0)6875.11()6875.11()6875.11(>-=g f h ,则)6875.11,625.11(0∈t .…4分……………………………………………1分 ∴应该在11.625时停产.……………………………………………………………1分 (也可直接由)625.11()625.11()625.11(<-=g f h ,0)6875.11()6875.11()6875.11(>-=g f h ,得出)6875.11,625.11(0∈t ;答案在11.625—11.6875之间都是正确的;若换算成时间应为11点37分到11点41分停产)20.(本小题满分13分)(Ⅰ)由已知得=a,又=c ∴2224=-=b a c .∴椭圆Γ的方程为141222=+y x .…………………………………………………4分 (Ⅱ)由⎪⎩⎪⎨⎧=++=,1412,22y x m x y 得01236422=-++m mx x ① ………………………1分∵直线l 与椭圆Γ交于不同两点A 、B ,∴△0)123(163622>--=m m , 得216<m .设),(11y x A ,),(22y x B ,则1x ,2x 是方程①的两根,则2321mx x -=+, 2123124-⋅=m x x .∴12=-==AB x又由AB =231294-+=m ,解之2m =±.……………………………3分 据题意知,点P 为线段AB 的中垂线与直线2=y 的交点. 设AB 的中点为),(00y x E ,则432210m x x x -=+=,400mm x y =+=, 当2m =时,31(,)22E -∴此时,线段AB 的中垂线方程为13()22y x -=-+,即1y x =--. 令2=y ,得03x =-.…………………………………………………………………2分 当2m =-时,31(,)22E -∴此时,线段AB 的中垂线方程为13()22y x +=--,即1y x =-+. 令2=y ,得01x =-.………………………………………………………………2分综上所述,0x 的值为3-或1-. 21.(本小题满分14分)解:(Ⅰ)1m =时,1()ln ,02=+>f x x x x. ∴221121()22-'=-=x f x x x x ……………………………………………………………………1分由()0'>f x ,解得12>x ;由()0'<f x ,解得102<<x ; ∴()f x 在1(0,)2上单调递减,1(,)2+∞上单调递增. (2)分∴=极小值)(x f 11()ln 11ln 222f =+=-.…………………………………………………… 2分(II )令1()()()1ln 21,,12⎡⎤=--=+-+-∈⎢⎥⎣⎦m h x f x g x x x m x x e ,其中1(,1)2m ∈由题意,()0h x >对1,1x e ⎡⎤∈⎢⎥⎣⎦恒成立,∵2221221()1,,122-+-⎡⎤'=--=∈⎢⎥⎣⎦m x x m h x x x x x e ∵1(,1)2m ∈,∴在二次函数222=-+-y x x m 中,480∆=-<m ,∴2220-+-<x x m 对∈x R 恒成立∴()0'<h x 对1,1x e ⎡⎤∈⎢⎥⎣⎦恒成立, ∴()h x 在1,1e ⎡⎤⎢⎥⎣⎦上单减. ∴min 5()(1)ln11212022==+-+-=->m h x h m m ,即45>m .故存在4(,1)5∈m 使()()f x g x >对1,1⎡⎤∀∈⎢⎥⎣⎦x e 恒成立.……………………………………4分(III )()(ln )(2),(0,)2mF x x x m x x=+-∈+∞,易知2x m =为函数()F x 的一个零点, ∵12>m ,∴21>m ,因此据题意知,函数()F x 的最大的零点1>c , 下面讨论()ln 2mf x x x=+的零点情况,∵2212()22m x m f x x x x -'=-=. 易知函数()f x 在(0,)2m上单调递减,在(,)2m +∞上单调递增.由题知()f x 必有两个零点,∴=极小值)(x f ()ln 1022=+<m mf ,解得20<<m e ,∴122<<m e ,即(,2)2∈eme .…………………………………………………………3分 ∴11(1)ln10,()ln 11102222=+=>=+=-<-=m m em emf f e e .…………………1分 又10101010101()ln 10100224---=+=->->m m f e e e e e .101()0,()0,(1)0f e f f e -∴><>.10101e a b c e -∴<<<<<<.101a b c e∴<<<<<,得证.……………………………………………………………1分。
成都市2015届高中毕业班第一次诊断性检测数学试题(理科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集{|0}=≥U x x ,集合{1}=P ,则U P =ð (A )[0,1)(1,)+∞ (B )(,1)-∞ (C )(,1)(1,)-∞+∞ (D )(1,)+∞2.若一个几何体的正视图和侧视图是两个全等的正方形,则这个几何体的俯视图不可能是(A ) (B ) (C ) (D ) 3.已知复数z 43i =--(i 是虚数单位),则下列说法正确的是(A )复数z 的虚部为3i - (B )复数z 的虚部为3 (C )复数z 的共轭复数为z 43i =+ (D )复数z 的模为54.函数31,0()1(),03x x x f x x ⎧+<⎪=⎨≥⎪⎩的图象大致为(A ) (B ) (C ) (D )5.已知命题p :“若22≥+x a b ,则2≥x ab ”,则下列说法正确的是 (A )命题p 的逆命题是“若22<+x a b ,则2<x ab ” (B )命题p 的逆命题是“若2<x ab ,则22<+x a b ” (C )命题p 的否命题是“若22<+x a b ,则2<x ab ” (D )命题p 的否命题是“若22x a b ≥+,则2<x ab ”GFEHPACBDA 1B 1C 1D 16.若关于x 的方程240+-=x ax 在区间[2,4]上有实数根,则实数a 的取值范围是 (A )(3,)-+∞ (B )[3,0]- (C )(0,)+∞ (D )[0,3]7.已知F 是椭圆22221+=x y a b(0>>a b )的左焦点,A 为右顶点,P 是椭圆上一点,⊥PF x轴.若14=PF AF ,则该椭圆的离心率是 (A )14(B )34 (C )12(D8.已知m ,n 是两条不同直线,α,β是两个不同的平面,且//m α,n ⊂β,则下列叙述正确的是(A )若//αβ,则//m n (B )若//m n ,则//αβ (C )若n α⊥,则m β⊥ (D )若m β⊥,则αβ⊥9.若552sin =α,1010)sin(=-αβ,且],4[ππα∈,]23,[ππβ∈,则αβ+的值是 (A )74π (B )94π (C )54π或74π (D )54π或94π 10.如图,已知正方体1111ABCD A B C D -棱长为4,点H 在棱1AA 上,且11HA =.在侧面11BCC B 内作边长为1的正方形1EFGC ,P 是侧面11BCC B 内一动点,且点P 到平面11CDD C 距离等于线段PF 的长.则当点P 运动时, 2HP 的最小值是 (A )21(B )22 (C )23 (D )25二、填空题:本大题共5小题,每小题5分,共25分.11.若非零向量a ,b 满足a b a b +=-,则a ,b 的夹角的大小为__________. 12.二项式261()x x-的展开式中含3x 的项的系数是__________.(用数字作答)13.在∆ABC 中,内角,,A B C 的对边分别为,,a b c ,若2=c a ,4=b ,1cos 4=B ,则∆ABC 的面积=S __________.14.已知定义在R 上的奇函数()f x ,当0x ≥时,3()log (1)=+f x x .若关于x 的不等式2[(2)](22)f x a a f ax x ++≤+的解集为A ,函数()f x 在[8,8]-上的值域为B ,若“x A ∈”是“x B ∈”的充分不必要条件,则实数a 的取值范围是__________.15.已知曲线C :22y x a =+在点n P (n (0,a n >∈N )处的切线n l 的斜率为n k ,直线n l 交x 轴,y 轴分别于点(,0)n n A x ,(0,)n n B y ,且00=x y .给出以下结论: ①1a =;②当*n ∈N时,n y 的最小值为54; ③当*n ∈N 时,n k <; ④当*n ∈N时,记数列{}n k 的前n 项和为n S ,则1)<n S .其中,正确的结论有 (写出所有正确结论的序号)三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分)口袋中装有除颜色,编号不同外,其余完全相同的2个红球,4个黑球.现从中同时取出3个球.(Ⅰ)求恰有一个黑球的概率;(Ⅱ)记取出红球的个数为随机变量X ,求X 的分布列和数学期望()E X .17.(本小题满分12分)如图,ABC ∆为正三角形,EC ⊥平面ABC ,//DB EC ,F 为EA 的中点,2EC AC ==,1BD =.(Ⅰ)求证:DF //平面ABC ;(Ⅱ)求平面DEA 与平面ABC 所成的锐二面角的余弦值. 18.(本小题满分12分)已知数列{}n a 的前n 项和为n S ,且22n n S a =-;数列{}n b 满足11b =,12n n b b +=+.*n ∈N .(Ⅰ)求数列{}n a ,{}n b 的通项公式;(Ⅱ)记n n n c a b =,*n ∈N .求数列{}n c 的前n 项和n T .19.(本小题满分12分)某大型企业一天中不同时刻的用电量y (单位:万千瓦时)关于时间t (024t ≤≤,单位:小时)的函数()y f t =近似地满足()sin()(0,0,0)f t A t B A ωϕωϕπ=++>><<,下图是该企业一天中在0点至12点时间段用电量y 与时间t 的大致图象. (Ⅰ)根据图象,求A ,ω,ϕ,B 的值; (Ⅱ)若某日的供电量()g t (万千瓦时)与时间t (小时)近似满足函数关系式205.1)(+-=t t g (012t ≤≤).当该日内供电量小于该企业的用电量时,企业就必须停产.请用二分法计算该企业当日停产的大致时刻(精确度0.1). 参考数据:20.(本小题满分13分)已知椭圆Γ:12222=+by a x (0>>b a )的右焦点为)0,22(,且椭圆Γ上一点M 到其两焦点12,F F 的距离之和为(Ⅰ)求椭圆Γ的标准方程;(Ⅱ)设直线:(l y x m m =+∈R)与椭圆Γ交于不同两点A ,B ,且AB =0(,2)P x 满足=PA PB ,求0x 的值.21.(本小题满分14分)已知函数2()ln mx f x x =-,2()emx mx g x m =-,其中m ∈R 且0m ≠.e 2.71828=为自然对数的底数.(Ⅰ)当0m <时,求函数()f x 的单调区间和极小值;(Ⅱ)当0m >时,若函数()g x 存在,,a b c 三个零点,且a b c <<,试证明: 10e a b c -<<<<<;(Ⅲ)是否存在负数m ,对1(1,)x ∀∈+∞,2(,0)x ∀∈-∞,都有12()()f x g x >成立?若存在,求出m 的取值范围;若不存在,请说明理由.成都市2015届高中毕业班第一次诊断性检测 数学试题(理科)参考答案及评分意见第Ⅰ卷(选择题,共50分)一、选择题:(本大题共10个小题,每小题5分,共50分)1.A ; 2.C ; 3.D ;4.A ;5.C ;6.B ;7.B ;8.D ;9.A ;10.B .第Ⅱ卷(非选择题,共100分)二、填空题:(本大题共5个小题,每小题5分,共25分)11.90︒ 12.20- 13 14.[2,0]- 15.①③④ 三、解答题:(本大题共6个小题,共75分) 16.(本小题满分12分) 解:(Ⅰ)记“恰有一个黑球”为事件A ,则21243641()205⋅===C C P A C .……………………………………………………………4分(Ⅱ)X 的可能取值为0,1,2,则343641(0)205====C P X C ……………………………………………………………2分122436123(1)205⋅====C C P X C ………………………………………………………2分 1(2)()5===P X P A ………………………………………………………………2分 ∴X 的分布列为∴X 的数学期望1310121555=⨯+⨯+⨯=EX .…………………………………2分∴//DF 平面ABC .……………………………………4分 (Ⅱ)∵//FO EC ,∴⊥FO 平面ABC .在正∆ABC 中,⊥BO AC ,∴,,OA OB OF 三线两两垂直. 分别以,,OA OB OF 为,,z x y 轴,建系如图. 则(1,0,0)A ,(1,0,2)-E,D . ∴(2,0,2)=-AE,(1=-AD . 设平面ADE 的一个法向量为1(,,z)=x y n ,则110⎧⋅=⎪⎨⋅=⎪⎩AE AD n n,即2200-+=⎧⎪⎨-+=⎪⎩x z x z ,令1=x ,则1,0==z y .∴平面ADE 的一个法向量为1(1,0,1)=n . 又平面ABC 的一个法向量为2(0,0,1)=n .∴121212,2⋅>===cos <n n n n n n . ∴平面DEA 与平面ABC.…………………………8分 18.(本小题满分12分) 解:(Ⅰ)∵22n n S a =- ①当2≥n 时,1122--=-n n S a ②①-②得,122-=-n n n a a a ,即12-=n n a a (2≥n ). 又当1≥n 时,1122=-S a ,得12=a .∴数列{}n a 是以2为首项,公比为2的等比数列,∴数列{}n a 的通项公式为1222-=⋅=n n n a .………………………………………4分 又由题意知,11b =,12n n b b +=+,即12+-=n n b b ∴数列{}n b 是首项为1,公差为2的等差数列,∴数列{}n b 的通项公式为1(1)221=+-⨯=-n b n n .……………………………2分 (Ⅱ)(Ⅱ)由(Ⅰ)知,(21)2=-nn c n ………………………………………………1分∴231123252(23)2(21)2-=⨯+⨯+⨯++-⋅+-⋅n n n T n n231121232(25)2(23)2(21)2-+=⨯+⨯++-⋅+-⋅+-⋅n n n n T n n n ④由-④得2311222222222(21)2-+-=+⨯+⨯++⋅+⋅--⋅n n n n T n …………………1分23112(12222)(21)2-+-=++++--⋅n n n n T n∴12222(21)212+-⋅-=⨯--⋅-n n n T n …………………………………………………1分∴111224222+++-=⋅--⋅+n n n n T n 即1(32)24+-=-⋅-n n T n ∴1(23)24+=-+n n T n∴数列{}n c 的前n 项和1(23)24+=-+n n T n ………………………………………3分 19.(本小题满分12分) 解:(Ⅰ)由图知12T =,6πω=.………………………………………………………1分2125.15.22m i n m a x =-=-=y y A ,225.15.22min max =+=+=y y B .……………2分 ∴0.5sin()26y x πϕ=++.又函数0.5sin()26y x πϕ=++过点(0,2.5).代入,得22k πϕπ=+,又0ϕπ<<,∴2πϕ=.…………………………………2分综上,21=A ,6πω=,2πϕ=,21=B . ………………………………………1分即2)26sin(21)(++=ππt t f . (Ⅱ)令)()()(t g t f t h -=,设0)(0=t h ,则0t 为该企业的停产时间. 由0)11()11()11(<-=g f h ,0)12()12()12(>-=g f h ,则)12,11(0∈t . 又0)5.11()5.11()5.11(<-=g f h ,则)12,5.11(0∈t . 又0)75.11()75.11()75.11(>-=g f h ,则)75.11,5.11(0∈t . 又0)625.11()625.11()625.11(<-=g f h ,则)75.11,625.11(0∈t .又0)6875.11()6875.11()6875.11(>-=g f h ,则)6875.11,625.11(0∈t .…4分……………………………………………1分 ∴应该在11.625时停产.……………………………………………………………1分 (也可直接由)625.11()625.11()625.11(<-=g f h ,0)6875.11()6875.11()6875.11(>-=g f h ,得出)6875.11,625.11(0∈t ;答案在11.625—11.6875之间都是正确的;若换算成时间应为11点37分到11点41分停产) 20.(本小题满分13分)(Ⅰ)由已知2=a得=a,又=c ∴2224=-=b a c .∴椭圆Γ的方程为141222=+y x .…………………………………………………4分 (Ⅱ)由⎪⎩⎪⎨⎧=++=,1412,22y x m x y 得01236422=-++m mx x ① ………………………1分∵直线l 与椭圆Γ交于不同两点A 、B ,∴△0)123(163622>--=m m , 得216<m .设),(11y x A ,),(22y x B ,则1x ,2x 是方程①的两根,则2321mx x -=+, 2123124-⋅=m x x .∴12=-=AB x又由AB =231294-+=m ,解之2m =±.……………………………3分 据题意知,点P 为线段AB 的中垂线与直线2=y 的交点. 设AB 的中点为),(00y x E ,则432210m x x x -=+=,400mm x y =+=,当2m =时,31(,)22E -∴此时,线段AB 的中垂线方程为13()22y x -=-+,即1y x =--. 令2=y ,得03x =-.…………………………………………………………………2分当2m =-时,31(,)22E -∴此时,线段AB 的中垂线方程为13()22y x +=--,即1y x =-+. 令2=y ,得01x =-.………………………………………………………………2分 综上所述,0x 的值为3-或1-. 21.(本小题满分14分)解:(Ⅰ)2222)(ln )ln 21()(ln ln 2)(ln 1ln 2)(x x mx x x x x m x x x x x mx f -⋅=-=⋅--='(0>x 且1≠x ). ∴由0)(>'x f ,得21e x >;由0)(<'xf ,得210e x <<,且1≠x .……………………1分 ∴函数)(x f的单调递减区间是(0,1),(1,单调递增区间是),(+∞e .………………2分 ∴me e f x f 2)()(-==极小值.………………………………………………………………1分(Ⅱ)222(2)(),(0)mx mx mx mxmxe mx e m mx mx g x m e e--'=-=>. ∴()g x 在(,0)-∞上单调递增,2(0,)m上单调递减,2(,)m +∞上单调递增. ∵函数()g x 存在三个零点.∴20(0)02402()00>⎧>⎧⎪⎪⎪⇒⇒<<⎨⎨<⎪⎪-<⎩⎪⎩m g m e g m m m e . ∴02<<me …………………………………………………………………………………3分 由(1)(1)0-=-=-<mmg m me m e .∴22()(1)0=-=-<em em me e g e m m e e.……………………………………………………1分综上可知,()0,(0)0,(1)0<>-<g e g g ,结合函数()g x 单调性及a b c <<可得:(1,0),(0,),(,)a b e c e ∈-∈∈+∞.即10a b e c -<<<<<,得证.…………………………………………………………1分 (III )由题意,只需min max ()()>f x g x∵2(12ln )()(ln )-'=mx x f x x 由0<m ,∴函数()f x 在12(1,)e 上单调递减,在12(,)e +∞上单调递增.∴12min ()()2==-f x f e me .………………………………………………………………2分 ∵(2)()-'=mxmx mx g x e由0<m ,∴函数()g x 在2(,)m -∞上单调递增,2(,0)m上单调递减. ∴max 224()()==-g x g m m e m .……………………………………………………………2分 ∴242->-me m e m ,不等式两边同乘以负数m ,得22242-<-m e m e.∴224(21)e m e+>,即224(21)m e e >+.由0<m ,解得(21)m e e <-+.综上所述,存在这样的负数(,)(21)∈-∞-+m e e 满足题意.……………………………1分。
2015届成都市毕业班第一次诊断性检测数学(文史类)本试题分选择题和非选择题两部分。
第I 卷(选择题)1至2页,第II 页(非选择题)3至4页,共4页,满分150分,考试时间120分钟。
注意事项:1. 答题前,务必将自己的姓名、考籍号填写在答题卡规定的位置上。
2. 答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案标号。
3. 答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。
4. 所有题目必须在答题卡上作答,在试题卷上答题无效。
5.考试结束后,只将答题卡交回。
第I 卷(选择题,共50分)一、 选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,有且只有一项是符合题目要求的。
1. 设全集{{}0≥=x x U ,集合{}1=P ,则=P C U ( )A.),1()1,0[+∞B.)1,(-∞C.),1()1,(+∞-∞D.),1(+∞2. 若一个几何体的正视图和侧视图是两个全等的正方形,则这个几何体的俯视图不可能是( )3. 命题“若22b a x +≥,则ab x 2≥”的逆命题是( )A.若22b a x +<,则ab x 2< B.若22b a x +≥,则ab x 2< C.若ab x 2<,则22b a x +< D.若ab x 2≥,则22b a x +≥4. 函数⎪⎩⎪⎨⎧≥<+=0,)31(0,1)(3x x x x f x 的图像大致为( )6. 若关于x 的方程042=-+ax x 在区间]4,2[上有实数根,则实数a 的取值范围是( ) A.),3(+∞- B.]0,3[- C.),0(+∞ D.]3,0[A.2524 B.2512 C.2512- D.2524- 8. 已知抛物线:C x y 82=,过点)0,2(P 的直线与抛物线交于B A ,两点,O 为坐标原点,则OB OA ∙的值为( )A.16-B.12-C.4D.09. 已知n m ,是两条不同的直线,βα,是两个不同的平面,且β⊆n ,则下列叙述正确的是( ) A. 若n m //,α⊆m ,则βα// B.若βα//,α⊆m ,则n m // C.若n m //,α⊥m ,则βα⊥ D.若βα//,n m ⊥,则α⊥m10. 如图,已知正方体1111D C B A ABCD -的棱长为4,点H 在棱1AA 上,且11=HA ,点F E ,分别为棱11C B ,C C 1的中点,P 是侧面11B BCC 内一动点,且满足PF PE ⊥。
四川省成都市青羊区2015届中考数学一诊试题一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.4的平方根是()A.±2B.2 C.±D.2.已知点P(3,﹣2)与点Q关于x轴对称,则Q点的坐标为()A.(﹣3,2)B.(﹣3,﹣2) C.(3,2) D.(3,﹣2)3.今年3月5日,温家宝总理在《政府工作报告》中,讲述了六大民生新亮点,其中之一就是全部免除了细部地区和部分中部地区农村义务教育阶段约52 000 000名学生的学杂费.这个数据保留三个有效数字用科学记数法表示为()A.5.2×107B.52×108C.5.2×108D.5.20×1074.如图所示的几何体是由几个相同的小正方体搭成的一个几何体,它的俯视图是()A.B.C.D.5.如图,已知a∥b,∠1=40°,则∠2=()A.140°B.120°C.40° D.50°6.若一个多边形的内角和是900°,则这个多边形的边数是()A.5 B.6 C.7 D.87.不等式组的解集的情况为()A.x<﹣1 B.x<C.﹣1<x<D.无解8.在Rt△ABC中,∠C=90°,BC=2,AB=4,则cosA=()A.B.C.D.9.如图,图中正方形ABCD的边长为4,则图中阴影部分的面积为()A.16﹣4πB.32﹣8πC.8π﹣16 D.无法确定|10.如图,在△ABC中,AB=10,AC=8,BC=6,经过点C且与边AB相切的动圆与CA、CB分别相交于点P、Q,则线段PQ长度的最小值是()A.4.75 B.4.8 C.5 D.4二、填空题(本大题共4个小题,每小题4分,共16分)11.如图,AB是⊙O的直径,点C在⊙O上,OD∥BC,若OD=1,则BC的长为.12.某班开展为班上捐书活动.共捐得科技、文学、教辅、传记四类图书,分别用A、B、C、D表示,如图是未制作完的捐书数量y(单位:百本)与种类x(单位:类)关系的条形统计图,若D类图书占全部捐书的10%,则D类图书的数量(单位:百本)是.13.写出一个图象位于二、四象限的反比例函数的表达式,y= .14.如图,AD是△ABC的高,AD=h,点R在AC边上,点S在AB边上,SR⊥AD,垂足为E.当SR=BC 时,则DE= .三、解答题(本大题共6个小题,共54分.解答应写出必要的文字说明、证明过程或演算步骤.)15.(1)计算:(2)解方程:.16.先化简,后求值:,其中x=﹣.17.过原点的直线交反比例函数y=图象于A、B两点,BD⊥x轴于点D,AE⊥y轴于点E.问:(1)直线AB与直线ED的位置关系是什么?并说明理由.(2)四边形ABDE的面积等于多少?18.某市今年的信息技术结业考试,采用学生抽签的方式决定自己的考试内容.规定:每位考生先在三个笔试题(题签分别用代码B1、B2、B3表示)中抽取一个,再在三个上机题(题签分别用代码J1、J2、J3表示)中抽取一个进行考试.小亮在看不到题签的情况下,分别从笔试题和上机题中随机地抽取一个题签.(1)用树状图或列表法表示出所有可能的结果;(2)求小亮抽到的笔试题和上机题的题签代码的下标(例如“B1”的下标为“1”)为一个奇数一个偶数的概率.19.如图所示,山坡上有一棵与水平面垂直的大树,一场台风过后,大树被刮倾斜后折断倒在山坡上,树的顶部恰好接触到坡面.已知山坡的坡角∠AEF=23°,量得树干倾斜角∠BAC=38°,大树被折断部分和坡面所成的角∠ADC=60°,AD=8m.(1)求∠CAE的度数;(2)求这棵大树折断前的高度?(结果精确到个位,参考数据: =1.4, =1.7, =2.4).20.在△ABC中,∠BAC=90°,AB<AC,∠PMQ是直角,且直角顶点M是BC边的中点,MN⊥BC交AC 于点N.PM边上动点P从点B出发沿射线BA以每秒2cm的速度运动,同时,MQ边上动点Q从点N 出发沿射线NC运动,设运动时间为t秒(t>0).(1)求证:△PBM∽△QNM;(2)探求BP2、PQ2、CQ2三者之间的数量关系,并说明理由.(3)若∠ABC=60°,BC=8cm.①求动点Q的运动速度;②设△APQ的面积为S(平方厘米),求S与t的函数关系式;一、填空(本大题5个小题,每小题4分,共20分.)21.如果关于x的一元二次方程x2﹣4x+3m=0有两个不相等的实数根,则m的取值范围是.22.如图,在△ABC中,AC=BC=2,∠ACB=90°,D是BC边的中点,E是AB边上一动点,则EC+ED 的最小值是.23.如图,已知一次函数y=x+1的图象与反比例函数的图象在第一象限相交于点A,与x轴相交于点C,AB⊥x轴于点B,△AOB的面积为1,则AC的长为(保留根号).24.如图,已知A(2,0)、B(0,5),⊙C的圆心坐标为C(﹣1,0),半径为1,若D是⊙C上一个动点,线段DA与y轴交于点E,则△ABE面积的最小值是.25.用火柴棒按下图中的方式搭图形,按照这种方式搭下去,搭第2015个图形需根火柴棒.二、解答题(本大题共3个小题,共30分.解答题应写出必要的文字说明,证明过程或演算步骤.)26.据我们调查,成都市某家电商场今年一月至六月份销售型号为“JSQ20﹣H”的海尔牌热水器的(2)由于此型号的海尔牌热水器的价格适中,消费者满意度很高,商场计划八月份销售此型号的热水器72台,与上半年平均月销售量相比,七、八月销售此型号的热水器平均每月的增长率是多少?27.如图,已知⊙O的直径AB垂直于弦CD于点E,过C点作CG∥AD交AB的延长线于点G,连接CO 并延长交AD于点F,且CF⊥AD.(1)试问:CG是⊙O的切线吗?说明理由;(2)求证:E为OB的中点;(3)若AB=10,求CD的长.28.如图,在直角坐标系中有一直角三角形AOB,O为坐标原点,OB=6,tan∠ABO=,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线y=ax2+bx+c经过点A、B、C.(1)求抛物线的解析式;(2)若点P是第二象限内抛物线上的动点,其横坐标为t,①设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F,若△CEF∽△COD,求t的值;②是否存在一点P,使△PCD得面积最大?若存在,求出△PCD的面积的最大值;若不存在,请说明理由.2015年四川省成都市青羊区中考数学一诊试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.4的平方根是()A.±2B.2 C.±D.【考点】平方根.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±2)2=4,∴4的平方根是±2.故选:A.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.2.已知点P(3,﹣2)与点Q关于x轴对称,则Q点的坐标为()A.(﹣3,2)B.(﹣3,﹣2) C.(3,2) D.(3,﹣2)【考点】关于x轴、y轴对称的点的坐标.【分析】利用关于x轴对称的两点,横坐标相同,纵坐标互为相反数的性质来求解.【解答】解:根据轴对称的性质,得点P(3,﹣2)关于x轴对称的点的坐标为(3,2).故选:C.【点评】熟记关于x轴对称的两点,横坐标相同,纵坐标互为相反数,关于y轴对称的两点,横坐标互为相反数,纵坐标相同,关于原点对称的两点,横坐标和纵坐标均互为相反数.3.今年3月5日,温家宝总理在《政府工作报告》中,讲述了六大民生新亮点,其中之一就是全部免除了细部地区和部分中部地区农村义务教育阶段约52 000 000名学生的学杂费.这个数据保留三个有效数字用科学记数法表示为()A.5.2×107B.52×108C.5.2×108D.5.20×107【考点】科学记数法与有效数字.【专题】应用题.【分析】科学记数法就是将一个数字表示成a×10的n次幂的形式,其中1≤|a|<10,n表示整数.n 为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.而保留三个有效数字,要观察第4个有效数字,四舍五入,不足的补0.【解答】解:52 000 000=5.20×107.故选D.【点评】本题考查学生对科学记数法的掌握.科学记数法要求前面的部分是大于或等于1,而小于10,小数点向左移动7位,应该为5.20×107.4.如图所示的几何体是由几个相同的小正方体搭成的一个几何体,它的俯视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】俯视图是从上面看到的图形.【解答】解:从上面看,左边和中间都是2个正方形,右上角是1个正方形,故选D.【点评】本题考查了三视图的知识,关键是找准俯视图所看的方向.5.如图,已知a∥b,∠1=40°,则∠2=()A.140°B.120°C.40° D.50°【考点】平行线的性质;对顶角、邻补角.【专题】计算题.【分析】如图:由a∥b,根据两直线平行,同位角相等,可得∠1=∠3;又根据邻补角的定义,可得∠2+∠3=180°,所以可以求得∠2的度数.【解答】解:∵a∥b,∴∠1=∠3=40°;∵∠2+∠3=180°,∴∠2=180°﹣∠3=180°﹣40°=140°.故选A.【点评】此题考查了平行线的性质:两直线平行,同位角相等以及邻补角互补.6.若一个多边形的内角和是900°,则这个多边形的边数是()A.5 B.6 C.7 D.8【考点】多边形内角与外角.【分析】根据多边形的内角和公式(n﹣2)•180°,列式求解即可.【解答】解:设这个多边形是n边形,根据题意得,(n﹣2)•180°=900°,解得n=7.故选:C.【点评】本题主要考查了多边形的内角和公式,熟记公式是解题的关键.7.不等式组的解集的情况为()A.x<﹣1 B.x<C.﹣1<x<D.无解【考点】解一元一次不等式组.【分析】由题意分别解出不等式组中的两个不等式,再根据求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解)来求出不等式的解集.【解答】解:由移项整理,得x<﹣1,由3x﹣2<0移项,得3x<2,∴x<,∴不等式的解集:x<﹣1,故选A.【点评】主要考查了一元一次不等式组解集的求法,考不等式组解集的口诀,还考查学生的计算能力.8.在Rt△ABC中,∠C=90°,BC=2,AB=4,则cosA=()A.B.C.D.【考点】锐角三角函数的定义.【分析】根据勾股定理求出AC,根据余弦的定义计算即可.【解答】解:∵∠C=90°,BC=2,AB=4,∴AC==2,∴cosA===,故选:D.【点评】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.9.如图,图中正方形ABCD的边长为4,则图中阴影部分的面积为()A.16﹣4πB.32﹣8πC.8π﹣16 D.无法确定|【考点】扇形面积的计算.【专题】压轴题.【分析】根据图形,知阴影部分的面积即为直径为4的圆面积的2倍减去边长为4的正方形的面积.【解答】解:根据图形,得阴影部分的面积=2×π×22﹣4×4=8π﹣16.故选C.【点评】此题关键是能够看出阴影部分的面积的整体计算方法.10.如图,在△ABC中,AB=10,AC=8,BC=6,经过点C且与边AB相切的动圆与CA、CB分别相交于点P、Q,则线段PQ长度的最小值是()A.4.75 B.4.8 C.5 D.4【考点】切线的性质.【专题】压轴题.【分析】设QP的中点为F,圆F与AB的切点为D,连接FD,连接CF,CD,则有FD⊥AB;由勾股定理的逆定理知,△ABC是直角三角形,FC+FD=PQ,由三角形的三边关系知,FC+FD>CD;只有当点F 在CD上时,FC+FD=PQ有最小值,最小值为CD的长,即当点F在直角三角形ABC的斜边AB的高CD 上时,PQ=CD有最小值,由直角三角形的面积公式知,此时CD=BC•AC÷AB=4.8.【解答】解:如图,设QP的中点为F,圆F与AB的切点为D,连接FD、CF、CD,则FD⊥AB.∵AB=10,AC=8,BC=6,∴∠ACB=90°,FC+FD=PQ,∴F C+FD>CD,∵当点F在直角三角形ABC的斜边AB的高CD上时,PQ=CD有最小值,∴CD=BC•AC÷AB=4.8.故选:B.【点评】本题利用了切线的性质,勾股定理的逆定理,三角形的三边关系,直角三角形的面积公式求解.二、填空题(本大题共4个小题,每小题4分,共16分)11.如图,AB是⊙O的直径,点C在⊙O上,OD∥BC,若OD=1,则BC的长为 2 .【考点】三角形中位线定理;圆的认识.【分析】首先证明OD是△ABC的中位线,根据三角形的中位线定理即可求解.【解答】解:∵OD∥BC,且O是AB的中点.∴OD是△ABC的中位线.∴BC=2OD=2.故答案是:2.【点评】本题主要考查了三角形的中位线定理,正确证明OD是中位线是解题的关键.12.某班开展为班上捐书活动.共捐得科技、文学、教辅、传记四类图书,分别用A、B、C、D表示,如图是未制作完的捐书数量y(单位:百本)与种类x(单位:类)关系的条形统计图,若D类图书占全部捐书的10%,则D类图书的数量(单位:百本)是10本.【考点】条形统计图.【分析】首先设D地车票有x张,根据去D地的车票占全部车票的10%列方程即可求得去D地的车票的数量.【解答】解:设D类图书数量为x,则x=(x+20+40+30)×10%,解得x=10.即D类书有10本.故答案为:10本.【点评】此题考查条形统计图,关键是读懂统计图,会分析数据进行解答问题.13.写出一个图象位于二、四象限的反比例函数的表达式,y= 答案不唯一,如y=﹣x等.【考点】正比例函数的性质.【专题】开放型.【分析】根据正比例函数的系数与图象所过象限的关系,易得答案.【解答】解:根据正比例函数的性质,其图象位于第二、四象限,则其系数k<0;故只要给出k小于0的正比例函数即可;答案不唯一,如y=﹣x等.【点评】解题关键是掌握正比例函数的图象特点.14.如图,AD是△ABC的高,AD=h,点R在AC边上,点S在AB边上,SR⊥AD,垂足为E.当SR=BC时,则DE= h .【考点】相似三角形的判定与性质.【分析】根据AD⊥BC,SR⊥AD可得出SR∥BC,故△ASR∽△ABC,再由相似三角形的性质可得出AE 的长,进而可得出结论.【解答】解:∵AD⊥BC,SR⊥AD,SR=BC,AD=h,∴SR∥BC,∴△ASR∽△ABC,∴=,即=,解得AE=h,∴DE=AD﹣AE=h﹣h=h.故答案为: h.【点评】本题考查的是相似三角形的判定与性质,熟知相似三角形对应高的比等于相似比是解答此题的关键.三、解答题(本大题共6个小题,共54分.解答应写出必要的文字说明、证明过程或演算步骤.)15.(1)计算:(2)解方程:.【考点】实数的运算;零指数幂;负整数指数幂;解分式方程;特殊角的三角函数值.【专题】实数;分式方程及应用.【分析】(1)原式第一项利用负整数指数幂法则计算,第二项利用二次根式性质化简,第三项利用零指数幂法则计算,最后一项利用特殊角的三角函数值计算即可得到结果;(2)分式方程整理后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=4﹣3+1﹣2×=4﹣3+1﹣2=0;(2)原方程可化为: =+,去分母得:1=3x﹣1+43x﹣1=﹣3,解得:x=﹣,经检验x=﹣是原方程的解.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.16.先化简,后求值:,其中x=﹣.【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.【解答】解:原式=+•=+•=+=,当x=﹣时原式==﹣=﹣.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.17.过原点的直线交反比例函数y=图象于A、B两点,BD⊥x轴于点D,AE⊥y轴于点E.问:(1)直线AB与直线ED的位置关系是什么?并说明理由.(2)四边形ABDE的面积等于多少?【考点】反比例函数与一次函数的交点问题.【分析】(1)根据题意得出A、B关于原点对称,得出AE=OD,AE∥OD,从而证得四边形OAED是平行四边形,即可证得AB∥ED.(2)根据反比例函数系数k的几何意义即可求得.【解答】解:(1)AB∥ED;理由如下:∵过原点的直线交反比例函数y=图象于A、B两点,∴A、B关于原点对称,∴AE=OD,∵AE⊥y轴于点E.∴AE∥x轴,∴AE∥OD,∴四边形OAED是平行四边形,∴AB∥ED.(2)∵四边形OAED是平行四边形,∴S△AOE=S△EOD,根据反比例函数系数k的几何意义:S△AOE=S△BOD=×12=6,∴四边形ABDE的面积=3×6=18.【点评】本题考查了反比例函数和一次函数的交点问题,平行四边形的判定和性质以及反比例函数系数k的几何意义.18.某市今年的信息技术结业考试,采用学生抽签的方式决定自己的考试内容.规定:每位考生先在三个笔试题(题签分别用代码B1、B2、B3表示)中抽取一个,再在三个上机题(题签分别用代码J1、J2、J3表示)中抽取一个进行考试.小亮在看不到题签的情况下,分别从笔试题和上机题中随机地抽取一个题签.(1)用树状图或列表法表示出所有可能的结果;(2)求小亮抽到的笔试题和上机题的题签代码的下标(例如“B1”的下标为“1”)为一个奇数一个偶数的概率.【考点】列表法与树状图法.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)中的树状图可求得小亮抽到的笔试题和上机题的题签代码的下标(例如“B1”的下标为“1”)为一个奇数一个偶数的情况,然后直接利用概率公式求解即可求得答案.【解答】解:(1)画树状图:则共有9种等可能的结果;(2)∵由树状图或表可知,所有可能的结果共有9种,其中笔试题和上机题的题签代码下标为一奇一偶的有4种,∴题签代码下标为一奇一偶的概率是.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.19.如图所示,山坡上有一棵与水平面垂直的大树,一场台风过后,大树被刮倾斜后折断倒在山坡上,树的顶部恰好接触到坡面.已知山坡的坡角∠AEF=23°,量得树干倾斜角∠BAC=38°,大树被折断部分和坡面所成的角∠ADC=60°,AD=8m.(1)求∠CAE的度数;(2)求这棵大树折断前的高度?(结果精确到个位,参考数据: =1.4, =1.7, =2.4).【考点】解直角三角形的应用-坡度坡角问题.【分析】(1)延长BA交EF于点G.根据三角形内角和定理求出∠CAE的度数;(2)过点A作AE⊥CD,根据余弦和正弦的概念分别求出DH和AH的长,根据等腰直角三角形的性质计算即可.【解答】解:(1)延长BA交EF于点G.在Rt△AGE中,∠E=23°,∴∠GAE=67°,又∵∠BAC=38°,∴∠CAE=180°﹣67°﹣38°=75°.(2)过点A作AE⊥CD,垂足为H.在△ADH中,∠ADC=60°,AD=8,cos∠ADC=,∴DH=4,sin∠ADC=,∴.在Rt△ACH中,∠C=180°﹣75°﹣60°=45°,∴,.∴(米).答:这棵大树折断前高约20米.【点评】本题考查的是解直角三角形的应用﹣坡度坡角问题,正确标注坡角、倾斜角、灵活运用锐角三角函数的概念是解题的关键,注意特殊角的三角函数值的应用.20.在△ABC中,∠BAC=90°,AB<AC,∠PMQ是直角,且直角顶点M是BC边的中点,MN⊥BC交AC 于点N.PM边上动点P从点B出发沿射线BA以每秒2cm的速度运动,同时,MQ边上动点Q从点N 出发沿射线NC运动,设运动时间为t秒(t>0).(1)求证:△PBM∽△QNM;(2)探求BP2、PQ2、CQ2三者之间的数量关系,并说明理由.(3)若∠ABC=60°,BC=8cm.①求动点Q的运动速度;②设△APQ的面积为S(平方厘米),求S与t的函数关系式;【考点】相似形综合题.【专题】综合题;图形的相似.【分析】(1)根据MQ垂直于MP,MN垂直于BC,利用等式的性质得到一对角相等,再利用同角的余角相等得到一对角相等,利用两角相等的三角形相似即可得证;(2)PQ2=BP2+CQ2,理由如下:如图1,延长QM至D,使MD=MQ,连结BD、PD,利用SAS得到三角形BDM与三角形CQM全等,利用全等三角形的对应角相等,对应边相等得到一对内错角相等,进而确定出BD与CQ平行且相等,利用两直线平行同旁内角互补,得到∠PBD为直角,利用勾股定理列出关系式,等量代换即可得证;(3)由M为BC中点,求出CM的长,在直角三角形MNC中,利用锐角三角函数定义求出MN的长,①设Q点的运动速度为vcm/s,如图1,当0≤t<2时,由(1)知△PBM∽△QNM,由相似得比例求出Q速度,如图2,易知当t≥2时,Q的速度;②由AC﹣NC表示出AN,如图1,当0≤t<2时,根据AP,AQ,表示出S;如图2,当t≥2时,同理表示出AP,AQ,进而表示出S即可.【解答】(1)证明:如图1,∵MQ⊥MP,MN⊥BC,∴∠PMB+∠PMN=90°,∠QMN+∠PMN=90°,∴∠PMB=QMN,∵∠PBM+∠C=90°,∠QNM+∠C=90°,∴∠PBM=∠QNM,∴△PBM∽△QNM;(2)解:PQ2=BP2+CQ2,理由如下:如图1,延长QM至D,使MD=MQ,连结BD、PD,∵BC、DQ互相平分,∴BM=CM,DM=QM,在△BDM和△CQM中,,∴△BDM≌△CQM(SAS),∴∠CQM=∠BDM,BD=CQ,∴BD∥CQ,∵∠BAC=90°,∴∠PBD=90°,∴PD2=BP2+BD2=BP2+CQ2,∵PM垂直平分DQ,∴PQ=PD,则PQ2=BP2+CQ2;(3)解:∵BC=8c m,M为BC的中点,∴BM=CM=4cm,∵∠ABC=60°,∠C=30°,∴MN=CM=cm;①设Q点的运动速度为vcm/s,如图1,当0≤t<2cm时,由(1)知△PBM∽△QNM,∴=,即=,∴v=cm/s;如图2,易知当t≥2时,v=cm/s,综上所述,Q点运动速度为cm/s;②∵BC=8cm,AB=4cm,AC=4cm,NC=cm,∴AN=AC﹣NC=4﹣=cm,∴如图1,当0≤t<2cm时,AP=(4﹣2t)cm,AQ=AN+NQ=(+t)cm,∴S=AP•AQ=(4﹣2t)(+t)=(﹣t2+)cm2;如图2,当t≥2cm时,AP=(2t﹣4)cm,AQ=AN+NQ=(+t)cm,∴S=AP•AQ=(2t﹣4)(+t)=(t2﹣)cm2.【点评】此题属于相似形综合题,涉及的知识有:相似三角形的判定与性质,全等三角形的判定与性质,以及勾股定理,利用了分类讨论的思想,熟练掌握相似三角形的判定与性质是解本题的关键.一、填空(本大题5个小题,每小题4分,共20分.)21.如果关于x的一元二次方程x2﹣4x+3m=0有两个不相等的实数根,则m的取值范围是m<.【考点】根的判别式.【分析】根据题意一元二次方程有两不相等实根,则有△=b2﹣4ac=16﹣12m>0,然后解得m的取值范围.【解答】解:∵关于x的一元二次方程x2﹣4x+3m=0有两个不相等的实数根,∴△>0,即△=16﹣12m>0,∴m<,故答案为:m<.【点评】本题主要考查了利用一元二次方程根的判别式(△=b2﹣4ac)判断方程的根的情况.一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.22.如图,在△ABC中,AC=BC=2,∠ACB=90°,D是BC边的中点,E是AB边上一动点,则EC+ED的最小值是.【考点】轴对称-最短路线问题.【专题】压轴题;动点型.【分析】首先确定DC′=DE+EC′=DE+CE的值最小.然后根据勾股定理计算.【解答】解:过点C作CO⊥AB于O,延长CO到C′,使OC′=OC,连接DC′,交AB于E,连接CE,此时DE+CE=DE+EC′=DC′的值最小.连接BC′,由对称性可知∠C′BE=∠CBE=45°,∴∠CBC′=90°,∴BC′⊥BC,∠BCC′=∠BC′C=45°,∴BC=BC′=2,∵D是BC边的中点,∴BD=1,根据勾股定理可得DC′==.故答案为:.【点评】此题考查了线路最短的问题,确定动点E何位置时,使EC+ED的值最小是关键.23.如图,已知一次函数y=x+1的图象与反比例函数的图象在第一象限相交于点A,与x轴相交于点C,AB⊥x轴于点B,△AOB的面积为1,则AC的长为(保留根号).【考点】反比例函数与一次函数的交点问题;反比例函数系数k的几何意义;勾股定理.【专题】压轴题.【分析】由于△AOB的面积为1,根据反比例函数的比例系数k的几何意义可知k=2,解由y=x+1与联立起来的方程组,得出A点坐标,又易求点C的坐标,从而利用勾股定理求出AC的长.【解答】解:∵点A在反比例函数的图象上,AB⊥x轴于点B,△AOB的面积为1,∴k=2.解方程组,得,.∴A(1,2);在y=x+1中,令y=0,得x=﹣1.∴C(﹣1,0).∴AB=2,BC=2,∴AC==2.【点评】本题考查函数图象交点坐标的求法及反比例函数的比例系数k与其图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系,即S=|k|.24.如图,已知A(2,0)、B(0,5),⊙C的圆心坐标为C(﹣1,0),半径为1,若D是⊙C上一个动点,线段DA与y轴交于点E,则△ABE面积的最小值是5﹣.【考点】一次函数综合题.【分析】△ABE的BE边上高为OA=2,当AD与⊙C相切时,BE最短,此时,△ABE的面积最小,由勾股定理求相切时,AD的长,利用三角形相似求OE,再求BE,由三角形面积公式求面积的最小值.【解答】解:如图,当AD与⊙C相切于D点时,△ABE的面积最小,连接CD,则△ACD为直角三角形,由勾股定理,得AD===2,∵∠CDA=∠EOA=90°,∠CAD=∠EAO,∴△CAD∽△EAO,∴=,即=,解得OE=,BE=OB﹣OE=5﹣,S△ABE=×(5﹣)×2=5﹣.故答案为:5﹣.【点评】本题考查了一次函数的综合运用.关键是根据动点的变化情况,找出使△ABE的面积最小时,D点的位置,利用相似比求OE.25.用火柴棒按下图中的方式搭图形,按照这种方式搭下去,搭第2015个图形需12096 根火柴棒.【考点】规律型:图形的变化类.【分析】由图可知:第一个图形用了12根火柴;即12=6×(1+1);第二个图形用了18根火柴;即18=6(2+1);…由此得出搭第n个图形需6n+6根火柴.进一步代入求得答案即可.【解答】解:∵搭第1个图形需12根火柴;搭第2个图形需12+6×1=18根;搭第3个图形需12+6×2=24根;…∴搭第n个图形需12+6(n﹣1)=6n+6根;∴搭第2015个图形需2015×6+6=12096根火柴棒.故答案为:12096.【点评】此题考查图形的变化规律,找出图形的变化规律:后面的图形总比前面的图形多6根火柴棒,由此规律解决问题.二、解答题(本大题共3个小题,共30分.解答题应写出必要的文字说明,证明过程或演算步骤.)26.据我们调查,成都市某家电商场今年一月至六月份销售型号为“JSQ20﹣H”的海尔牌热水器的(2)由于此型号的海尔牌热水器的价格适中,消费者满意度很高,商场计划八月份销售此型号的热水器72台,与上半年平均月销售量相比,七、八月销售此型号的热水器平均每月的增长率是多少?【考点】一元二次方程的应用;算术平均数;中位数;众数.【专题】增长率问题.【分析】(1)根据平均数、中位数、众数的概念求解;(2)根据增长率问题的公式:6月份生产台数×(1+增长率)n=72,列方程求解.【解答】解:(1),中位数为:,众数为:50;(2)设七、八月份销售量的平均增长率为x,依题意,得:50(1+x)2=72,解得:x1=0.2,x2=﹣(不合题意,舍去).答:七、八月销售此型号的热水器平均每月的增长率是20%.【点评】考查了一元二次方程的应用及有关统计量的意义,解题的关键是能够了解增长率问题的解法,难度不大.27.如图,已知⊙O的直径AB垂直于弦CD于点E,过C点作CG∥AD交AB的延长线于点G,连接CO并延长交AD于点F,且CF⊥AD.(1)试问:CG是⊙O的切线吗?说明理由;(2)求证:E为OB的中点;(3)若AB=10,求CD的长.【考点】切线的判定;勾股定理;相似三角形的判定与性质.【分析】(1)由CG∥AD,CF⊥AD,易得CF⊥CG,即可证得CG是⊙O的切线;(2)首先连接BD,易证得△BDE∽△OCE,然后由相似三角形的对应边成比例,证得E为OB的中点;(3)首先由E为OB的中点,AB=10,求得OE的长,然后由勾股定理求得CE的长,继而求得答案.【解答】(1)解:CG是⊙O的切线.理由:∵CG∥AD,∴∠FCG+∠CFD=180°,∵CF⊥AD,∴∠CFD=90°,∴∠FCG=90°,即OC⊥CG,又∵OC为⊙O的半径,∴CG是⊙O的切线;(2)证明:连接BD,∵AB为⊙O的直径,∴∠ADB=90°,又∵∠AFO=90°,∴∠ADB=∠AFO,∴CF∥BD,∴△BDE∽△OCE,∴,∵AE⊥CD,且AE过圆心O,∴CE=DE,∴BE=OE,∴点E为OB的中点;(3)解:∵AB=10,∴OC=AB=5,又∵BE=OE,∴OE=,∵AB⊥CD,∴CE=,∴CD=2CE=.【点评】此题考查了切线的性质与判定、勾股定理、垂径定理以及相似三角形的判定与性质.注意准确作出辅助线是解此题的关键.28.如图,在直角坐标系中有一直角三角形AOB,O为坐标原点,OB=6,tan∠ABO=,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线y=ax2+bx+c经过点A、B、C.(1)求抛物线的解析式;(2)若点P是第二象限内抛物线上的动点,其横坐标为t,①设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F,若△CEF∽△COD,求t的值;②是否存在一点P,使△PCD得面积最大?若存在,求出△PCD的面积的最大值;若不存在,请说明理由.【考点】二次函数综合题.【专题】综合题.。
成都市2015届高中毕业班第一次诊断性检测数学试题(理科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集{|0}=≥U x x ,集合{1}=P ,则UP =(A )[0,1)(1,)+∞ (B )(,1)-∞ (C )(,1)(1,)-∞+∞ (D )(1,)+∞2.若一个几何体的正视图和侧视图是两个全等的正方形,则这个几何体的俯视图不可能是(A ) (B ) (C ) (D ) 3.已知复数z 43i =--(i 是虚数单位),则下列说法正确的是(A )复数z 的虚部为3i - (B )复数z 的虚部为3 (C )复数z 的共轭复数为z 43i =+ (D )复数z 的模为54.函数31,0()1(),03x x x f x x ⎧+<⎪=⎨≥⎪⎩的图象大致为(A ) (B ) (C ) (D )5.已知命题p :“若22≥+x a b ,则2≥x ab ”,则下列说法正确的是 (A )命题p 的逆命题是“若22<+x a b ,则2<x ab ” (B )命题p 的逆命题是“若2<x ab ,则22<+x a b ” (C )命题p 的否命题是“若22<+x a b ,则2<x ab ” (D )命题p 的否命题是“若22x a b ≥+,则2<x ab ”y xOxyO x y Ox yOGFEHPACBDA B C D 6.若关于x 的方程240+-=x ax 在区间[2,4]上有实数根,则实数a 的取值范围是 (A )(3,)-+∞ (B )[3,0]- (C )(0,)+∞ (D )[0,3]7.已知F 是椭圆22221+=x y a b(0>>a b )的左焦点,A 为右顶点,P 是椭圆上一点,⊥PF x轴.若14=PF AF ,则该椭圆的离心率是 (A )14(B )34 (C )12 (D 8.已知m ,n 是两条不同直线,α,β是两个不同的平面,且//m α,n ⊂β,则下列叙述正确的是(A )若//αβ,则//m n (B )若//m n ,则//αβ (C )若n α⊥,则m β⊥ (D )若m β⊥,则αβ⊥9.若552sin =α,1010)sin(=-αβ,且],4[ππα∈,]23,[ππβ∈,则αβ+的值是 (A )74π (B )94π (C )54π或74π (D )54π或94π10.如图,已知正方体1111ABCD A BC D -棱长为4,点H 在棱1AA 上,且11HA =.在侧面11BCC B 内作边长为1的正方形1EFGC ,P 是侧面11BCC B 内一动点,且点P 到平面11CDDC 距离等于线段PF 的长.则当点P 运动时, 2HP 的最小值是(A )21 (B )22 (C )23 (D )25二、填空题:本大题共5小题,每小题5分,共25分.11.若非零向量a ,b 满足a b a b +=-,则a ,b 的夹角的大小为__________.12.二项式261()x x-的展开式中含3x 的项的系数是__________.(用数字作答)13.在∆ABC 中,内角,,A B C 的对边分别为,,a b c ,若2=c a ,4=b ,1cos 4=B ,则∆ABC 的面积=S __________.14.已知定义在R 上的奇函数()f x ,当0x ≥时,3()log (1)=+f x x .若关于x 的不等式2[(2)](22)f x a a f ax x ++≤+的解集为A ,函数()f x 在[8,8]-上的值域为B ,若“x A ∈”是“x B ∈”的充分不必要条件,则实数a 的取值范围是__________.15.已知曲线C :22y x a =+在点n P (n (0,a n >∈N )处的切线n l 的斜率为n k ,直线n l 交x 轴,y 轴分别于点(,0)n n A x ,(0,)n n B y ,且00=x y .给出以下结论: ①1a =;②当*n ∈N时,n y 的最小值为54; ③当*n ∈N 时,n k <; ④当*n ∈N 时,记数列{}n k 的前n 项和为n S ,则1)<n S .其中,正确的结论有 (写出所有正确结论的序号)三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分)口袋中装有除颜色,编号不同外,其余完全相同的2个红球,4个黑球.现从中同时取出3个球.(Ⅰ)求恰有一个黑球的概率;(Ⅱ)记取出红球的个数为随机变量X ,求X 的分布列和数学期望()E X .17.(本小题满分12分)如图,ABC ∆为正三角形,EC ⊥平面ABC ,//DB EC ,F 为EA 的中点,2EC AC ==,1BD =.(Ⅰ)求证:DF //平面ABC ;(Ⅱ)求平面DEA 与平面ABC 所成的锐二面角的余弦值. 18.(本小题满分12分)已知数列{}n a 的前n 项和为n S ,且22n n S a =-;数列{}n b 满足11b =,12n n b b +=+.*n ∈N .(Ⅰ)求数列{}n a ,{}n b 的通项公式;(Ⅱ)记n n n c a b =,*n ∈N .求数列{}n c 的前n 项和n T .19.(本小题满分12分)某大型企业一天中不同时刻的用电量y (单位:万千瓦时)关于时间t (024t ≤≤,单位:小时)的函数()y f t =近似地满足()sin()(0,0,0)f t A t B A ωϕωϕπ=++>><<,下图是该企业一天中在0点至12点时间段用电量y 与时间t 的大致图象. (Ⅰ)根据图象,求A ,ω,ϕ,B 的值; (Ⅱ)若某日的供电量()g t (万千瓦时)与时间t (小时)近似满足函数关系式205.1)(+-=t t g (012t ≤≤).当该日内供电量小于该企业的用电量时,企业就必须停产.请用二分法计算该企业当日停产的大致时刻(精确度0.1). 参考数据:20.(本小题满分13分)已知椭圆Γ:12222=+by a x (0>>b a )的右焦点为)0,22(,且椭圆Γ上一点M 到其两焦点12,F F 的距离之和为43(Ⅰ)求椭圆Γ的标准方程;(Ⅱ)设直线:(l y x m m =+∈R)与椭圆Γ交于不同两点A ,B ,且32AB =点0(,2)P x 满足=PA PB ,求0x 的值. 21.(本小题满分14分)已知函数2()ln mx f x x =-,2()emx mx g x m =-,其中m ∈R 且0m ≠.e 2.71828=为自然对数的底数.(Ⅰ)当0m <时,求函数()f x 的单调区间和极小值;(Ⅱ)当0m >时,若函数()g x 存在,,a b c 三个零点,且a b c <<,试证明:10e a b c -<<<<<;(Ⅲ)是否存在负数m ,对1(1,)x ∀∈+∞,2(,0)x ∀∈-∞,都有12()()f x g x >成立?若存在,求出m 的取值范围;若不存在,请说明理由.t (时)10 11 12 11.5 11.25 11.75 11.625 11.6875 ()f t (万千瓦时) 2.25 2.4332.5 2.48 2.462 2.496 2.490 2.493 ()g t (万千瓦时)53.522.753.1252.3752.5632.469数学(理科)参考答案及评分意见第Ⅰ卷(选择题,共50分)一、选择题:(本大题共10个小题,每小题5分,共50分)1.A ; 2.C ; 3.D ;4.A ;5.C ;6.B ;7.B ;8.D ;9.A ;10.B .第Ⅱ卷(非选择题,共100分)二、填空题:(本大题共5个小题,每小题5分,共25分)11.90︒ 12.20- 1314.[2,0]- 15.①③④ 三、解答题:(本大题共6个小题,共75分) 16.(本小题满分12分) 解:(Ⅰ)记“恰有一个黑球”为事件A ,则21243641()205⋅===C C P A C .……………………………………………………………4分(Ⅱ)X 的可能取值为0,1,2,则343641(0)205====C P X C (2)分122436123(1)205⋅====C C P X C ………………………………………………………2分1(2)()5===P X P A ………………………………………………………………2分∴X 的分布列为∴X 的数学期望1310121555=⨯+⨯+⨯=EX .…………………………………2分17.(本小题满分12分)(Ⅰ)证明:作AC 的中点O ,连结BO .在∆AEC 中,//=FO 12EC ,又据题意知,//=BD 12EC . ∴//=FO BD ,∴四边形FOBD 为平行四边形. ∴//DF OB ,又⊄DF 平面ABC ,⊂OB 平面ABC .∴//DF 平面ABC .……………………………………4分 (Ⅱ)∵//FO EC ,∴⊥FO 平面ABC .在正∆ABC 中,⊥BO AC ,∴,,OA OB OF 三线两两垂直. 分别以,,OA OB OF 为,,z x y 轴,建系如图. 则(1,0,0)A ,(1,0,2)-E,D . ∴(2,0,2)=-AE,(1=-AD . 设平面ADE 的一个法向量为1(,,z)=x y n ,则110⎧⋅=⎪⎨⋅=⎪⎩AE AD n n,即2200-+=⎧⎪⎨-++=⎪⎩x z x z ,令1=x ,则1,0==z y .∴平面ADE 的一个法向量为1(1,0,1)=n . 又平面ABC 的一个法向量为2(0,0,1)=n .∴121212,2⋅>===cos <n n n n n n .∴平面DEA 与平面ABC8分 18.(本小题满分12分) 解:(Ⅰ)∵22n n S a =- ①当2≥n 时,1122--=-n n S a ②①-②得,122-=-n n n a a a ,即12-=n n a a (2≥n ). 又当1≥n 时,1122=-S a ,得12=a .∴数列{}n a 是以2为首项,公比为2的等比数列,∴数列{}n a 的通项公式为1222-=⋅=n n n a .………………………………………4分又由题意知,11b =,12n n b b +=+,即12+-=n n b b∴数列{}n b 是首项为1,公差为2的等差数列,∴数列{}n b 的通项公式为1(1)221=+-⨯=-n b n n .……………………………2分(Ⅱ)(Ⅱ)由(Ⅰ)知,(21)2=-nn c n (1)分∴231123252(23)2(21)2-=⨯+⨯+⨯++-⋅+-⋅n n n T n n231121232(25)2(23)2(21)2-+=⨯+⨯++-⋅+-⋅+-⋅n n n n T n n n ④由-④得2311222222222(21)2-+-=+⨯+⨯++⋅+⋅--⋅n n n n T n (1)分23112(12222)(21)2-+-=++++--⋅n n n n T n∴12222(21)212+-⋅-=⨯--⋅-n n n T n …………………………………………………1分∴111224222+++-=⋅--⋅+n n n n T n 即1(32)24+-=-⋅-n n T n ∴1(23)24+=-+n n T n∴数列{}n c 的前n 项和1(23)24+=-+n n T n (3)分19.(本小题满分12分) 解:(Ⅰ)由图知12T =,6πω=.………………………………………………………1分 2125.15.22minmax =-=-=y y A ,225.15.22min max =+=+=y y B .……………2分∴0.5sin()26y x πϕ=++.又函数0.5sin()26y x πϕ=++过点(0,2.5).代入,得22k πϕπ=+,又0ϕπ<<,∴2πϕ=.…………………………………2分综上,21=A ,6πω=,2πϕ=,21=B . ………………………………………1分即2)26sin(21)(++=ππt t f .(Ⅱ)令)()()(t g t f t h -=,设0)(0=t h ,则0t 为该企业的停产时间. 由0)11()11()11(<-=g f h ,0)12()12()12(>-=g f h ,则)12,11(0∈t . 又0)5.11()5.11()5.11(<-=g f h ,则)12,5.11(0∈t . 又0)75.11()75.11()75.11(>-=g f h ,则)75.11,5.11(0∈t . 又0)625.11()625.11()625.11(<-=g f h ,则)75.11,625.11(0∈t .又0)6875.11()6875.11()6875.11(>-=g f h ,则)6875.11,625.11(0∈t .…4分……………………………………………1分 ∴应该在11.625时停产.……………………………………………………………1分 (也可直接由)625.11()625.11()625.11(<-=g f h ,0)6875.11()6875.11()6875.11(>-=g f h ,得出)6875.11,625.11(0∈t ;答案在11.625—11.6875之间都是正确的;若换算成时间应为11点37分到11点41分停产) 20.(本小题满分13分)(Ⅰ)由已知2=a=a=c ∴2224=-=b a c .∴椭圆Γ的方程为141222=+y x .…………………………………………………4分 (Ⅱ)由⎪⎩⎪⎨⎧=++=,1412,22y x m x y 得01236422=-++m mx x ① ………………………1分∵直线l 与椭圆Γ交于不同两点A 、B ,∴△0)123(163622>--=m m , 得216<m .设),(11y x A ,),(22y x B ,则1x ,2x 是方程①的两根,则2321mx x -=+, 2123124-⋅=m x x .∴12=-==AB x .又由32AB =,得231294-+=m ,解之2m =±.……………………………3分 据题意知,点P 为线段AB 的中垂线与直线2=y 的交点. 设AB 的中点为),(00y x E ,则432210m x x x -=+=,400mm x y =+=,当2m =时,31(,)22E -∴此时,线段AB 的中垂线方程为13()22y x -=-+,即1y x =--. 令2=y ,得03x =-.…………………………………………………………………2分当2m =-时,31(,)22E -∴此时,线段AB 的中垂线方程为13()22y x +=--,即1y x =-+. 令2=y ,得01x =-.………………………………………………………………2分 综上所述,0x 的值为3-或1-. 21.(本小题满分14分)解:(Ⅰ)2222)(ln )ln 21()(ln ln 2)(ln 1ln 2)(x x mx x x x x m x x x x x mx f -⋅=-=⋅--='(0>x 且1≠x ).∴由0)(>'x f ,得21e x >;由0)(<'xf ,得210e x <<,且1≠x .……………………1分∴函数)(x f 的单调递减区间是(0,1),(1e),单调递增区间是),(+∞e .………………2分∴me e f x f 2)()(-==极小值.………………………………………………………………1分(Ⅱ)222(2)(),(0)mx mx mx mxmxe mx e m mx mx g x m e e --'=-=>. ∴()g x 在(,0)-∞上单调递增,2(0,)m 上单调递减,2(,)m+∞上单调递增. ∵函数()g x 存在三个零点.∴20(0)02402()00>⎧>⎧⎪⎪⎪⇒⇒<<⎨⎨<⎪⎪-<⎩⎪⎩m g m e g m m m e .∴02<<me …………………………………………………………………………………3分 由(1)(1)0-=-=-<mmg m me m e .∴22()(1)0=-=-<em em me e g e m m e e.……………………………………………………1分综上可知,()0,(0)0,(1)0<>-<g e g g ,结合函数()g x 单调性及a b c <<可得:(1,0),(0,),(,)a b e c e ∈-∈∈+∞.即10a b e c -<<<<<,得证.…………………………………………………………1分 (III )由题意,只需min max ()()>f x g x ∵2(12ln )()(ln )-'=mx x f x x 由0<m ,∴函数()f x 在12(1,)e 上单调递减,在12(,)e +∞上单调递增.∴12min ()()2==-f x f e me .………………………………………………………………2分 ∵(2)()-'=mxmx mx g x e由0<m ,∴函数()g x 在2(,)m-∞上单调递增,2(,0)m 上单调递减.∴max 224()()==-g x g m m e m .……………………………………………………………2分 ∴242->-me m e m ,不等式两边同乘以负数m ,得22242-<-m e m e.∴224(21)e m e+>,即224(21)m e e >+.由0<m ,解得(21)m e e <-+.综上所述,存在这样的负数(,(21)∈-∞-+m e e 满足题意.……………………………1分成都市2015届高中毕业班第一次诊断性检测数学试题(文科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集{|0}=≥U x x ,集合{1}=P ,则UP =(A )[0,1)(1,)+∞ (B )(,1)-∞ (C )(,1)(1,)-∞+∞ (D )(1,)+∞2.若一个几何体的正视图和侧视图是两个全等的正方形,则这个几何体的俯视图不可能是(A ) (B ) (C ) (D ) 3.命题“若22≥+x a b ,则2≥x ab ”的逆命题是(A )若22<+x a b ,则2<x ab (B )若22≥+x a b ,则2<x ab (C )若2<x ab ,则22<+x a b (D )若2≥x ab ,则22≥+x a b4.函数31,0()1(),03x x x f x x ⎧+<⎪=⎨≥⎪⎩的图象大致为(A ) (B ) (C ) (D ) 5.复数5i(2i)(2i)=-+z (i 是虚数单位)的共轭复数为(A )5i 3- (B )5i 3(C )i - (D )i6.若关于x 的方程240+-=x ax 在区间[2,4]上有实数根,则实数a 的取值范围是y xOxyO x y Ox yO消费支出/元(A )(3,)-+∞ (B )[3,0]- (C )(0,)+∞ (D )[0,3] 7.已知53cos()25+=πα,02-<<πα,则sin 2α的值是 (A )2425 (B )1225 (C )1225- (D )2425-8.已知抛物线:C 28y x =,过点(2,0)P 的直线与抛物线交于A ,B 两点,O 为坐标原点,则OA OB ⋅的值为(A )16- (B )12- (C )4 (D )0 9.已知m ,n 是两条不同直线,α,β是两个不同的平面,且n ⊂β,则下列叙述正确的是(A )若//m n ,m ⊂α,则//αβ (B )若//αβ,m ⊂α,则//m n (C )若//m n ,m α⊥,则αβ⊥ (D )若//αβ,m n ⊥,则m α⊥10.如图,已知正方体1111ABCD A BC D -棱长为4,点H 在棱1AA 上,且11HA =.点E ,F 分别为棱11B C ,1C C 的中点,P 是侧面11BCC B 内一动点,且满足⊥PE PF .则当点P 运动时, 2HP 的最小值是 (A )72- (B )2762- (C )51142- (D )1422-二、填空题:本大题共5小题,每小题5分,共25分. 11.已知100名学生某月饮料消费支出情况的频率分布直方图如右图所示.则这100名学生中,该月饮料消费支出超过150元的人数是________.12.若非零向量a ,b 满足a b a b +=-,则a ,b 的夹A BCD1A 1B 1C 1D HPE F角的大小为__________.13.在∆ABC 中,内角,,A B C 的对边分别为,,a b c ,若2=c a ,4=b ,1cos 4=B .则边c 的长度为__________.14.已知关于x 的不等式()(2)0---≤x a x a 的解集为A ,集合{|22}=-≤≤B x x .若“x A ∈”是“x B ∈”的充分不必要条件,则实数a 的取值范围是__________. 15.已知函数21()()2f x x a =+的图象在点n P (,())n f n (*n ∈N )处的切线n l 的斜率为n k ,直线n l 交x 轴,y 轴分别于点(,0)n n A x ,(0,)n n B y ,且11y =-.给出以下结论: ①1a =-;②记函数()=n g n x (*n ∈N ),则函数()g n 的单调性是先减后增,且最小值为1;③当*n ∈N 时,1ln(1)2n n n y k k++<+; ④当*n ∈N 时,记数列的前n 项和为n S ,则n S <其中,正确的结论有 (写出所有正确结论的序号)三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分)口袋中装有除编号外其余完全相同的5个小球,编号依次为1,2,3,4,5.现从中同时取出两个球,分别记录下其编号为,m n . (Ⅰ)求“5+=m n ”的概率; (Ⅱ)求“5≥mn ”的概率.17.(本小题满分12分)如图,在多面体ECABD 中,EC ⊥平面ABC ,//DB EC ,ABC ∆为正三角形,F 为EA 的中点,2EC AC ==,1BD =. (Ⅰ)求证:DF //平面ABC ; (Ⅱ)求多面体ECABD 的体积. 18.(本小题满分12分)已知数列{}n a 的前n 项和为n S ,且122+=-n n S ;数列{}n b 满足11b =,12n n b b +=+.*n ∈N .(Ⅰ)求数列{}n a 和{}n b 的通项公式;(Ⅱ)记n n n c a b =,*n ∈N .求数列{}n c 的前n 项和n T .19.(本小题满分12分)某大型企业一天中不同时刻的用电量y (单位:万千瓦时)关于时间t (024t ≤≤,单位:小时)的函数()y f t =近似地满足()sin()(0,0,0)f t A t B A ωϕωϕπ=++>><<,下图是该企业一天中在0点至12点时间段用电量y 与时间t 的大致图象. (Ⅰ)根据图象,求A ,ω,ϕ,B 的值; (Ⅱ)若某日的供电量()g t (万千瓦时)与时间t (小时)近似满足函数关系式205.1)(+-=t t g (012t ≤≤).当该日内供电量小于该企业的用电量时,企业就必须停产.请用二分法计算该企业当日停产的大致时刻(精确度0.1). 参考数据:20.(本小题满分13分)已知椭圆Γ:12222=+by a x (0>>b a )的右焦点为)0,22(,且过点(23,0).(Ⅰ)求椭圆Γ的标准方程;(Ⅱ)设直线:()l y x m m =+∈R 与椭圆Γ交于不同两点A 、B ,且32AB =点0(,2)P x 满足=PA PB ,求0x 的值. 21.(本小题满分14分) 已知函数()ln 2mf x x x=+,()2g x x m =-,其中m ∈R ,e 2.71828=为自然对数的底数.(Ⅰ)当1m =时,求函数()f x 的极小值;(Ⅱ)对1[,1]e x ∀∈,是否存在1(,1)2m ∈,使得()()1>+f x g x 成立?若存在,求出m 的取值范围;若不存在,请说明理由;(Ⅲ)设()()()F x f x g x =,当1(,1)2m ∈时,若函数()F x 存在,,a b c 三个零点,且a b c <<,求证: 101ea b c <<<<<.t (时)10 11 12 11.5 11.25 11.75 11.625 11.6875 ()f t (万千瓦时) 2.25 2.4332.5 2.48 2.462 2.496 2.490 2.493 ()g t (万千瓦时)53.522.753.1252.3752.5632.469数学(文科)参考答案及评分意见第Ⅰ卷(选择题,共50分)一、选择题:(本大题共10个小题,每小题5分,共50分)1.A ; 2.C ; 3.D ;4.A ;5.C ;6.B ;7.D ;8.B ;9.C ;10.B .第Ⅱ卷(非选择题,共100分)二、填空题:(本大题共5个小题,每小题5分,共25分)11.30 12.90︒ 13.4 14.[2,0]- 15.①②④ 三、解答题:(本大题共6个小题,共75分) 16.(本小题满分12分)解:同时取出两个球,得到的编号,m n 可能为: (1,2),(1,3),(1,4),(1,5) (2,3),(2,4),(2,5) (3,4),(3,5)(4,5)…………………………………………………………………………………6分(Ⅰ)记“5+=m n ”为事件A ,则 21()105==P A .……………………………………………………………………………3分(Ⅱ)记“5≥mn ”为事件B ,则 37()11010=-=P B .…………………………………………………………………… 3分 17.(本小题满分12分)(Ⅰ)证明:作AC 的中点O ,连结BO .在∆AEC 中,//=FO 12EC ,又据题意知,//=BD 12EC . ∴//=FO BD ,∴四边形FOBD 为平行四边形. ∴//DF OB ,又⊄DF 面ABC ,⊂OB 平面ABC .∴//DF 面ABC .………………………6分 (Ⅱ)据题意知,多面体ECABD 为四棱锥-A ECBD . 过点A 作⊥AH BC 于H .∵⊥EC 平面ABC ,⊂EC 平面ECBD , ∴平面⊥ECBD 平面ABC .又⊥AH BC ,⊂AH 平面ABC ,平面ECBD 平面=ABC BC ,∴⊥AH 面ECBD .∴在四棱锥-A ECBD 中,底面为直角梯形ECBD ,高3=AH .∴1(21)23332-+⨯=⨯⨯=A ECBD V . ∴多面体ECABD 的体积为3.……………………………………………6分 18.(本小题满分12分) 解:(Ⅰ)∵122+=-n n S ① 当2≥n 时,122-=-n n S ② ①-②得,2=n n a (2≥n ).∵当2≥n 时,11222--==nn n n a a ,且12=a .∴数列{}n a 是以2为首项,公比为2的等比数列,∴数列{}n a 的通项公式为1222-=⋅=n n n a .………………………………………4分又由题意知,11b =,12n n b b +=+,即12+-=n n b b ∴数列{}n b 是首项为1,公差为2的等差数列,∴数列{}n b 的通项公式为1(1)221=+-⨯=-n b n n .……………………………2分(Ⅱ)由(Ⅰ)知,(21)2=-nn c n ……………………………………………………1分 ∴231123252(23)2(21)2-=⨯+⨯+⨯++-⋅+-⋅n n n T n n231121232(25)2(23)2(21)2-+=⨯+⨯++-⋅+-⋅+-⋅n n n n T n n n ④由-④得2311222222222(21)2-+-=+⨯+⨯++⋅+⋅--⋅n n n n T n (1)分23112(12222)(21)2-+-=++++--⋅n n n n T n∴12222(21)212+-⋅-=⨯--⋅-n n n T n (1)分∴111224222+++-=⋅--⋅+n n n n T n 即1(32)24+-=-⋅-n n T n ∴1(23)24+=-+n n T n∴数列{}n c 的前n 项和1(23)24+=-+n n T n (3)分19.(本小题满分12分) 解:(Ⅰ)由图知12T =,6πω=.………………………………………………………1分 2125.15.22minmax =-=-=y y A ,225.15.22min max =+=+=y y B .……………2分∴0.5sin()26y x πϕ=++.又函数0.5sin()26y x πϕ=++过点(0,2.5).代入,得22k πϕπ=+,又0ϕπ<<,∴2πϕ=.…………………………………2分综上,21=A ,6πω=,2πϕ=,21=B . ………………………………………1分即2)26sin(21)(++=ππt t f . (Ⅱ)令)()()(t g t f t h -=,设0)(0=t h ,则0t 为该企业的停产时间. 由0)11()11()11(<-=g f h ,0)12()12()12(>-=g f h ,则)12,11(0∈t . 又0)5.11()5.11()5.11(<-=g f h ,则)12,5.11(0∈t . 又0)75.11()75.11()75.11(>-=g f h ,则)75.11,5.11(0∈t . 又0)625.11()625.11()625.11(<-=g f h ,则)75.11,625.11(0∈t .又0)6875.11()6875.11()6875.11(>-=g f h ,则)6875.11,625.11(0∈t .…4分……………………………………………1分 ∴应该在11.625时停产.……………………………………………………………1分 (也可直接由)625.11()625.11()625.11(<-=g f h ,0)6875.11()6875.11()6875.11(>-=g f h ,得出)6875.11,625.11(0∈t ;答案在11.625—11.6875之间都是正确的;若换算成时间应为11点37分到11点41分停产)20.(本小题满分13分)(Ⅰ)由已知得23=a ,又22=c . ∴2224=-=b a c .∴椭圆Γ的方程为141222=+y x .…………………………………………………4分 (Ⅱ)由⎪⎩⎪⎨⎧=++=,1412,22y x m x y 得01236422=-++m mx x ① ………………………1分∵直线l 与椭圆Γ交于不同两点A 、B ,∴△0)123(163622>--=m m , 得216<m .设),(11y x A ,),(22y x B ,则1x ,2x 是方程①的两根,则2321mx x -=+, 2123124-⋅=m x x .∴2222129312(312)21244=+-=⨯--=⨯-+AB kx x m m m . 又由32AB =,得231294-+=m ,解之2m =±.……………………………3分 据题意知,点P 为线段AB 的中垂线与直线2=y 的交点. 设AB 的中点为),(00y x E ,则432210m x x x -=+=,400mm x y =+=,当2m =时,31(,)22E -∴此时,线段AB 的中垂线方程为13()22y x -=-+,即1y x =--. 令2=y ,得03x =-.…………………………………………………………………2分当2m =-时,31(,)22E -∴此时,线段AB 的中垂线方程为13()22y x +=--,即1y x =-+. 令2=y ,得01x =-.………………………………………………………………2分综上所述,0x 的值为3-或1-. 21.(本小题满分14分)解:(Ⅰ)1m =时,1()ln ,02=+>f x x x x. ∴221121()22-'=-=x f x x x x ……………………………………………………………………1分由()0'>f x ,解得12>x ;由()0'<f x ,解得102<<x ; ∴()f x 在1(0,)2上单调递减,1(,)2+∞上单调递增. (2)分∴=极小值)(x f 11()ln 11ln 222f =+=-.…………………………………………………… 2分(II )令1()()()1ln 21,,12⎡⎤=--=+-+-∈⎢⎥⎣⎦m h x f x g x x x m x x e ,其中1(,1)2m ∈ 由题意,()0h x >对1,1x e ⎡⎤∈⎢⎥⎣⎦恒成立,∵2221221()1,,122-+-⎡⎤'=--=∈⎢⎥⎣⎦m x x m h x x x x x e ∵1(,1)2m ∈,∴在二次函数222=-+-y x x m 中,480∆=-<m , ∴2220-+-<x x m 对∈x R 恒成立∴()0'<h x 对1,1x e ⎡⎤∈⎢⎥⎣⎦恒成立, ∴()h x 在1,1e ⎡⎤⎢⎥⎣⎦上单减. ∴min 5()(1)ln11212022==+-+-=->m h x h m m ,即45>m .故存在4(,1)5∈m 使()()f x g x >对1,1⎡⎤∀∈⎢⎥⎣⎦x e 恒成立.……………………………………4分(III )()(ln )(2),(0,)2mF x x x m x x=+-∈+∞,易知2x m =为函数()F x 的一个零点, ∵12>m ,∴21>m ,因此据题意知,函数()F x 的最大的零点1>c , 下面讨论()ln 2mf x x x=+的零点情况,∵2212()22m x mf x x x x -'=-=. 易知函数()f x 在(0,)2m 上单调递减,在(,)2m+∞上单调递增.由题知()f x 必有两个零点,∴=极小值)(x f ()ln 1022=+<m mf ,解得20<<m e ,∴122<<m e ,即(,2)2∈eme .…………………………………………………………3分 ∴11(1)ln10,()ln 11102222=+=>=+=-<-=m m em emf f e e .…………………1分又10101010101()ln 10100224---=+=->->m m f e e e e e .101()0,()0,(1)0f e f f e -∴><>.10101e a b c e -∴<<<<<<.101a b c e∴<<<<<,得证.……………………………………………………………1分。
一诊复习试题(一)一、选择题(共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项符合题目要求)1.已知集合{}0232=+-=x x x A ,{}log 42x B x ==,则A B ⋂=( )A .{}2,1,2-B .{}2,1C .{}2,2-D .{}2 2.已知R a ∈,则“3=a ”是“复数i a z +-=32为纯虚数”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件3.如图,函数)(x f y =的图像在点P (5,)5(f )处的切线方程为8+-=x y ,则(5)(5)f f '+=( )A .21B .1C .2D .04.设函数⎩⎨⎧<≥=0),(0,)(x x g x x x f ,若函数)(x f 是奇函数,则)4(-g 的值是( )A .2-,B .21-C .41- D .2 5.已知向量)4,3(-=OA ,)3,6(-=OB ,)1,(+=m m OC ,若AB ∥OC ,则实数m 的值为( ) A .23-B .41- C .21 D .236.某圆柱被一平面所截得到的几何体如图所示,若该几何的正视 图是等腰直角三角形,俯视图是圆,则它的侧视图是( )A .B .C .D .7.已知函数))(42sin()42sin(2)(R x x x x f ∈+⋅-=ππ,下面结论错误的是( ) A .函数)(x f 的最小正周期为π2 B .函数)(x f 在区间[0,]2π上是增函数C .函数)(x f 的图像关于直线0=x 对称D .函数)(x f 是奇函数8.圆C :822=+y x 上有两个相异的点到直线5-=x y 的距离都为d ,则d 的取值范围是( )A .)29,21(B .19[,]22C .)229,22(D .9.(理科做...)直线l与双曲线C:)0,0(12222>>=-babyax交于A、B两点,M是线段AB 的中点,若l与OM(O为坐标原点)的斜率的乘积等于1,则此双曲线的离心率为()A.2 B.2C.3 D.3(文.科做..)若a、b表示不同的直线,α、β表示两个不同的平面,给出如下四个命题:①“a、b不相交”是直线a、b是异面直线“的必要不充分条件”;②“α⊥a”的充要条件是“直线a垂直于平面α内的无数条直线”;③“a∥α”的充分不必要条件是“a 上存在两点到平面α的距离相等”;④“α∥β”的必要不充分条件是“存在aα⊂,bα⊂且a∥β,b∥β”.其中真命题是()A.①B.③④C.②D.①②10.给出四幅图像,则函数21()ln2f x x x=-的部分图像大致是()A.B.C.D.二、填空题(本大题共4个小题,每小题5分,共20分。
四川省成都市2015届高三第一次诊断适应性考试数学(理)试卷一、选择题:(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1、设集合}021|{≤-+=x x x M ,}212|{>=x x N ,则M N =( )A 、),1(+∞-B 、)2,1[-C 、)2,1(-D 、]2,1[- 2、下列有关命题的说法正确的是( )A 、命题“若21x =,则1x =”的否命题为:“若21x =,则1x ≠”.B 、“1x =-” 是“2560x x --=”的必要不充分条件.C 、命题“若x y =,则sin sin x y =”的逆否命题为真命题.D 、命题“x ∃∈R 使得210x x ++<”的否定是:“x ∀∈R 均有210x x ++<”. 3、方程()()2ln 10,0x x x+-=>的根存在的大致区间是( ) A 、()0,1 B 、()1,2 C 、()2,e D 、()3,4 4、执行上图所示的程序框图,则输出的结果是( ) A 、5B 、7C 、9D 、115、设m n 、是两条不同的直线, αβ、是两个不同的平面,下列命题中错误的是( ) A 、若m α⊥,//m n ,//n β,则αβ⊥ B 、若αβ⊥,m α⊄,m β⊥,则//m α C 、若m β⊥,m α⊂,则αβ⊥ D 、若αβ⊥,m α⊂,n β⊂,则m n ⊥6、二项式102)2(x x +展开式中的常数项是( ) A 、180 B 、90 C 、45 D 、360 7、设a 、b 都是非零向量,下列四个条件中,一定能使0||||a b a b +=成立的是( )A 、2a b =B 、//a bC 、13a b =- D 、a b ⊥8、已知O 是坐标原点,点()1,0A -,若()y x M ,为平面区域⎪⎩⎪⎨⎧≤≤≥+212y x y x 上的一个动点,则 OA OM+的取值范围是( )A 、[]51,B 、[]52,C 、[]21,D 、[]50, 9、已知抛物线C :x 2=4y 的焦点为F ,直线x-2y+4=0与C 交于A 、B 两点,则sin ∠AFB=( ) A 、54 B 、53 C 、43 D 、5510、已知函数)(x f y =是定义在R 上的偶函数,对于任意R x ∈都)3()()6(f x f x f +=+成立;当]3,0[,21∈x x ,且21x x ≠时,都有0)()(2121>--x x x f x f .给出下列四个命题:①0)3(=f ;②直线6-=x 是函数)(x f y =图象的一条对称轴;③函数)(x f y =在]6,9[--上为增函数;④函数)(x f y =在]2014,0[上有335个零点.其中正确命题的个数为( )A .1B .2C .3D .4 二、填空题:(本大题共5小题,每小题5分,共25分.)11、若复数z 满足(34)43i z i -=+,则z 的虚部为 ; 12、已知某四棱锥,底面是边长为2的正方形,且俯视图如右图所示. 若该四棱锥的侧视图为直角三角形,则它的体积为 ;13、各大学在高考录取时采取专业志愿优先的录取原则.一考生从某大学所给的7个专业中,选择3个作为自己的第一、二、三专业志愿,其中甲、乙两个专业不能同时兼报,则该考生不同的填报专业志愿的方法有 种。
( 《2015 年四川省成都市武侯区中考数学一诊试卷一、选择题:(每小题 3 分,共 30 分)每小题均有四个选项,其中只有一项符合题目要求.1.(3 分)﹣ 的绝对值为( )A .﹣B .C .3D .02. 3 分) 世界保护益鸟公约》规定每年的 4 月 1 日为“国际爱鸟日”.因为有 它们,给我们的生活增添了靓丽的光彩.鸟类最昌盛的时期,约有 160 万种,用科学记数法可表示为()A .1.6×105 3.(3 分)函数 y=A .x >3B .1.6×106C .1.6×107D .1.6×108中自变量 x 的取值范围是( )B .x ≥3C .x ≠3D .x >04.(3 分)下列图形中,不能看作是轴对称图形的是( )A .B .C .D .5.(3 分)下列方程中有解的是( )A .x 2+x ﹣1=0C .|x |=﹣1B .x 2+x +1=0D . =6.(3 分)如图所示,AB 为⊙O 的直径,CD 为弦,AB ⊥CD ,如果∠BOC=50°,那么∠ABD 的度数为()A .25°B .20°C .65°D .50°(7.3分)某校七年级有13名同学参加百米竞赛,预赛成绩各不相同,要取前6名参加决赛,小梅已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这13名同学成绩的()A.中位数B.众数C.平均数D.极差8.(3分)一个布袋中有4个红球与6个白球,除颜色外完全相同,那么从布袋中随机摸一个球是白球的概率是()A.B.C.D.9.(3分)抛物线y=ax2+bx+c(a≠0)大致图象如图所示,则双曲线y=()图象在A.一、三象限B.一、二象限C.二、三象限D.二、四象限10.(3分)在一个圆柱形水池内,有一个进水管和一个出水管,进水管流水速度是出水管流水速度的两倍.开始时有一满池水,出水管开始放水,到池水只有一半池时,打开进水管放水(此时出水管不关)直到放满池水关闭进水管,再由出水管放完池水.则在这一过程水池中的水量V随时间t的变化关系的图象是()A.B.C.D.二、填空题:(每小题3分,共15分)11.(3分)若m、n互为相反数,则5m+5n﹣5=.12.(3分)sin60°的值为.213.(3分)不等式组的整数解是.14.(3分)如图,在边长为9的正三角形ABC中,BD=3,∠ADE=60°,则AE的长为.15.(3分)已知直线y=2x,将其向下平移4个单位,所得直线的函数解析式为.三、解答题(共18分)16.(18分)(1)计算:(﹣1)2013+((2)解方程:2(x﹣2)2=4﹣x2)0﹣(2)﹣×4sin30°(3)先化简:÷(m﹣1﹣),再求当m=时该代数式的值.四、(每小题8分,共16分)17.(8分)棕北中学暑假期间将进行校园外貌环境改造.如图为校园内的两幢教学楼,它们的高AB=CD=35m,它们之间的水平距离AC=30m,现工人现需了解甲楼对乙楼的采光的影响情况,当太阳光与水平线的夹角为30°角时,求EC的高度.18.(8分)为了预测2014届3个班篮球赛的赛况结果,某校篮球兴趣爱好小组从七八九年级分别抽取若干人组成调查样本,根据收集整理到的数据绘制成所示不完全统计图.根据以上信息,解答下列问题:(1)该小组采用的调查方式是,被调查的样本容量是;(2)请补充完整图中的条形统计图和扇形统计图(请标上百分率);(3)小明和小亮都是B班篮球队的队员,已知篮球队此次共需要5人参加.求小明和小亮能同时被选上的概率(用树状图或图表解答).五、(共21分)19.(10分)如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b的图象与反比例函数y=的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线AB与x轴的交点C的坐标及△AOB的面积;(3)求方程kx+b﹣<0的解集(请直接写出答案).20.(11分)如图,将矩形ABCD沿直线EF折叠,使点C与点A重合,折痕交AD于点E,交BC于点F,连接AF、CE,(1)求证:四边形AFCE为菱形;(2)设AE=a,ED=b,DC=c.请写出一个a、b、c三者之间的数量关系式.六、填空题(每小题 4 分,共 20 分)21.(4 分)有 A 、B 、C 三件商品,如果购买 A 商品 3 件、B 商品 2 件、C 商品 1件共需 315 元;如果购买 A 商品 1 件、B 商品 2 件、C 商品 3 件共需 285 元,那么购买 A 、B 、C 各 1 件时共需元.22.(4 分)如图,在平行四边形 ABCD 中,E 、F 分别是边 AD 、BC 的中点,AC分别交 BE 、DF 于点 M 、N .给出下列结论:①△ABM ≌△CDN ;②AM= AC ;③DN=2NF ;④S △AMB = S △ABC .其中正确的结论是 (只填序号)23.(4 分)已知 3x +4≤2(3+x ),则|x +1|的最小值为 .24.(4 分)如果 m 是从 0,1,2,3 四个数中任取的一个数,n 是从 0,1,2 三个数中任取的一个数,那么关于 x 的一元二次方程 x 2﹣2mx +n 2=0 有实数根的概率为.25.(4 分)用正三角形和正六边形按如图所示的规律拼图案,即从第二个图案开始,每个图案都比上一个图案多一个正六边形和两个正三角形,则第 n 个图案中正三角形的个数为(用含 n 的代数式表示).七、(8分)26.(8分)如图,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(﹣3,4),点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H.(1)求直线AC的函数关系式;(2)连接BM,动点P从点A出发,沿折线A﹣B﹣C方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围).八、(10分)27.(10分)如图(1),∠ABC=90°,O为射线BC上一点,OB=4,以点O为圆心,BO长为半径作⊙O交BC于点D、E.(1)当射线BA绕点B顺时针方向旋转360°,若BA与⊙O相切时,那么BA旋转了多少度?(2)若射线BA绕点B按顺时针方向旋转与⊙O相交于M、N两点(如图(2)),MN=2,求的长.(九、(本题 12 分)28.(12 分)已知如图,矩形 OABC 的长 OA=,宽 OC=1,将△AOC 沿 AC 翻折得△APC .(1)求∠PCB 的度数;(2)若 P ,A 两点在抛物线 y=﹣ x 2+bx +c 上,求 b ,c 的值,并说明点 C 在此抛物线上;(3) 2)中的抛物线与矩形 OABC 边 CB 相交于点 D ,与 x 轴相交于另外一点 E ,若点 M 是 x 轴上的点,N 是 y 轴上的点,以点 E 、M 、D 、N 为顶点的四边形是平行四边形,试求点 M 、N 的坐标.( 《 n n2015 年四川省成都市武侯区中考数学一诊试卷参考答案与试题解析一、选择题:(每小题 3 分,共 30 分)每小题均有四个选项,其中只有一项符合题目要求.1.(3 分)﹣ 的绝对值为( )A .﹣B .C .3D .0【分析】根据负数的绝对值等于它的相反数即可求解.【解答】解:﹣ 的绝对值为 .故选:B .【点评】考查了绝对值,计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.2. 3 分) 世界保护益鸟公约》规定每年的 4 月 1 日为“国际爱鸟日”.因为有 它们,给我们的生活增添了靓丽的光彩.鸟类最昌盛的时期,约有 160 万种,用科学记数法可表示为()A .1.6×105B .1.6×106C .1.6×107D .1.6×108【分析】科学记数法的表示形式为 a ×10n 的形式,其中 1≤|a |<10, 为整数.确定 n 的值时,要看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1 时, 是正数;当原数的绝对值<1 时, n 是负数.【解答】解:将 160 万用科学记数法表示为:1.6×106.故选:B .【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为 a ×10n 的形式,其中 1≤|a |<10,n 为整数,表示时关键要正确确定 a 的值以及 n 的值.3.(3 分)函数 y=A .x >3中自变量 x 的取值范围是( )B .x ≥3C .x ≠3D .x >0【分析】本题考查了函数式有意义的 x 的取值范围.一般地从两个角度考虑:分式的分母不为0;偶次根式被开方数大于或等于0;当一个式子中同时出现这两点时,应该是取让两个条件都满足的公共部分.【解答】解:根据题意得到:x﹣3>0,解得x>3.故选:A.【点评】本题考查了函数自变量的取值范围问题,判断一个式子是否有意义,应考虑分母上若有字母,字母的取值不能使分母为零,二次根号下字母的取值应使被开方数为非负数.易错易混点:学生易对二次根式的非负性和分母不等于0混淆.4.(3分)下列图形中,不能看作是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称,可得答案.【解答】解:根据轴对称图形的概念可得A不是轴对称图形,故选:A.【点评】此题主要考查了轴对称图形的概念,关键是正确找出轴对称图形的对称轴.5.(3分)下列方程中有解的是()A.x2+x﹣1=0 C.|x|=﹣1B.x2+x+1=0 D.=【分析】A、B是一元二次方程可以根据其判别式判断其根的情况;C、是绝对值方程,任何数的绝对值都是非负数,此方程无解;D是方式方程,化成整式方程进行判断.【解答】解;A∵△=1+4=5>0,=∴此方程有实数根,△B 、∵ =1﹣4=﹣3<0,∴此方程没有实数根,C 、∵|x |>0∴此方程没有实数根,D 、∵原方程可化为 x ﹣1=x ﹣3,∴此方程没有实数根,故选:A .【点评】此题考查的是一元二次方程根的情况与判别式△的关系.在解分式方程时要验根,不要盲目解答;绝对值方程要根据绝对值的定义解答.6.(3 分)如图所示,AB 为⊙O 的直径,CD 为弦,AB ⊥CD ,如果∠BOC=50°,那么∠ABD 的度数为()A .25°B .20°C .65°D .50°【分析】先根据垂径定理得到 ,再根据圆周角定理得到∠BAD= ∠BOC=25°,∠ADB=90°,然后利用互余计算∠ABD 的度数.【解答】解:∵AB ⊥CD ,∴=,∴∠BAD= ∠BOC= ×50°=25°,∵AB 为⊙O 的直径,∴∠ADB=90°,∴∠ABD=90°﹣∠BAD=90°﹣25°=65°.故选:C .【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周( 角是直角,90°的圆周角所对的弦是直径.也考查了垂径定理.7. 3分)某校七年级有 13 名同学参加百米竞赛,预赛成绩各不相同,要取前6名参加决赛,小梅已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这 13 名同学成绩的()A .中位数B .众数C .平均数D .极差【分析】由于有 13 名同学参加百米竞赛,要取前 6 名参加决赛,故应考虑中位数的大小.【解答】解:共有 13 名学生参加竞赛,取前 6 名,所以小梅需要知道自己的成绩是否进入前六.我们把所有同学的成绩按大小顺序排列,第 7 名学生的成绩是这组数据的中位数,所以小梅知道这组数据的中位数,才能知道自己是否进入决赛.故选:A .【点评】本题考查了用中位数的意义解决实际问题.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.8.(3 分)一个布袋中有 4 个红球与 6 个白球,除颜色外完全相同,那么从布袋中随机摸一个球是白球的概率是()A .B .C .D .【分析】让白球的个数除以球的总个数即为所求的概率.【解答】解:因为共有 10 个球,抽到的可能性相同,其中是白球的可能性有 6种,所以抽到白球的概率是= .故选:D .【点评】本题考查概率的基本计算,用到的知识点为:概率等于所求情况数与总情况数之比.9.(3 分)抛物线 y=ax 2+bx +c (a ≠0)大致图象如图所示,则双曲线 y =()图象在A.一、三象限B.一、二象限C.二、三象限D.二、四象限【分析】由开口向下,可得a<0,由对称轴在y轴左侧,即可得a,b同号,继而求得答案.【解答】解:∵开口向下,∴a<0,∵对称轴在y轴左侧,∴a,b同号,即b<0,∴>0,∴双曲线y=图象在第一、三象限.故选:A.【点评】本题考查了二次函数系数与图象的关系.注意二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线确定的.10.(3分)在一个圆柱形水池内,有一个进水管和一个出水管,进水管流水速度是出水管流水速度的两倍.开始时有一满池水,出水管开始放水,到池水只有一半池时,打开进水管放水(此时出水管不关)直到放满池水关闭进水管,再由出水管放完池水.则在这一过程水池中的水量V随时间t的变化关系的图象是()A.B.C.D.【分析】根据题意得出函数图象先是一个减函数,再是一个增函数,最后是一个减函数进行判断即可.【解答】解:因为进水管流水速度是出水管流水速度的两倍,所以当开始时有一满池水,出水管开始放水,此时图象是一个减函数;当池水只有一半池时,打开进水管放水(此时出水管不关),可得此时是一个增函数;当直到放满池水关闭进水管,再由出水管放完池水,可得此时是减函数;故选:B.【点评】此题考查函数图象,关键是根据题意得出函数图象进行解答.二、填空题:(每小题3分,共15分)11.(3分)若m、n互为相反数,则5m+5n﹣5=﹣5.【分析】若m、n互为相反数,则m+n=0,那么代数式5m+5n﹣5即可解答.【解答】解:由题意得:5m+5n﹣5=5(m+n)﹣5=5×0﹣5=﹣5.故答案为:﹣5【点评】本题主要考查相反数的性质,相反数的和为0.12.(3分)sin60°的值为.【分析】直接根据特殊角的三角函数值进行计算即可.【解答】解:sin60°=.故答案为:.【点评】本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.13.(3分)不等式组的整数解是﹣1,0,1,2.【分析】先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可.【解答】解:,∵解不等式①得:x≤2,解不等式②得:x>﹣1.5,∴不等式组的解集为﹣1.5<x≤2,∴不等式组的整数解为:﹣1,0,1,2,故答案为:﹣1,0,1,2.【点评】本题考查了解一元一次不等式组的应用,解此题的关键是能根据不等式的解集找出不等式组的解集,难度适中.14.(3分)如图,在边长为9的正三角形ABC中,BD=3,∠ADE=60°,则AE的长为7.【分析】先根据边长为9,BD=3,求出CD的长度,然后根据∠ADE=60°和等边三角形的性质,证明△ABD∽△DCE,进而根据相似三角形的对应边成比例,求得CE的长度,即可求出AE的长度.【解答】解:∵△ABC是等边三角形,∴∠B=∠C=60°,AB=BC;∴CD=BC﹣BD=9﹣3=6;∴∠BAD+∠ADB=120°∵∠ADE=60°,∴∠ADB+∠EDC=120°∴∠DAB=∠EDC,又∵∠B=∠C=60°,∴△ABD∽△DCE,则即==,,解得:CE=2,故AE=AC﹣CE=9﹣2=7.2 ( 故答案为:7.【点评】此题主要考查了相似三角形的判定和性质以及等边三角形的性质,根据等边三角形的性质证得△ABD ∽△DCE 是解答此题的关键.15.(3 分)已知直线 y=2x ,将其向下平移 4 个单位,所得直线的函数解析式为y=2x ﹣4 .【分析】根据上加下减的平移规律即可求解.【解答】解:将直线 y=2x 向下平移 4 个单位,所得直线的函数解析式为 y=2x ﹣4.故答案为 y=2x ﹣4.【点评】本题考查了一次函数图象与几何变换,掌握“左加右减,上加下减”的平移规律是解题的关键.三、解答题(共 18 分)16.(18 分)(1)计算:(﹣1)2013+( )0﹣(2)﹣×4sin30° (2)解方程:2(x ﹣2)2=4﹣x 2(3)先化简: ÷(m ﹣1﹣ ),再求当 m= 时该代数式的值.【分析】 1)先分别根据有理数乘方的法则、0 指数幂及负整数指数幂的计算法则、特殊角的三角函数值分别计算出各数,再根据实数混合运算的法则进行计算即可;(2)先把方程化为一元二次方程的因式积的形式,再求出 x 的值即可;(3)先根据分式混合运算的法则把原式进行化简,再把m 的值代入进行计算即可.【解答】解:(1)原式=﹣1+1﹣ ×4×=﹣1×=﹣ ;(2)原方程可化为(3x ﹣2)(x ﹣2)=0,故 3x ﹣2=0 或 x ﹣2=0,解得 x 1= ,x 2=2;(3)原式=÷=•=.当m=时,原式=.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.四、(每小题8分,共16分)17.(8分)棕北中学暑假期间将进行校园外貌环境改造.如图为校园内的两幢教学楼,它们的高AB=CD=35m,它们之间的水平距离AC=30m,现工人现需了解甲楼对乙楼的采光的影响情况,当太阳光与水平线的夹角为30°角时,求EC的高度.【分析】由图示知,四边形EFAC是矩形,则AC=EF.所以,在直角△BEF中求出BE的长,则EC=CD﹣BF即为甲楼的影子在乙楼上的高度.【解答】解:∵太阳光与水平线的夹角为30°,∴∠BEF=30°,∵AC=EF=30m,∴BF=EF•tan30°=30×∴EC=CD﹣BF=(35﹣10=10(m),)m.【点评】本题考查的是解直角三角形的应用,根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.( 18.(8 分)为了预测 2014 届 3 个班篮球赛的赛况结果,某校篮球兴趣爱好小组从七八九年级分别抽取若干人组成调查样本,根据收集整理到的数据绘制成所示不完全统计图.根据以上信息,解答下列问题:(1)该小组采用的调查方式是 抽样调查 ,被调查的样本容量是 200 ;(2)请补充完整图中的条形统计图和扇形统计图(请标上百分率);(3)小明和小亮都是 B 班篮球队的队员,已知篮球队此次共需要 5 人参加.求小明和小亮能同时被选上的概率(用树状图或图表解答).【分析】 1)由题意可知该小组采用的调查方式是抽样调查,由题意可知抽查的总人数为:50÷25%;(2)根据题意求得 C 班的人数,继而求得 A 班,C 班的百分比;(3)首先分别用 1,2 表示小明和小亮,3,4,5 表示另外 3 个人,然后根据题意画出树状图,再由树状图求得所有等可能的结果与小明和小亮能同时被选上的情况,然后利用概率公式求解即可求得答案.【解答】解:(1)∵50÷25%=200(人)该小组采用的调查方式是抽样调查,被调查的样本容量是:200;故答案为:抽样调查,200;(2)C 班人数:200﹣80﹣50=70(人),A 班占的百分比:×100%=40%,C 班占的百分比:100%﹣25%﹣40%=35%.如图:(3)分别用1,2表示小明和小亮,3,4,5表示另外3个人,画树状图得:∵共有20种等可能的结果,小明和小亮能同时被选上的有2种情况,∴小明和小亮能同时被选上的概率为:=.【点评】此题考查了列表法或树状图法求概率以及条形统计图与扇形统计图.用到的知识点为:概率=所求情况数与总情况数之比.五、(共21分)19.(10分)如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b的图象与反比例函数y=的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线AB与x轴的交点C的坐标及△AOB的面积;(3)求方程kx+b﹣<0的解集(请直接写出答案).【分析】1)根据B(2,﹣4)在反比例函数y=的图象上求出m的值,根据(题意求出n的值,再运用待定系数法求出一次函数的解析式;(2)求出y=﹣x﹣2与x轴的交点C的坐标,根据△AOB的面积=△AOC的面积+△COB的面积求出△AOB的面积;(3)观察图象得到答案.【解答】解:∵B(2,﹣4)在反比例函数y=的图象上,∴m=﹣8,∴反比例函数解析式为:y=﹣,则n=2,由题意得,,解得,,∴一次函数的解析式为y=﹣x﹣2;(2)当﹣x﹣2=0时,x=﹣2,∴点C的坐标为:(﹣2,0),△AOB的面积=△AOC的面积△+COB的面积=×2×2+×2×4=6;(3)由图象可知,当﹣4<x<0或x>2时,kx+b<,∴kx+b﹣<0的解集为:﹣4<x<0或x>2.【点评】本题考查的是一次函数与反比例函数的交点和待定系数法的运用,灵活运用待定系数法是解题的关键,注意数形结合思想的正确运用.20.(11分)如图,将矩形ABCD沿直线EF折叠,使点C与点A重合,折痕交AD于点E,交BC于点F,连接AF、CE,(1)求证:四边形AFCE为菱形;(2)设AE=a,ED=b,DC=c.请写出一个a、b、c三者之间的数量关系式.( (【分析】 1)由矩形 ABCD 与折叠的性质,易证得△CEF 是等腰三角形,即 CE=CF ,即可证得 AF=CF=CE=AE ,即可得四边形 AFCE 为菱形;(2)由折叠的性质,可得 CE=AE=a ,在 Rt △DCE 中,利用勾股定理即可求得:a 、b 、c 三者之间的数量关系式为:a 2=b 2+c 2.【解答】 1)证明:∵四边形 ABCD 是矩形,∴AD ∥BC ,∴∠AEF=∠EFC ,由折叠的性质,可得:∠AEF=∠CEF ,AE=CE ,AF=CF ,∴∠EFC=∠CEF ,∴CF=CE ,∴AF=CF=CE=AE ,∴四边形 AFCE 为菱形;(2)a 、b 、c 三者之间的数量关系式为:a 2=b 2+c 2.理由:由折叠的性质,得:CE=AE ,∵四边形 ABCD 是矩形,∴∠D=90°,∵AE=a ,ED=b ,DC=c ,∴CE=AE=a ,在 Rt △DCE 中,CE 2=CD 2+DE 2,∴a 、b 、c 三者之间的数量关系式为:a 2=b 2+c 2.【点评】 此题考查了矩形的性质、折叠的性质、菱形的判定以及勾股定理等知识.此题难度适中,注意掌握数形结合思想的应用,注意折叠中的对应关系.六、填空题(每小题 4 分,共 20 分)21.(4 分)有 A 、B 、C 三件商品,如果购买 A 商品 3 件、B 商品 2 件、C 商品 1件共需 315 元;如果购买 A 商品 1 件、B 商品 2 件、C 商品 3 件共需 285 元,那么购买 A 、B 、C 各 1 件时共需 150 元.【分析】设 A 、B 和 C 商品的单价分别为 x ,y 和 z 元,则根据“购买 A 商品 3 件,B 商品 2 件,C 商品 1 件,共需 315 元钱,购买 A 商品 1 件,B 商品 2 件,C商品 3 件,共需 285 元钱”列出方程组,然后求解 x +y +z 即可.【解答】解:设 A 、B 和 C 商品的单价分别为 x ,y 和 z 元,则根据题意得:,①+②式得:4x +4y +4z=600,则 x +y +z=150.即购买 A 、B 、C 三种商品各 1 件时共需 150 元.故答案为:150.【点评】本题考查三元一次方程的实际应用,解题关键是设出未知数,根据题意准确列出方程,此题不需要单独解出 x 、y 和 z ,注意整体思想的灵活运用.22.(4 分)如图,在平行四边形 ABCD 中,E 、F 分别是边 AD 、BC 的中点,AC分别交 BE 、DF 于点 M 、N .给出下列结论:①△ABM ≌△CDN ;②AM= AC ;③DN=2NF ;④S △AMB = S △ABC .其中正确的结论是 ①②③ (只填序号)【分析】关键是证明四边形 BFDE 是平行四边形 BE ∥DF ,就可以利用平行线等分线段定理或利用相似推出其他结论了.【解答】解:在 ABCD 中,AD ∥BC ,AD=BC ,又 E 、F 分别是边 AD 、BC 的中点,∴BF ∥DE ,BF=DE ,∴四边形 BFDE 是平行四边形,∴BE ∥DF ,∴∠AMB=∠ANF=∠DNC ,∵∠BAM=∠DCN ,AB=CD ,∴△ABM ≌△CDN ;E 是 AD 的中点,BE ∥DF ,∴M 是 AN 的中点,同理 N 是 CM 的中点,∴AM= AC ,∵DN=BM=2NF ;∴S △AMB = S △ABC .不成立,∴正确的结论是①②③,故答案为:①②③.【点评】本题主要考查了平行四边形的性质和三角形全等的判定,还考查了平行线等分线段定理等,难度中等.23.(4 分)已知 3x +4≤2(3+x ),则|x +1|的最小值为 0 .【分析】首先要正确解不等式,求出不等式的解集,再由求得的x 的取值范围结合绝对值的意义进行计算.【解答】解:3x +4≤6+2x ,3x ﹣2x ≤6﹣4,解得 x ≤2.∴当 x=﹣1 时,|x +1|的最小值为 0,故答案为:0【点评】本题重点考查了解一元一次不等式和绝对值的知识.化简绝对值是数学的重点也是难点,先明确 x 的取值范围,才能求得|x +1|的最小值.找出使|x +1|有最小值的 x 的值是解答本题的关键.24.(4 分)如果 m 是从 0,1,2,3 四个数中任取的一个数,n 是从 0,1,2 三个数中任取的一个数,那么关于 x 的一元二次方程 x 2﹣2mx +n 2=0 有实数根的概率为.【分析】从0,1,2,3四个数中任取的一个数,从0,1,2三个数中任取的一个数则共有12种结果,且每种结果出现的机会相同,关于x的一元二次方程x2﹣2mx+n2=0有实数根的条件是:4(m2﹣n2)≥0,在上面得到的数对中共有9个满足.【解答】解:从0,1,2,3四个数中任取的一个数,从0,1,2三个数中任取的一个数则共有:4×3=12种结果,∵满足关于x的一元二次方程x2﹣2mx+n2=0有实数根,则△=(﹣2m)2﹣4n2=4(m2﹣n2)≥0,符合的有9个,∴关于x的一元二次方程x2﹣2mx+n2=0有实数根的概率为.【点评】本题是概率与一元二次方程的根的判别式相结合的题目.正确理解列举法求概率的条件以及一元二次方程有根的条件是关键.25.(4分)用正三角形和正六边形按如图所示的规律拼图案,即从第二个图案开始,每个图案都比上一个图案多一个正六边形和两个正三角形,则第n个图案中正三角形的个数为2n+2(用含n的代数式表示).【分析】对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.【解答】解:由图可知:第一个图案有正三角形4个为2×2.第二图案比第一个图案多2个为2×2+2=6个.第三个图案比第二个多2个为2×3+2=8个.那么第n个就有正三角形2n+2个.【点评】本题是一道找规律的题目,注意由特殊到一般的分析方法,此题的规律为:第n个就有正三角形2n+2个.这类题型在中考中经常出现.七、(8分)26.(8分)如图,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱(形,点 A 的坐标为(﹣3,4),点 C 在 x 轴的正半轴上,直线 AC 交 y 轴于点M ,AB 边交 y 轴于点 H .(1)求直线 AC 的函数关系式;(2)连接 BM ,动点 P 从点 A 出发,沿折线 A ﹣B ﹣C 方向以 2 个单位/秒的速度向终点 C 匀速运动,设△PMB 的面积为 S (S ≠0),点 P 的运动时间为 t 秒,求 S 与 t 之间的函数关系式(要求写出自变量 t 的取值范围).【分析】 1)已知 A 点的坐标,就可以求出 OA 的长,根据 OA=OC ,就可以得到C 点的坐标,根据待定系数法就可以求出函数解析式.(2)点 P 的位置应分 P 在 AB 和 BC 上,两种情况进行讨论.当 P 在 AB 上时,△PMB 的底边 PB 可以用时间 t 表示出来,高是 MH 的长,因而面积就可以表示出来.【解答】解:(1)过点 A 作 AE ⊥x 轴,垂足为 E ,(如图)∵A (﹣3,4),∴AE=4,OE=3,∴OA=5,(1 分)∵四边形 ABCO 为菱形,∴OC=CB=BA=OA=5,∴C (5,0),(2 分)设直线 AC 的解析式为 y=kx +b则解得:∴直线 AC 的函数关系式为:;(4 分)(2)由(1)得M(0,),∴,当点P在AB边上运动时,由题意得:OH=4,∴HM=∴,∴,(6分)当点P在BC边上运动时,记为P1,∵∠OCM=∠BCM,CO=CB,CM=CM,∴∴S=P1BBM=(2t﹣5),∴S=.(8分),【点评】本题主要考查了利用待定系数法求函数的解析式,及求关于三角形面积的函数问题,注意分情况讨论.八、(10分)27.(10分)如图(1),∠ABC=90°,O为射线BC上一点,OB=4,以点O为圆心,BO长为半径作⊙O交BC于点D、E.(1)当射线BA绕点B顺时针方向旋转360°,若BA与⊙O相切时,那么BA旋转了多少度?(2)若射线BA绕点B按顺时针方向旋转与⊙O相交于M、N两点(如图(2)),MN=2,求的长.( (【分析】 1)要求当射线 BA 绕点 B 按顺时针方向旋转多少度时与⊙O 相切,就要先利用切线的性质画出图形,从图中可以看出旋转的度数就是∠A′BC 的度数.然后利用图形来计算.从图中可看出,OG=OB 的一半,所以角 PBG=30°,所以当射线 BA 绕点 B 按顺时针方向旋转 60°或 120°时与⊙O 相切;(2)由勾股定理边的关系可知弧所对的圆心角是一个直角,然后利用弧长公式计算.【解答】解: 1)当射线 BA 绕点 B 按顺时针方向旋转 60°或 120°时与⊙O 相切,理由:当 BA 绕点 B 按顺时针方向旋转 60°到 BA′的位置,则∠A′BO=30°,过 O 作 OG ⊥BA′垂足为 G ,∴OG= OB=2,∴BA′是⊙O 的切线,同理,当 BA 绕点 B 按顺时针方向旋转 120 度到 BA″的位置时,BA″也是⊙O 的切线.∵OG= OB ,∴∠A′BO=30°,∴BA 绕点 B 按顺时针方向旋转了 60°,同理可知,当 BA 绕点 B 按顺时针方向旋转到 BA″的位置时,BA 与⊙O 相切,BA绕点 B 按顺时针方向旋转了 120°;(2)∵MN=2,OM=ON=2,∴MN 2=OM 2+ON 2,∴∠MON=90°,∴的长为=π.。
C D OBE'AH成都七中2015级高三“一诊”模拟考试数学试题参考答案一、选择题:(本大题共10小题,每小题5分,共50分) BAADB ACBAD 二、填空题:(本大题共5小题,每小题5分,共25分) 11. 180 12.12 13. - 14. (-7, 3) 15. ①②③⑤ 三、解答题:本大题共6小题,共75分。
解答应写出文字说明,证明过程或演算步骤。
16、(本小题满分12分)【解析】(I )由已知条件得:cos23cos 1A A +=22cos 3cos 20A A ∴+-=,解得1cos 2A =,角60A =︒ (II )1sin 2S bc A ==4c ⇒=,由余弦定理得:221a =,()222228sin a R A ==25sin sin 47bc B C R ∴==.17、(本小题满分12分) 解答:(1)331328()327p C ==,22232128()33327p C =⋅=,222342114()()33227p C =⋅=(2)由题意可知X 的可能取值为:0, 1, 2, 3. 乙队得分X 的分布列为:乙队得分X 的数学期望:1644170123.27272799EX =⨯+⨯+⨯+⨯=18、(本小题满分12分)【解析】(Ⅰ) 在图1中,易得3,OC AC AD ===连结,OD OE,在OCD ∆中,由余弦定理可得OD由翻折不变性可知A D '=,所以222A O OD A D ''+=,所以A O OD '⊥,理可证A O OE '⊥, 又OD OE O = ,所以A O '⊥平面BCDE . (Ⅱ) 传统法:过O 作OH CD ⊥交CD 的延长线于H ,连结A H ', 因为A O '⊥平面BCDE ,所以A H CD '⊥, 所以A HO '∠为二面角A CD B '--的平面角.3210X P2742742719结合图1可知,H 为AC 中点,故2OH =,从而A H '==所以cos 5OH A HO A H '∠==',所以二面角A CD B '--的平面角的余弦值为5.向量法:以O 点为原点,建立空间直角坐标系O xyz -如图所示, 则(A ',()0,3,0C -,()1,2,0D -所以(CA '= ,(1,DA '=-设(),,n x y z = 为平面A CD '的法向量,则 00n CA n DA ⎧'⋅=⎪⎨'⋅=⎪⎩,即3020y x y⎧+=⎪⎨-++=⎪⎩,解得y x z =-⎧⎪⎨=⎪⎩令1x =,得(1,n =-由(Ⅰ) 知,(OA '=为平面CDB 的一个法向量,所以cos ,n OA n OA n OA '⋅'===',即二面角A CD B '--的平面角的余弦19、(本小题满分12分)(1)解:由222(1)()0n n S n n S n n -+--+=,得2[()](1)0.n n S n n S -++=由于{a n }是正项数列,所以20,.n n S S n n >=+于是112,2a S n ==≥时,221(1)(1)2.n n n a S S n n n n n -=-=+----= 综上,数列{a n }的通项2.n a n = (2)证明:由于2,n a n =221(2)n nn b n a +=+, 则22221111[4(2)16(2)n n b n n n n +==-++.2222222221111111111[11632435(1)(1)(2)n T n n n n =-+-+-++-+--++ 2221111[1]162(1)(2)n n =+--++2115(1).16264<+=【解析】(Ⅰ) 依题意,设抛物线C 的方程为24x cy =,2=结合0c >, 解得1c =.所以抛物线C 的方程为24x y =. (Ⅱ) 抛物线C 的方程为24x y =,即214y x =,求导得12y x '= 设()11,A x y ,()22,B x y (其中221212,44x x y y ==), 则切线,PA PB 的斜率分别为112x ,212x ,所以切线PA 的方程为()1112x y y x x -=-,即211122x x y x y =-+,即11220x x y y --= 同理可得切线PB 的方程为22220x x y y --=因为切线,PA PB 均过点()00,P x y ,所以1001220x x y y --=,2002220x x y y --= 所以()()1122,,,x y x y 为方程00220x x y y --=的两组解. 所以直线AB 的方程为00220x x y y --=.(Ⅲ) 由抛物线定义可知11AF y =+,21BF y =+, 所以()()()121212111AF BF y y y y y y ⋅=++=+++联立方程0022204x x y y x y--=⎧⎨=⎩,消去x 整理得()22200020y y x y y +-+=由一元二次方程根与系数的关系可得212002y y x y +=-,2120y y y =所以()221212000121AF BF y y y y y x y ⋅=+++=+-+又点()00,P x y 在直线l 上,所以002x y =+,所以22220000001921225222y x y y y y ⎛⎫+-+=++=++ ⎪⎝⎭所以当012y =-时, AF BF ⋅取得最小值,且最小值为92.。