的斜率,交点A x1, y1 , B x2 , y2 .
2
1
2
(2)处理中点弦问题时,一般有两种思路,思路一:联立方程组,消元,利用根与系数的关系
进行“设而不求”;思路二:利用“点差法”
知识要点整合
高中数学
GAOZHONGSHUXUE
四、圆锥曲线中的弦长、中点弦问题
例4
x2 y 2
已知椭圆 a 2 b2 1(a b 0) 的一个顶点为A(0,1),离心率为
一、圆锥曲线的定义及应用
2
2
例1 (1)一动圆与两圆: x 2 y 2 1和 x y 6 x 5 0都外切,则动圆圆心的轨迹为( )
A.抛物线
B.双曲线
C.双曲线的一支
D.椭圆
(2)在平面直角坐标系xOy中,椭圆C的中心为原点,焦点F1,F2在x轴上,离心率为
2
.
2
过F1的直线l交椭圆C于A,B两点,且△ABF2的周长为16,那么椭圆C的方程为______.
例2
x2 y 2
3
(1)若椭圆 2 2 1(a b 0) 的离心率为
2
a
b
1
A. y 2 x
B. y 2 x
C. y 4 x
x2 y 2
,则双面线 2 2 1的渐近线方程为(
a
b
1
y
x
D.
4
x2 y 2
(2)已知双曲线 a 2 b2 1(a 0, b 0) 的左焦点为F,离心率为
,且
a
2
x2
2
y
1
2, c 1.易得椭圆方程为