19-5角的平分线(1)
- 格式:docx
- 大小:81.05 KB
- 文档页数:3
专题01 角平分线的五种模型模型一、角平分线垂两边例1.如图,AD是△ABC的角平分线,且AB:AC=3:2,则△ABD与△ACD的面积之比为()A.3:2B.6:4C.2:3D.不能确定【答案】A【详解】过点D作DE⊥AB于E,DF⊥AC于F.∵AD为∠BAC的平分线,∴DE=DF,又AB:AC=3:2,∴S△ABD:S△ACD=(12AB•DE):(12AC•DF)=AB:AC=3:2.故选A.例2.如图,∠AOP=∠BOP=15°,PC//OA,PD⊥OA,若PC=4,则PD的长为___.【答案】2【详解】解:过P作PE⊥OB,交OB与点E,∵∠AOP=∠BOP,PD⊥OA,PE⊥OB,∴PD=PE,∵PC//OA,∴∠CPO=∠POD,又∠AOP=∠BOP=15°,∴∠CPO=∠BOP=15°,又∠ECP为△OCP的外角,∴∠ECP=∠COP+∠CPO =30°,在直角三角形CEP 中,∠ECP =30°,PC =4,∴PE =12PC =2,则PD =PE =2.故答案为:2. 【变式训练1】如图所示,在四边形ABCD 中,DC //AB ,∠DAB =90°,AC ⊥BC ,AC =BC ,∠ABC 的平分线交A D ,AC 于点E 、F ,则BFEF的值是___________.11221BCBC BC ==--【详解】解:如图,作FG ⊥AB 于点G ,∠DAB -90°,∴FG /AD ,∴BF EF =BGAGAC ⊥BC ,∴∠ACB =90° 又BF 平分∠ABC ,∴FG =FC 在Rt △BGF 和Rt △BCF 中BF BFCF GF=⎧⎨=⎩ ∴△BGF ≌△BCF (HL ),∴BC =BGAC =BC ,∴∠CBA =45°,∴AB =2BC1BF BG BC EF AG AB BG ∴====- 【变式训练2】如图,BD 平分ABC 的外角∠ABP ,DA =DC ,DE ⊥BP 于点E ,若AB =5,BC =3,求BE 的长.【答案】1【详解】解:过点D 作BA 的垂线交AB 于点H ,∵BD平分△ABC的外角∠ABP,DH⊥AB,∴DE=DH,在Rt△DEB和Rt△DHB中,DE DHDB DB=⎧⎨=⎩,∴Rt△DEB≌Rt△DHB(HL),∴BE=BH,在Rt△DEC和Rt△DHA中,DE DHDC DA=⎧⎨=⎩,∴Rt△DEC≌Rt△DHA(HL),∴AH=CE,由图易知:AH=AB−BH,CE=BE+BC,∴AB−BH=BE+BC,∴BE+BH=AB−BC=5−3=2,而BE=BH,∴2BE=2,故BE=1.【变式训练3,的平分线相交于点E,过点E作交AC于点F,则EF的长为.【答案】【解析】延长FE交AB于点D G H,如图所示:四边形BDEG是矩形,平分CE平分,四边形BDEG是正,,设,则,,,解得,,即,解得,.模型二、角平分线垂中间例.如图,已知,90,,BAC AB AC BD ∠=︒=是ABC ∠的平分线,且CE BD ⊥交BD 的延长线于点E .求证:2BD CE =. 【答案】见解析【详解】证明:如图,延长CE 与BA 的延长线相交于点F ,∵90,90EBF F ACF F ∠+∠=︒∠+∠=︒,∴EBF ACF ∠=∠,在ABD △和ACF 中,EBF ACF AB AC BAC CAF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ABD ACF ASA △≌△,∴BD CF =,∵BD 是ABC ∠的平分线,∴EBC EBF ∠=∠.在BCE ∆和BFE ∆中,EBC EBF BE BE CEB FEB ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()BCE BFE ASA ≌△△, ∴CE EF =,∴2CF CE =, ∴2BD CF CE ==.【变式训练1】如图,已知△ABC ,∠BAC =45°,在△ABC 的高BD 上取点E ,使AE =BC . (1)求证:CD =DE ;(2)试判断AE 与BC 的位置关系?请说明理由;【答案】(1)见解析;(2)AE BC ⊥,理由见解析;(3)【详解】(1)证明:∵BD AC ⊥,45BAC ∠=︒,∴90,45EDA BDC ABD BAD ∠=∠=︒∠=∠=︒,∴AD BD =,在Rt ADE △和Rt BDC 中,∵AD BDAE BC =⎧⎨=⎩ ∴()Rt ADE Rt BDC HL ≅,∴CD =DE ; (2)AE BC ⊥,理由如下:如图,延长AE ,交BC 于点F , 由(1)得,90EAD EBF EAD AED ∠=∠∠+∠=︒,∵AED AEF ∠=∠,∴90BEF EBF ∠+∠=︒,∴90EFB =︒,即AE BC ⊥;【变式训练2】如图,D 是△ABC 的BC 边的中点,AE 平分∠BAC ,AE ⊥CE 于点E ,且AB =10,AC =16,则DE 的长度为________【答案】3【解答】解:如图,延长CE ,AB 交于点F .AE 平分∠BAC ,AE ⊥EC ,∴∠F AE =∠CAE ,∠AEF =∠AEC =90°在△AFE 和△ACE 中,EAF EAC AE AE AEF AEC =⎧⎪=⎨⎪=⎩∠∠∠∠,∴△AFE ≌ACE (ASA ),∴AF =AC =16,EF =EC ,∴B F =6又D 是BC 的中点,∴BD =CD ,∴DE 是△CBF 的中位线,∴DE =12BF =3,故答案为:3. 【变式训练3】如图,在ABC ∆中,CD 是ACB ∠的平分线,AD CD ⊥于点D ,DE //BC 交AB 于点E ,求证:EA EB =.【答案】见解析【解答】证明:延长AD 交BC 于点F .CD 平分ACF ∠, ACD FCD ∴∠=∠.又,,AD CD CD CD ⊥=ADC ∴∆≌FDC ∆,AD FD ∴=. 又DE ∥BC ,EA EB ∴=.模型三、角平分线+平行线构造等腰三角形例.如图所示,在△ABC 中,BC =6,E 、F 分别是AB 、AC 的中点,动点P 在射线EF 上,BP 交CE 于D,∠CBP 的平分线交CE 于Q ,当CQ =13CE 时,EP +BP =________.【答案】12【解答】解:如图,延长BQ 交射线EF 于点M .E 、F 分别是AB 、AC 的中点,∴EF //BC ,∴∠CBM =∠EMBBM 平分∠ABC ,∴∠ABM =∠CBM ,∴∠EMB =∠EBM ,∴EB =EM ,∴EP +BP =EP +PM =EM CQ =13CE ,∴EQ =2CQ由EF //BC 得,△EMQ ∽△CBQ∴2 212 12EM EQEM BC EP BP BC CQ==∴==∴+=【变式训练1】如图,平分于点C ,,求OC 的长?【解析】如图所示:过点D 作交OA 于点E ,则,平分,,中,,.【变式训练2C=90°,AD平分∠CAB,BE平分∠ABC,AD、BE相交于点F,且,则AC=.【解析】过点E于G,连接CF,如图所示:分别是,CF是的平分线,,,由勾股定理可得.模型四、利用角平分线作对称例.平分.【答案】见解析【解析】证明:在AB上截取,连接DE,如图所示:.【变式训练】AD是△ABC的角平分线,过点D作DE⊥AB于点E,且DE=3,S△ABC=20.(1)如图1,若AB=AC,求AC的长;(2)如图2,若AB=5,请直接写出AC的长.【答案】(1)203;(2)253【详解】解:(1)如图1,作DF⊥AC于F,∵AD 是△ABC 的角平分线,DE ⊥AB ,DF ⊥AC ,∴DF =DE =3, 由题意得,12×AB ×3+12×AC ×3=20,解得,AC =AB =203; (2)如图2,作DF ⊥AC 于F ,∵AD 是△ABC 的角平分线,DE ⊥AB ,DF ⊥AC ,∴DF =DE =3, 由题意得,12×5×3+12×AC ×3=20,解得,AC =253. 模型五、内外模型例.如图,在△ABC 中,AB=AC ,∠A=30°,E 为BC 延长线上一点,∠ABC 与∠AC E 的平分线相交于点D ,则∠D 的度数为( )A .15°B .17.5°C .20°D .22.5°【答案】A4321DA【解析】∵∠ABC与∠AC E的平分线相交于点D,∴∠DCE=∠DCA,∠CBD=∠ABD,即.的外角的平分线CP与内角BP交于点P,若,则.【解析】平分平分又,过点P的延长线,垂足分别为点E、F、G,如图所示:由角平分线的性质可得,AP是.课后训练1.如图,BD是ABC的外角∠ABP的角平分线,DA=DC,DE⊥BP于点E,若AB=5,BC=3,则BE 的长为()A .2B .1.5C .1D .0【答案】C【详解】解:如图,过点D 作DF AB ⊥于F ,BD 是ABP ∠的角平分线,DF AB ⊥,DE ⊥BP ,DE DF ∴=,在Rt BDE 和Rt BDF 中,BD BDDE DF =⎧⎨=⎩,()Rt BDE Rt BDF HL ∴△≌△,BE BF ∴=,在Rt ADF 和Rt CDE △中,DA DCDE DF=⎧⎨=⎩,()Rt ADF Rt CDE HL ∴△≌△,AF CE ∴=,AF AB BF =-,CE BC BE =+,AB BF BC BE ∴-=+,2BE AB BC ∴=-,5AB =,3BC =,2532BE ∴=-=,解得:1BE =.故选:C .2.如图,AD 是ABC 中BAC ∠的平分线,DE AB ⊥交AB 于点E ,DF AC ⊥交AC 于点F ,若7ABC S =△,32=DE ,5AB =,则AC 的长为( )A .133B .4C .5D .6【答案】A【详解】∵AD 是ABC ∆中BAC ∠的平分线,DE AB ⊥于点E ,DF AC ⊥交AC 于点F ,∴32DF DE ==. 又∵ABCABD ACDSSS=+,5AB =,∴1313752222AC =⨯⨯+⨯⨯,∴133AC =.故选:A . 3.如图,在Rt △ABC 中,∠C =90°,∠BAC 的平分线交BC 于点D ,CD =2,BD =3,Q 为AB 上一动点,则DQ 的最小值为( )A.1B.2C.2.5D【答案】B【详解】解:作DH⊥AB于H,如图,∵AD平分∠BAC,DH⊥AB,DC⊥AC,∴DH=DC=2,∵Q为AB上一动点,∴DQ的最小值为DH的长,即DQ的最小值为2.故选:B.4.如图,已知在四边形ABCD中,∠BCD=90°,BD平分∠ABC,AB=6,BC=9,CD=4,则四边形ABCD 的面积是______.【答案】30【详解】过D作DE⊥AB,交BA的延长线于E,则∠E=∠C=90°,∵∠BCD=90°,BD平分∠ABC,∴DE=DC=4,∴四边形ABCD的面积S=S△BCD+S△BAD=12×BC×CD+12×AB×DE=12×9×4+12×6×4=30,故答案为:30.5.如图,在△ABC中,AD为△ABC的角平分线,DE⊥AB,垂足为E,DF⊥AC,垂足为F,若AB=5,AC=3,DF=2,则△ABC的面积为______.【答案】8【详解】解:∵AD为△ABC的角平分线,DE⊥AB,DF⊥AC,∴DE=DF=2,∴△ABC的面积=12×5×2+12×3×2=8,故答案侍:8.6.在△ABC中,∠ABC=62°,∠ACB=50°,∠ACD是△ABC的外角∠ACD和∠ABC的平分线交于点E,则∠AEB=_____︒【答案】25【详解】解:如图示:过点E ,分别作EF BD ⊥交BD 于点E ,EG AC ⊥交AC 于点G ,EH AB ⊥,交AB 延长线于点H , ∵BE 平分ABC ∠,CE 平分ACD ∠,∴EH EF =,EG EF =,∴EH EG =,∴AE 平分HAC ∠, ∵62ABC ∠=︒,50∠=°ACB ,∴6250112HAC ABC ACB ∠=∠+∠=︒+︒=︒,∴111125622EAO HAC ∠=∠=⨯︒=︒, ∵BE 平分ABC ∠,62ABC ∠=︒∴11623122EBC ABC ∠=∠=⨯︒=︒ 在AOE △和BOC 中,OBC OCB OAE AEB ∠+∠=∠+∠∴31505625AEB OBC OCB OAE ∠=∠+∠-∠=︒+︒-︒=︒,故答案是:25. 7.如图,DE ⊥AB 于E ,DF ⊥AC 于F ,若BD =CD ,BE =CF .(1)求证:AD 平分∠BAC :(2)已知AC =18,BE =4,求AB 的长. 【答案】(1)见解析;(2)10AB =.【详解】(1)证明:DE AB ∵⊥,DF AC ⊥,90E DFC ∴∠=∠=︒,在Rt BED 和Rt CFD △中,BD CD BE CF =⎧⎨=⎩,∴Rt BED Rt CFD ≅()HL ,DE DF ∴=,DE AB ∵⊥,DF AC ⊥,AD ∴平分BAC ∠;(2)解:DE DF =,AD AD =,Rt ADE Rt ADF ∴≅()HL ,AE AF ∴=,AB AE BE AF BE AC CF BE =-=-=--,184410AB ∴=--=.8.如图1,在平面直角坐标系中,△ABC 的顶点A (-4,0),B (0,4),AD ⊥BC 交BC 于D 点,交y 轴正半轴于点E (0,t )(1)当t=1时,点C 的坐标为 ; (2)如图2,求∠ADO 的度数;(3)如图3,已知点P (0,3),若PQ ⊥PC ,PQ=PC ,求Q 的坐标(用含t 的式子表示). 【答案】(1)点C 坐标(1,0);(2)∠ADO =45°;(3)Q (-3,3-t ). 【详解】(1)如图1,当t =1时,点E (0,1), ∵AD ⊥BC , ∴∠EAO +∠BCO =90°, ∵∠CBO +∠BCO =90°,∴∠EAO =∠CBO ,在△AOE 和△BOC 中,∵90EAO CBOAO BO AOE BOC ∠=∠⎧⎪=⎨⎪∠=∠︒⎩=,∴△AOE ≌△BOC (ASA ),∴OE =OC =1,∴点C 坐标(1,0). 故答案为:(1,0);(2)如图2,过点O 作OM ⊥AD 于点M ,作ON ⊥BC 于点N ,∵△AOE ≌△BOC ,∴S △AOE =S △BOC ,且AE =BC , ∵OM ⊥AE ,ON ⊥BC ,∴OM =ON ,∴OD 平分∠ADC ;AD ⊥BC ,90ADC ∴∠=︒∴∠ADO =1452ADC ∠=︒;(3)如图3,过P 作GH ∥x 轴,过C 作CG ⊥GH 于G ,过Q 作QH ⊥GH 于H ,交x 轴于F ,∵P (0,3),C (t ,0),∴CG =FH =3,PG =OC =t , ∵∠QPC =90°,∴∠CPG +∠QPH =90°, ∵∠QPH +∠HQP =90°,∴∠CPG =∠HQP ,∵∠QHP=∠G=90°,PQ=PC,∴△PCG≌△QPH,∴CG=PH=3,PG=QH=t,∴Q(-3,3-t).。
2018年全国中考数学真题分类 线段垂直平分线、角平分线、中位线(一)一、选择题1. (2018四川泸州,7题,3分) 如图2,ABCD 的对角线AC ,BD 相交于点O ,E 是AB 中点,且AE+EO=4,则ABCD 的周长为( )A.20B. 16C. 12D.8第7题图 【答案】B 【解析】ABCD 的对角线AC ,BD 相交于点O ,所以O 为AC 的中点,又因为E 是AB 中点,所以EO是△ABC 的中位线,AE=21AB ,EO=21BC ,因为AE+EO=4,所以AB+BC=2(AE+EO)=8,ABCD 中AD=BC ,AB=CD ,所以周长为2(AB+BC)=16【知识点】平行四边形的性质,三角形中位线2. (2018四川省南充市,第8题,3分)如图,在Rt ABC ∆中,90ACB ∠=,30A ∠=,D ,E ,F 分别为AB ,AC ,AD 的中点,若2BC =,则EF 的长度为( )A .12B .1C .32D【答案】B【思路分析】1.由∠ACB =90°,∠A =30°,BC 的长度,可求得AB 的长度,2.利用直角三角形斜边D的中线等于斜边第一半,求得CD 的长度;3.利用中位线定理,即可求得EF 的长.【解题过程】解:在Rt △ABC 中,∠ACB =90°,∠A =30°,BC =2,,∴AB =4,CD =12AB ,∴CD =12×4=2,∵E ,F 分别为AC ,AD 的中点,∴EF =12CD =12×2=1,故选B.【知识点】30°所对直角边是斜边的一半;直角三角形斜边的中线等于斜边第一半;中位线定理3. (2018四川省达州市,8,3分) △ABC 的周长为19,点D 、E 在边BC 上,∠ABC 的平分线垂直于AE ,垂足为N ,∠ACB 的平分线垂直于AD ,垂足为M .若BC =7,则MN 的长为( ) . A .32 B .2 C .52D .3第8题图 【答案】C ,【解析】∵△ABC 的周长为19,BC =7, ∴AB +AC =12.∵∠ABC 的平分线垂直于AE ,垂足为N ,∴BA =BE ,N 是AE 的中点. ∵∠ACB 的平分线垂直于AD ,垂足为M ,∴AC =DC ,M 是AD 的中点. ∴DE =AB +AC -BC =5. ∵MN 是△ADE 的中位线, ∴MN =12DE =52. 故选C.【知识点】三角形的中位线4. (2018浙江杭州, 10,3分)如图,在△ABC 中,点D 在AB 边上,DE//BC ,与边AC 交于点E ,连接BE ,记△ADE ,△BCE 的面积分别为S 1,S 2,( )A. 若2AD>AB ,则3S 1>2S 2B. 若2AD>AB ,则3S 1<2S 2C. 若2AD<AB ,则3S 1>2S 2D. 若2AD<AB ,则3S 1<2S 2【答案】D【思路分析】首先考虑极点位置,当2AD=AB 即AD=BD 时S 1,S 2的关系,然后再考虑AD>BD 时S 1,S 2的变化情况。
角平分线一、角平分线的性质定理1. 角平分线上的点到这个角的两边的距离相等。
定理的作用:①证明两条线段相等;②用于几何作图问题;2. 角是一个轴对称图形,它的对称轴是角平分线所在的直线。
二、角平分线的判定定理在角的内部到角的两边距离相等的点在这个角的角平分线上。
定理的作用:用于证明两个角相等或证明一条射线是一个角的角平分线。
三、关于三角形三条角平分线的定理1. 三角形三条角平分线相交于一点,并且这一点到三边的距离相等。
定理的作用:①用于证明三角形内的线段相等;②用于实际中的几何作图问题。
2. 三角形三条角平分线的交点位置与三角形形状的关系三角形三个内角角平分线的交点一定在三角形的内部,这个交点叫做三角形的内心(即内切圆的圆心)。
1.如图,△ABC的三边AB,BC,CA长分别是20,30,40,其三条角平分线将△ABC分为三个三角形,则S△ABO:S△BCO:S△CAO等于()A.1:1:1 B.1:2:3 C.2:3:4 D.3:4:5解:利用同高不同底的三角形的面积之比就是底之比可知选C.故选C.2.如图,在Rt△ABC中,∠C=90°,∠A=30°,∠C的平分线与∠B的外角的平分线交于E点,则∠AEB是()A.50° B.45° C.40° D.35°解:∵E在∠C的平分线上,∴E点到CB的距离等于E到AC的距离,∵E在∠B的外角的平分线上,∴E点到CB的距离等于E到AB的距离,∴E点到AC的距离等于E到AB的距离,∴AE是∠A的外角的平分线.∵在Rt△ABC中,∠C=90°,∠A=30°,∴∠ABC=60°,,∵EB是∠B的外角的平分线,∴∠ABE=60°,∴∠AEB=180°﹣60°﹣75°=45°.故选B.3.如图,点P是∠AOB平分线OC上一点,PD⊥OB,垂足为D,若PD=2,则点P到边OA的距离是()A.2 B.3 C.D.4解:作PE⊥OA于E,∵点P是∠AOB平分线OC上一点,PD⊥OB,PE⊥OA,∴PE=PD=2,故选:A.4.如图,OP是∠AOB的平分线,点P到OA的距离为3,点N是OB上的任意一点,则线段PN的取值范围为()A.PN<3 B.PN>3 C.PN≥3 D.PN≤3解:作PM⊥OB于M,∵OP是∠AOB的平分线,PE⊥OA,PM⊥OB,∴PM=PE=3,∴PN≥3,故选:C.5.如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB,如果DE=5cm,∠CAD=32°,求CD的长度及∠B的度数.解:∵AD平分∠BAC,DE⊥AB,DC⊥AC,∴CD=DE=5cm,又∵AD平分∠BAC,∴∠BAC=2∠CAD=2×32°=64°,∴∠B=90°﹣∠BAC=90°﹣64°=26°.6.如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC于点D,若AC=5,BC=12.求点D 到AB的距离.解:如图,过点D作DE⊥AB于E,∵AC=5,BC=12,∴AB==13,∵∠C=90°,AD是∠BAC的角平分线,∴CD=DE,在△ACD和△AED中,,∴△ACD≌△AED(HL),∴AE=AC=5,BE=AB﹣AE=13﹣5=8,设DE=x,则BD=12﹣x,在Rt△BDE中,DE2+BE2=BD2,∴x2+82=(12﹣x)2,解得x=.答:点D到AB的距离是.7.如图所示,在Rt△ABC中,∠C=90°,AC=BC,AD是∠BAC的平分线,DE⊥AB,垂足为E.求证:△DBE的周长等于AB.证明:∵∠C=90°,AD是∠BAC的平分线,DE⊥AB,∴DC=DE;∴BD+DE=BD+CD=BC;∵AC2=AD2﹣CD2,AE2=AD2﹣DE2,∴AC=AE,而AC=BC,∴BC=AE,∴BD+DE+BE=AE+BE=AB,即△DBE的周长等于AB.8.如图,OM平分∠POQ,MA⊥OP,MB⊥OQ,A、B为垂足,AB交OM于点N.求证:∠OAB=∠OBA.证明:∵OM平分∠POQ,MA⊥OP,MB⊥OQ,∴AM=BM,在Rt△AOM和Rt△BOM中,,∴Rt△AOM≌Rt△BOM(HL),∴OA=OB,∴∠OAB=∠OBA.9.如图,在Rt△ABC中,∠ABC=90°,CD平分∠ACB交AB于点D,DE⊥AC于点E,BF∥DE交CD于点F.求证:DE=BF.证明:∵CD平分∠ACB,∴∠1=∠2,∵DE⊥AC,∠ABC=90°∴DE=BD,∠3=∠4,∵BF∥DE,∴∠4=∠5,∴∠3=∠5,∴BD=BF,∴DE=BF.基础演练1.如图,在CD上求一点P,使它到OA,OB的距离相等,则P点是()A.线段CD的中点 B.OA与OB的中垂线的交点C.OA与CD的中垂线的交点D.CD与∠AOB的平分线的交点解:利用角的平分线上的点到角的两边的距离相等可知CD与∠AOB的平分线的交于点P.故选D.2.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上一个动点,若PA=3,则PQ的最小值为()A.B.2 C.3 D.2解:过点P作PB⊥OM于B,∵OP平分∠MON,PA⊥ON,PA=3,∴PB=PA=3,∴PQ的最小值为3.故选:C.3.如图,已知点P是∠AOB角平分线上的一点,∠AOB=60°,PD⊥OA,M是OP的中点,DM=4cm,如果点C是OB上一个动点,则PC的最小值为()A.2 B.2 C.4 D.4解:∵P是∠AOB角平分线上的一点,∠AOB=60°,∴∠AOP=AOB=30°,∵PD⊥OA,M是OP的中点,DM=4cm,∴OP=2OM=8,∴PD=OP=4,∵点C是OB上一个动点,∴PC的最小值为P到OB距离,∴PC的最小值=PD=4.故选C.4.如图,在Rt△ABC中,∠C=90°,AD平分∠CAB,点D到AB的距离DE=1cm,BE=cm,则BC 等于()A.1cm B.2cm C.3cm D.(+1)cm解:∵DE=1cm,BE=cm,∴BD==2cm,∵AD平分∠CAB,∠C=90°,DE⊥AB,∴DC=DE=1cm,∴BC=CD+BD=3cm,故选:C.5.如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,△ABC的面积是28cm2,AB=16cm,AC=12cm,求DE的长.∵AD为∠BAC的平分线,DE⊥AB,DF⊥AC,∴DE=DF,∵S△ABC=S△ABD+S△ACD=AB×DE+AC×DF∴S△ABC=(AB+AC)×DE即×(16+12)×DE=28,故DE=2(cm).巩固提高6.(1)求证:角平分线上的点到这个角的两边的距离相等.(2)如图,AD是△ABC的角平分线,求证:=.解:已知:OC平分∠AOB,点P为OC上任一点,PE⊥OA于E,PF⊥OB于F.求证:PE=PF证明:∵OC平分∠AOB,∴∠POE=∠POF,∵PE⊥OA于E,PF⊥OB于F,∴∠PEO=∠PFO=90°,在△PEO和△PFO中,∴△PEO≌△PFO(AAS),∴PE=PF,∴角平分线上的点到这个角的两边的距离相等;(2)如图,过点B作BE∥AC交AD延长线于点E,∵BE∥AC,∴∠DBE=∠C,∠E=∠CAD,∴△BDE∽△CDA,∴,又∵AD是角平分线,∴∠E=∠DAC=∠BAD,∴BE=AB,∴=.7.如图,四边形ABDC中,∠D=∠ABD=90°,点O为BD的中点,且OA平分∠BAC.(1)求证:OC平分∠ACD;(2)求证:OA⊥OC;(3)求证:AB+CD=AC.证明:(1)过点O作OE⊥AC于E,∵∠ABD=90゜,OA平分∠BAC,∴OB=OE,∵点O为BD的中点,∴OB=OD,∴OE=OD,∴OC平分∠ACD;(2)在Rt△ABO和Rt△AEO中,,∴Rt△ABO≌Rt△AEO(HL),∴∠AOB=∠AOE,同理求出∠COD=∠COE,∴∠AOC=∠AOE+∠COE=×180°=90°,∴OA⊥OC;(3)∵Rt△ABO≌Rt△AEO,∴AB=AE,同理可得CD=CE,∵AC=AE+CE,∴AB+CD=AC.8.如图:在△ABC中,∠C=90°,AD平分∠CAB交BC于点D,AB=10,AC=6,求D到AB的距离.解:作DE⊥AB,垂足为E,DE即为D到AB的距离.又∵∠C=90°,AD平分∠CAB,∴DE=DC在△ABC中,∵∠C=90°,AB=10,AC=6,∴BC=8,设CD=x,则DE=CD=x,BD=8﹣x.在Rt△ACD与Rt△AED中,∵,∴Rt△ACD≌Rt△AED(HL),∴AE=AC=6,∴BE=4,在Rt△BED中,∵DE2+EB2=DB2,即x2+42=(8﹣x)2,解得:x=3.∴D到AB的距离是3.1.已知,Rt△ABC中,∠C=90°,AD平分∠BAC交BC于D,若BC=32,且BD:CD=9:7,则D到AB 的距离为()A.18 B.16 C.14 D.12解:∵BC=32,BD:DC=9:7 ∴CD=14∵∠C=90°,AD平分∠BAC ∴D到边AB的距离=CD=14.故选C.2.观察图中尺规作图痕迹,下列说法错误的是()A.OE是∠AOB的平分线B.OC=ODC.点C、D到OE的距离不相等 D.∠AOE=∠BOE解:根据尺规作图的画法可知:OE是∠AOB的角平分线.A、OE是∠AOB的平分线,A正确;B、OC=OD,B正确;C、点C、D到OE的距离相等,C不正确;D、∠AOE=∠BOE,D正确.故选C.3.如图,在Rt△ABC中,∠C=90°,AD是△ABC的角平分线,若CD=4,AC=12,AB=15,则△ABC的面积为()A.48 B.50 C.54 D.60解:作DE⊥AB于E,∵AD是△ABC的角平分线,∠C=90°,DE⊥AB,∴DE=CD=4,∴△ABC的面积为:×AC×DC+×AB×DE=54,故选:C.4.如图,OP平分∠MON,PA⊥OA于点A,点Q是射线OM上的一个动点,若PA=2,则PQ的值为()A.1 B.2 C.大于2 D.不小于2解:∵OP平分∠MON,PA⊥ON于点A,PA=2,∴点P到OM的距离等于2,而点Q是射线OM上的一个动点,∴PQ≥2.故选D.5.如图,P为∠MON平分线上一点,PA⊥OM于A,PB⊥ON于B,求证:OP垂直平分AB.证明:∵P为∠MON平分线上一点,PA⊥OM,PB⊥ON,∴PA=PB,∠PAO=∠PBO=90°,在Rt△PAO和Rt△PBO中,,∴Rt△PAO≌Rt△PBO(HL),∴OA=OB,∵OP平分∠AOB,∴OP垂直平分AB(三线合一).6.如图,在△ABC中,AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,AB=6,AC=4,若S△ABD=9,求S△ACD.解:∵DE⊥AB于E,DF⊥AC于F,∵AD平分∠BAC,∴DE=DF,∵S△ABD=9,AB=6,∴DE=3,∴DF=3,∵AC=4,∴S△ACD=AC•DF=6,故答案为:6.1.如图:△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,且AB=6cm,则△DEB 的周长是()A.6cm B.4cm C.10cm D.以上都不对解:∵∠C=90°,∴DC⊥AC,又AD平分∠CAB交BC于D,DE⊥AB,∴CD=ED,在Rt△ACD和Rt△AED中,,∴Rt△ACD≌Rt△AED(HL),∴AC=AE,又AC=BC,∴AC=AE=BC,又AB=6cm,∴△DEB的周长=DB+BE+ED=DB+CD+BE=BC+BE=AE+EB=AB=6cm.故选A.2.∠AOB的平分线上一点P到OA的距离为5,Q是OB上任一点,则()A.PQ>5 B.PQ≥5 C.PQ<5 D.PQ≤5解:∠AOB的平分线上一点P到OA的距离为5则P到OB的距离为5因为Q是OB上任一点,则PQ≥5故选B.3.如图,在四边形ABCD中,BE⊥AC于点E,连接DE,四边形ABCD的面积为12cm2.若BE平分∠ABC,则四边形ABED的面积为()A.4cm2B.6cm2C.8cm2D.10cm2解:∵BE⊥AC,BE平分∠ABC,∴AE=EC,∴S△ABE=S△ABC,S△ADE=S△ADC,∴四边形ABED的面积=×四边形ABCD的面积=6cm2,故选:B.4.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,DE=2,AC=3,则△ADC的面积是()A.3 B.4 C.5 D.6解:如图,过点D作DF⊥AC于F,∵AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,∴DE=DF=2.∴S△ACD=AC•DF=×3×2=3,故选A.5.如图,在△ABC中,∠C=90°,AB=2AC,AD平分∠BAC,求证:点D在AB的垂直平分线上.证明:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴CD=DE,在△ADC和△ADE中,,∴△ADC≌△ADE(HL),∴AE=AC,∵AB=2AC,∴BE=AB﹣AE=2AC﹣AE=AE,∴点D在AB的垂直平分线上.6.如图,PM⊥OA于M,PN⊥OB于N,PM=PN,∠BOC=30°,求∠AOB的度数.解:∵PM⊥OA于M,PN⊥OB于N,PM=PN,∴P在∠AOB的角平分线上,∴∠AOB=2∠BOC=2×30°=60°.7.如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F.(1)若△ABC面积是40cm2,AB=12cm,AC=8cm,求DE的长.(2)求证:S△ABD:S△ACD=AB:AC.(1)解:∵在△ABC中,AD为∠BAC的平分线,DE⊥AB,DF⊥AC,∴DE=DF,∵△ABC面积是40cm2,AB=12cm,AC=8cm,∴40=×12×DE+×8×DF,DE=DF=4(cm).(2)证明:∴S△ABD=×AB×DE,S△ACD=×AC×DF,DE=DF,∴S△ABD:S△ACD=AB:AC.8.如图,在△ABC中,∠C=90°,BD是∠ABC的平分线,若AC=12,AD=8,求点D到AB的距离.解:如图,过点D作DE⊥AB于E,∵CA=12,AD=8,∴CD=CA﹣AD=12﹣8=4,∵BD是∠ABC的平分线,∴DE=CD=4,故D到AB的距离是4.9.如图,在△ABC中,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别是E,F,BE=CF.求证:AD是△ABC的角平分线.证明:∵DE⊥AB,DF⊥AC,∴Rt△BDE和Rt△DCF是直角三角形.,∴Rt△BDE≌Rt△DCF(HL),∴DE=DF,又∵DE⊥AB,DF⊥AC,∴AD是角平分线.。
12.3 角的平分线的性质目标梳理知识梳理一、作已知角的平分线用尺规作已知角的平分线.已知:∠AOB,求作:∠AOB的平分线.作法:1.以点O为圆心,适当长为半径画弧,交OA于点M,交OB于点N.2.分别以点M,N为圆心,大于__________的长为半径画弧,两弧在∠AOB的内部相交于点C.3.画射线OC.射线OC即为所求.如图所示:★作图依据:构造△OMC ≌△ONC (SSS ). 二、角的平分线的性质内容:角的平分线上的点到角的两边的距离__________. 【提示】1.这里的距离指的是点到角的两边垂线段的长;2.该性质可以独立作为证明两条线段相等的依据,不需要再用全等三角形; 3.使用该结论的前提条件是图中有角平分线、有垂直;4.运用角的平分线时常添加的辅助线:由角的平分线上的已知点向两边作垂线段,利用其相等来推导其他结论.三、证明几何命题的一般步骤一般情况下,我们要证明一个几何命题时,可以按照以下的步骤进行: 1.明确命题中的已知和求证;2.根据题意,画出图形,并用符号表示已知和求证;3.经过分析,找出由已知推出要证的结论的途径,写出证明过程. 四、角的平分线的判定1.内容:角的内部到角的两边的距离__________的点在角的平分线上.2.角的平分线的判定的前提条件是指在角的内部的点到角两边的距离相等时,它才是在角的平分线上,角的外部的点不会在角的平分线上.一、2. 12MN二、相等 三、相等重点梳理【重点01】角的平分线的性质遇到已知一个点在某个角的平分线上时,一般过该点向角的两边作垂线,运用角的平分线上的点到角两边的距离相等寻找线段的相等关系,有时可结合全等三角形建立未知线段与已知线段的关系,从而求出待求线段.【重点02】角的平分线的判定1.当题目中出现角内的一点到角两边的距离相等时,可以考虑应用角的平分线的判定方法证明两个角相等.2.角的平分线的性质和判定恰好是条件和结论互换,即点在角平分线上的一点到角两边的距离相等.【重点03】角的平分线的性质的应用证明角平分线的方法:只需从要证的线上的某一点向角的两边作垂线段,再证明垂线段相等即可.这样把证“某线是角的平分线”的问题转化为证“垂线段相等”的问题,体现了转化思想.例1 已知:如图,在△ABC中,AD是它的角平分线,且BD=CD,DE⊥AB,DF⊥AC.垂足分别为E,F.求证:EB=FC.证明:∵AD是∠BAC的角平分线,DE⊥AB,DF⊥AC,∴DE=DF,∠DEB=∠DFC=90 °在Rt△BDE 和Rt△CDF中,DE=DF,BD=CD,∴Rt△BDE ≌Rt△CDF(HL).∴EB=FC.例2如图所示,D是∠ACG的平分线上的一点.DE⊥AC,DF⊥CG,垂足分别为E,F.求证:CE=CF.证明:∵CD是∠ACG的平分线,DE⊥AC,DF⊥CG,∴DE=DF.在Rt △CDE 和Rt △CDF 中,∴Rt △CDE ≌Rt △CDF (HL), ∴CE =CF .例3 已知:如图,△ABC 的角平分线BM ,CN 相交于点P ,求证:点P 到三边AB ,BC ,CA 的距离相等.证明:过点P 作PD ,PE ,PF 分别垂直于AB ,BC ,CA , 垂足分别为D ,E ,F .∵BM 是△ABC 的角平分线,点P 在BM 上, ∴PD=PE.同理PE=PF . ∴PD=PE=PF .即点P 到三边AB ,BC ,CA 的距离相等.例4 如图所示,已知△ABC 中,PE ∥AB 交BC 于点E ,PF ∥AC 交BC 于点F ,点P 是AD 上一点,且点D 到PE 的距离与到PF 的距离相等,判断AD 是否平分∠BAC ,并说明理由.解:AD 平分∠BAC .理由如下: ∵D 到PE 的距离与到PF 的距离相等, ∴点D 在∠EPF 的平分线上.,,CD CD DE DF =⎧⎨=⎩∴∠1=∠2.又∵PE∥AB,∴∠1=∠3.同理,∠2=∠4.∴∠3=∠4,∴AD平分∠BAC.例5如图,已知∠CBD和∠BCE的平分线相交于点F,求证:点F在∠DAE的平分线上.证明:过点F作FG⊥AE于G,FH⊥AD于H,FM⊥BC于M.∵点F在∠BCE的平分线上,FG⊥AE,FM⊥BC.∴FG=FM.又∵点F在∠CBD的平分线上,FH⊥AD,FM⊥BC,∴FM=FH,∴FG=FH.∴点F在∠DAE的平分线上.1.如图,在△ABC中,AD平分∠BAC,DE⊥AB于E,S△ABC=15,DE=3,AB=6,则AC的长是()A.4 B.5 C.6 D.72.如图,在Rt△ABC中,∠C=90°,BD是∠ABC的平分线,交AC于点D,若CD=n,AB=m,则△ABD 的面积是()A.mn B.12mn C.2mn D.13mn3.如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,BD∶DC=3∶2,点D到AB的距离为6,则BC等于()A.10 B.20 C.15 D.254.如图,BE⊥AC于E,CF⊥AB于F,AE=AF,BE与CF交于点D,则:①△ABE≌△ACF;②△BDF≌△CDE;③点D在∠BAC的平分线上.以上结论正确的是()A.①B.②C.①②D.①②③5.如图,AB=AD,CB=CD,AC、BD相交于点O,则下列结论正确的是()A.OA=OC B.点O到AB、CD的距离相等C.∠BDA=∠BDC D.点O到CB、CD的距离相等6.如图,在△ABC中,BD平分∠ABC,交AC于点D,BC边上有一点E,连接DE,则AD与DE的关系为()A .AD >DEB .AD =DEC .AD <DE D .不确定7.如图,已知在四边形ABCD 中,90BCD ∠=︒,BD 平分ABC ∠,6AB =,9BC =,4CD =,则四边形ABCD 的面积是( )A .24B .30C .36D .428.如图,已知BD ⊥AE 于点B ,DC ⊥AF 于点C ,且DB =DC ,∠BAC =40°,∠ADG =130°,则∠DGF =__________.9.通过学习我们已经知道三角形的三条内角平分线是交于一点的.如图,P 是△ABC 的内角平分线的交点,已知P 点到AB 边的距离为1,△ABC 的周长为10,则△ABC 的面积为__________.10.如图,在△ABC 中,AD 为∠BAC 的平分线,DE ⊥AB 于E ,DF ⊥AC 于F ,△ABC 面积是45 cm 2,AB =16 cm ,AC =14 cm ,则DE =__________.11.如图,已知射线OC 上的任意一点到∠AOB 的两边的距离都相等,点D 、E 、F 分别为边OC 、OA 、OB上,如果要想证得OE =OF ,只需要添加以下四个条件中的某一个即可,请写出所有可能的条件的序号__________.①∠ODE=∠ODF;②∠OED=∠OFD;③ED=FD;④EF⊥OC.12.已知,如图,BD是∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD,PN⊥CD,垂足分别是M、N.试说明:PM=PN.13.如图,在△ABC中,AB=AC,AD⊥BC,点P是AD上的一点,且PE⊥AB,PF⊥AC,垂足分别为点E、F,求证:PE=PF.14.如图,BF⊥AC于点F,CE⊥AB于点E,BF与CE交于D,且BD=CD.(1)求证:D在∠BAC的平分线上;(2)若将条件:BD=CD和结论:D在∠BAC的平分线上互换,结论成立吗?试说明理由.15. 如图,已知AD∥BC,P是∠BAD与∠ABC的平分线的交点,PE⊥AB于E,且PE=3,求AD与BC 之间的距离.16. 如图,已知,BE=CF,BF⊥AC于点F,DE⊥AB于点E,BF,CE交于点D,求证:AD平分∠BAC.1.【答案】A【解析】∵DE =3,AB =6,∴△ABD 的面积为12×3×6=9, ∵S △ABC =15,∴△ADC 的面积=15-9=6,∵AD 平分∠BAC ,DE ⊥AB 于E ,∴AC 边上的高DE =3, ∴AC =6×2÷3=4,故选A . 2.【答案】B【解析】如图,作DE ⊥AB 交AB 于点E ,∵BD 是∠ABC 的平分线,∠C =90°,∴CD =DE =n , ∴S △ABD =12AB ·DE =12mn .故选B . 3.【答案】C【解析】∵在△ABC 中,∠C =90°,AD 平分∠BAC 交BC 于点D ,点D 到AB 的距离为6,∴CD =6. ∵BD ∶DC =3∶2,∴BD =32CD =32×6=9,∴BC =6+9=15.故选C . 4.【答案】D【解析】∵BE ⊥AC ,CF ⊥AB , ∴∠BEA =∠CFA =90°,在△ABE 与△ACF 中,BAE CAF BEA CFA AE AF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ACF (AAS ),①正确;∴∠B =∠C ,AB =AC (全等三角形对应角和对应边相等), ∴BF =CE ,在△BDF与△CDE中,B CBDA CDE BF CE∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BDF≌△CDE(AAS),②正确;∴DF=DE(全等三角形对应边相等),∴点D在∠BAC的平分线上(到角的两边距离相等的点,在这个角的平分线上),③正确;故①②③都正确.故选D.5.【答案】D【解析】∵在△ADC和△ABC中,AD ABCD CBAC AC=⎧⎪=⎨⎪=⎩,∴△ADC≌△ABC,∴∠DCA=∠BCA,∴点O到CB、CD的距离相等.故选D.6.【答案】D【解析】∵BD平分∠ABC,∴点D到AB、BC的距离相等,∵AD不是点D到AB的距离,点E是BC上一点,∴AD、DE的大小不确定.故选D.7.【答案】B【解析】如图,过D作DE⊥AB交BA的延长线于E,∵BD平分∠ABC,∠BCD=90°,∴DE=CD=4,∴四边形ABCD的面积1122ABD BCDS S AB DE BC CD=+=⋅+⋅△△1164943022=⨯⨯+⨯⨯=,故选B.8.【答案】150°【解析】∵BD⊥AE于B,DC⊥AF于C,且DB=DC,∴AD是∠BAC的平分线,∵∠BAC=40°,∴∠CAD=12∠BAC=20°,∴∠DGF=∠CAD+∠ADG=20°+130°=150°.故答案为:150°.9.【答案】5【解析】∵P是△ABC的内角平分线的交点,已知P点到AB边的距离为1,∴点P到AC、BC的距离也为1.∴S△ABC=S△ABP+S△ACP+S△BCP=12AB×1+12AC×1+12BC×1=12×(AB+AC+BC)=12×10=5.故答案为:5.10.【答案】3 cm【解析】∵AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,∴DE=DF.∵S△ABC=S△ABD+S△ACD=12AB⋅DE+12AC⋅DF=12(AB+AC)·DE,∴12DE(AB+AC)=45,即:1(1614)452DE⨯+=,解得DE=3(cm).故答案为:3 cm.11.【答案】①②④【解析】如图,∵射线OC上的任意一点到∠AOB的两边的距离都相等,∴OC平分∠AOB.①若①∠ODE=∠ODF,根据ASA定理可求出△ODE≌△ODF,由三角形全等的性质可知OE=OF.正确;②若∠OED=∠OFD,根据AAS定理可得△ODE≌△ODF,由三角形全等的性质可知OE=OF.正确;③若ED=FD条件不能得出.错误;④若EF⊥OC,根据ASA定理可求出△OGE≌△OGF,由三角形全等的性质可知OE=OF.正确.故答案为:①②④.12.【解析】∵BD为∠ABC的平分线,∴∠ABD=∠CBD,在△ABD和△CBD中,AB BCABD CBD BD BD=⎧⎪∠=∠⎨⎪=⎩,∴△ABD≌△CBD(SAS),∴∠ADB=∠CDB.∵点P在BD上,PM⊥AD,PN⊥CD,∴PM=PN.13.【解析】在三角形ABC中,∵AB=AC,AD⊥BC于D,∴∠BAD=∠CAD,即∠EAP=∠FAP,∵PE⊥AB,PF⊥AC,∴PE=PF.14.【解析】(1)∵BF⊥AC,CE⊥AB,∴∠BED=∠CFD=90°,在Rt△BED和Rt△CFD中,BED CFDEDB FDC BD CD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴Rt△BED≌Rt△CFD(AAS),∴DE=DF,∴D在∠BAC的平分线上.(2)成立.理由如下:∵点D在∠BAC的平分线上,且BF⊥AC,CE⊥AB,∴DE=DF,∠BED=∠CFD=90°,在Rt△BED和Rt△CFD中,BED CFD DE DFEDB FDC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴Rt△BED≌Rt△CFD(ASA),∴BD=DC.15.解:过点P作MN⊥AD于点M,交BC于点N.∵AD∥BC,∴MN⊥BC,MN的长即为AD与BC之间的距离.∵AP平分∠BAD,PM⊥AD ,PE⊥AB,∴PM= PE.同理,PN= PE.∴PM= PN= PE=3.∴MN=6.即AD与BC之间的距离为6.16. 证明:∵BF⊥AC,CE⊥AB,∴∠BED=∠CFD=90°,又∵∠BDE=∠CDF,BE=CF,∴△BDE≌△CDF(AAS)∴DE=DF,∴AD平分∠BAC.。
八年级数学北师大版下册第一章《三角形的证明》之角平分线专项(一)1.如图,Rt△ABC中,∠C=90°,用尺规作图法作出射线AE,AE交BC于点D,CD =2,P为AB上一动点,则PD的最小值为()A.2 B.3 C.4 D.无法确定2.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,ED⊥AB于D,如果∠A=30°,AB=4cm,那么CE等于()A.cm B.2cm C.3cm D.4cm3.如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,AB=10,∠CAB和∠ABC的平分线交于点O,OM⊥BC于点M,则OM的长为()A.1 B.2 C.3 D.44.如图,在△ABC中,∠B=45°,∠C=75°,AD平分∠BAC,交BC于点D,DE ⊥AC,垂足为E,若DE=2,则AB的长为()A.6 B.+4 C.+2D.2+25.如图,AB∥CD,BE和CE分别平分∠ABC和∠BCD,AD过点E,且与AB互相垂直,点P为线段BC上一动点,连接PE.若AD=8,BC=10,则PE的最小值为()A.8 B.5 C.4 D.26.如图,已知△ABC的周长是16,MB和MC分别平分∠ABC和∠ACB,过点M作BC的垂线交BC于点D,且MD=4,则△ABC的面积是()A.64 B.48 C.32 D.427.对于下列说法:①角平分线上任意一点到角两边的距离相等;②等腰三角形的高、中线、角平分线互相重合;③三角形三边中垂线的交点到三个顶点的距离相等;④直角三角形只有一条高线.正确的有()A.①②③④B.①③C.①②③D.①②④8.如图所示,有三条道路围成Rt△ABC,其中BC=1000m,一个人从B处出发沿着BC 行走了800m,到达D处,AD恰为∠CAB的平分线,则此时这个人到AB的最短距离为()A.1000m B.800m C.200m D.1800m9.如图,AD是△ABC中∠BAC的平分线,DE⊥AB于点E,DF⊥AC于点F.若S△ABC =28,DE=4,AB=8,则AC长是()A.8 B.7 C.6 D.510.如图,已知△ABC中,∠C=90°,AD平分∠BAC,且CD:BD=3:4.若BC=21,则点D到AB边的距离为()A.7 B.9 C.11 D.1411.如图,已知△ABC的周长是10,点O为∠ABC与∠ACB的平分线的交点,且OD ⊥BC于D.若OD=2,则△ABC的面积是()A.20 B.12 C.10 D.812.如图,在Rt△ABC中,∠C=90°,AD是∠BAC的平分线,若AC=3,BC=4,则S△ABD:S△ACD为()A.5:4 B.5:3 C.4:3 D.3:413.如图,∠MON=60°,OA平分∠MON,P是射线OA上的一点,且OP=4,若点Q是射线OM上的一个动点,则PQ的最小值为()A.1 B.2 C.3 D.414.在△ABC中,∠BAC=90°,AB=3,AC=4,AD平分∠BAC交BC于D,则BD 的长为()A.B.C.D.15.在Rt△ABC中,∠B=90°,AD平分∠BAC,交BC于点D,DE⊥AC,垂足为点E,若BD=3,则DE的长为()A.3 B.C.2 D.616.如图,OP平分∠AOB,PD⊥OA于点D,点E是射线OB上的一个动点,若PD=3,则PE的最小值()A.等于3 B.大于3 C.小于3 D.无法确定17.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=5,AB=12,则△ABD的面积是()A.15 B.30 C.45 D.6018.如图,∠MON=30°,OP平分∠MON,过点P作PQ∥OM交ON于点Q.若OQ =4,则点P到OM的距离为()A.2 B.C.3 D.19.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,CE平分∠ACB交AB于点E.EF ⊥BC于点F,若EF=4,则线段AE的长为()A.2B.C.2+2 D.320.如图,射线OC是∠AOB的角平分线,D是射线OC上一点,DP⊥OA于点P,DP =4,若点Q是射线OB上一点,OQ=3,则△ODQ的面积是()A.3 B.4 C.5 D.6参考答案1.解:当DP⊥AB时,根据垂线段最短可知,此时DP的值最小.由作图可知:AE平分∠BAC,∵DC⊥AC,DP⊥AB,∴DP=CD=2,∴PD的最小值为2,故选:A.2.解:∵∠ACB=90°,∠A=30°,∴∠ABC=60°,∵BE平分∠ABC,∴∠ABE=∠CBE=30°,∴∠A=∠ABE,∵ED⊥AB,∴AD=AB=2,∴DE=AD=,∵BE平分∠ABC,ED⊥AB,EC⊥BC,∴CE=DE=,故选:A.3.解:过O作OD⊥AC于D,OE⊥AB于E,∵AO平分∠CAB,OB平分∠ABC,∴OD=OE=OM,∵在Rt△ABC中,∠C=90°,AC=8,BC=6,AB=10,∴S△ABC=AC•BC=×AB•OE+AC•OD+BC•OM,∴=+•OM+,∴OM=2,故选:B.4.解:∵在△ABC中,∠B=45°,∠C=75°,∴∠BAC=180°﹣∠B﹣∠C=60°,过D作DF⊥AB于F,∵AD平分∠BAC,DE⊥AC,DE=2,∴DF=DE=2,∠AFD=∠BFD=90°,∠BAD=∠CAD=BAC=30°,∴AD=2DF=4,∵∠B=45°,∴∠FDB=∠B=45°,∴BF=DF=2,在Rt△AFD中,由勾股定理得:AF===2,∴AB=AF+BF=2+2,故选:D.5.解:过E作EP⊥BC于P,此时PE的值最小,∵AB∥CD,AD⊥AB,∴AD⊥CD,∵BE和CE分别平分∠ABC和∠BCD,∴AE=PE,ED=PE,∴AE=ED=PE,∵AD=8,∴PE=4,即PE的最小值是4,故选:C.6.解:连接AM,过M作ME⊥AB于E,MF⊥AC于F,∵MB和MC分别平分∠ABC和∠ACB,MD⊥BC,MD=4,∴ME=MD=4,MF=MD=4,∵△ABC的周长是16,∴AB+BC+AC=16,∴△ABC的面积S=S△AMC+S△BCM+S△ABM==×AC×4++=2(AC+BC+AB)=2×16=32,7.解:①角平分线上任意一点到角两边的距离相等,正确;②等腰三角形的底边上的高、中线以及顶角的角平分线互相重合,错误;③三角形三边中垂线的交点到三个顶点的距离相等,正确;④直角三角形有三条高线,错误;故选:B.8.解:∵AD恰为∠CAB的平分线,DC⊥AC,∴DC=D点到AB的距离,∵BC=1000m,BD=800m,∴DC=200m,∴D点到AB的最短距离=200m,故选:C.9.解:∵AD是△ABC中∠BAC的平分线,DE⊥AB于点E,DF⊥AC交AC于点F,∴DF=DE=4.又∵S△ABC=S△ABD+S△ACD,AB=8,∴28=×8×4+×AC×4,∴AC=6.故选:C.10.解:如图,∵CD:BD=3:4.设CD=3x,则BD=4x,∴BC=CD+BD=7x,∵BC=21,∴7x=21,∴CD=9,过点D作DE⊥AB于E,∵AD是∠BAC的平分线,∠C=90°,∴DE=CD=9,∴点D到AB边的距离是9,故选:B.11.解:作OE⊥AB于E,OF⊥AC于F,连接OA,∵O为∠ABC与∠ACB的平分线的交点,OD⊥BC,OE⊥AB,OF⊥AC,∴OE=OF=OD=2,∴△ABC的面积=△AOB的面积+△BOC的面积+△AOC的面积=×(AB+BC+AC)×OD=×10×2=10,故选:C.12.解:过D作DF⊥AB于F,∵AD平分∠CAB,∠C=90°(即AC⊥BC),∴DF=CD,设DF=CD=R,在Rt△ABC中,∠C=90°,AC=3,BC=4,由勾股定理得:AB==5,∴S△ABD===R,S△ACD===R,∴S△ABD:S△ACD=(R):(R)=5:3,故选:B.13.解:作PQ′⊥OM于Q′,∵∠MON=60°,OP平分∠MON,∴∠POQ′=30°,∴PQ′=OP=2,由垂线段最短可知,PQ的最小值是2,故选:B.14.解:∵∠BAC=90°,AB=3,AC=4,∴BC===5,∴BC边上的高=3×4÷5=,∵AD平分∠BAC,∴点D到AB、AC上的距离相等,设为h,则S△ABC=×3h+×4h=×5×,解得h=,S=×3×=BD•,△ABD解得BD=.故选:A.15.解:∵∠B=90°,∴DB⊥AB,又∵AD平分∠BAC,DE⊥AC,∴DE=BD=3,故选:A.16.解:过P点作PH⊥OB于H,如图,∵OP平分∠AOB,PD⊥OA,PH⊥OB于H,∴PH=PD=3,∵点E是射线OB上的一个动点,∴点E与H点重合时,PE有最小值,最小值为3.故选:A.17.解:作DE⊥AB于E,由基本尺规作图可知,AD是△ABC的角平分线,∵∠C=90°,∴DC⊥AC,∵DE⊥AB,DC⊥AC,∴DE=DC=5,∴△ABD的面积=×AB×DE=×12×5=30,故选:B.18.解:过P作PF⊥OM,PE⊥ON,∵OP平分∠MON,∴OE=OF,∠1=∠2,∵PQ∥OM,∴∠1=∠3,∴∠2=∠3=∠MON=15°,∴OQ=PQ,∠4=30°,∴PQ=2PE=4∵OQ=4,∴PE=PM=2.故选:A.19.解:∵CE平分∠ACB,∴∠ACE=∠BCE,∵∠ACB=90°,EF⊥BC,∴∠ACB=∠EFB=90°,∴∠ECF=∠CEF,∴CF=EF=4,∵∠B=30°,∴BE=2EF=8,BF=EF=4,∴BC=CF+BF=4+4,∵∠ACB=90°,∠B=30°,∴AB===,∴AE=AB﹣BE=,故选:B.20.解:作DE⊥OB于E,如图,∵OC是∠AOB的角平分线,DP⊥OA,DE⊥OB,∴DE=DP=4,∴S△ODQ=×3×4=6.故选:D.。
人教版数学八年级上册《角平分线的性质(1)》教学设计一. 教材分析人教版数学八年级上册《角平分线的性质(1)》这一节的内容主要包括角平分线的定义、性质及其在几何中的应用。
学生通过学习这一节内容,可以进一步了解角的平分线与角的大小、角的边长之间的关系,为后续学习三角形、多边形等几何知识打下基础。
二. 学情分析学生在学习这一节内容之前,已经学习了角的概念、垂线的性质等知识,具备了一定的几何基础。
但部分学生对角平分线的理解可能仍存在困难,因此在教学过程中需要加强对角平分线概念的讲解,并通过大量的实例让学生加深对角平分线的认识。
三. 教学目标1.了解角平分线的定义及其性质;2.学会运用角平分线解决一些简单的几何问题;3.培养学生的空间想象能力和逻辑思维能力。
四. 教学重难点1.角平分线的定义及其性质;2.角平分线在几何中的应用。
五. 教学方法1.采用讲解法,让学生理解角平分线的定义和性质;2.运用示例法,让学生通过观察、分析、归纳角平分线的性质;3.采用练习法,让学生在实践中运用角平分线解决几何问题;4.运用小组合作法,让学生在讨论中加深对角平分线性质的理解。
六. 教学准备1.准备相关的教学课件、图片、几何模型等;2.准备一些有关角平分线的练习题。
七. 教学过程1.导入(5分钟)通过复习角的概念、垂线的性质等知识,引导学生进入新课的学习。
2.呈现(10分钟)利用课件、图片等展示角平分线的定义和性质,让学生直观地了解角平分线。
3.操练(10分钟)让学生通过观察、分析、归纳角平分线的性质,并尝试解答一些有关角平分线的问题。
4.巩固(10分钟)让学生分组讨论,运用角平分线的性质解决一些几何问题,加深对角平分线性质的理解。
5.拓展(5分钟)引导学生思考:角平分线在实际生活中有哪些应用?让学生联系生活实际,拓宽思路。
6.小结(5分钟)对本节课的内容进行总结,强化学生对角平分线性质的记忆。
7.家庭作业(5分钟)布置一些有关角平分线的练习题,让学生课后巩固所学知识。
《角平分线》教学设计一、教学背景的分析1、教学内容分析《角平分线》选自鲁教版教材《数学》七年级下册第十章第五节.这一节课既是七年级上册《简单的轴对称图形》第二课时的延续,又是在七年级下册学习了《定义与命题》、《证明的必要性》、《基本事实与定理》以及三角形的有关证明一章中的《全等三角形》和《直角三角形》中的互逆命题、互逆定理、HL定理等基础上进行教学的,教材将这一节的内容分两课时进行,第一课时:探索并证明角平分线的性质定理及判定定理。
具体要求学生能准确地表述命题的条件和结论,能用规范的语言来表达证明过程;会用这两个定理解决简单的问题。
第二课时则是角平分线的性质定理和判定定理在三角形中的应用。
考虑到初二的学生在上学期对角平分线已经有了足够的认知,并且本章教材安排是想让学生进一步体会证明的必要性,发展推理能力,结合我们学校学生的特点,第一课时,来研究角平分线的性质和判定定理;第二课时研究角平分线性质定理和判定定理的应用。
这样的安排,通过类比探究线段的垂直平分线的性质定理和判定定理,是想将知识更完整和系统地展现给学生,为第二课时的应用打下牢固的基础。
本节课研究角平线的性质定理和判定定理。
2、教学对象分析初二的学生观察、操作、猜想能力较强,但归纳、运用数学意识的思想比较薄弱,思维的广阔性、敏捷性、灵活性比较欠缺,需要在课堂教学中进一步加强引导.根据学生的认知特点和接受水平,我把第一课时的教学任务定为:探究角平分线性质定理和判定定理的证明,同时为下节定理的灵活运用打好基础.3、教学重点、难点根据教材的内容及作用确定本节课的教学重点为:角的平分线的性质定理和判定定理的证明及应用.难点是:(1)对角平分线性质定理中点到角两边的距离的正确理解;(2)对于性质定理的运用(学生习惯找三角形全等的方法解决问题而不注重利用刚学过的定理来解决,结果相当于对定理的重复证明)(3)对逆定理中的角的内部的条件的准确理解。
教学难点突破方法:(1)利用多媒体动态显示角平分线性质的本质内容,在学生脑海中加深印象,从而对性质定理正确使用;(2)通过对比教学让学生选择简单的方法解决问题;(3)通过思维的引导启发学生,培养思维逻辑的严密性.二、教学目标根据《新课程》对本节课内容的要求,针对学生的一般性认知规律及学生个性品质发展的需要,确定教学目标如下:1、能证明角平分线的性质定理2、会用角平分线的性质定理解决简单的问题。
第5讲 角平分线的性质及判定综合作已知角的角平分线如图,作∠AOB 的平分线的步骤(1)以点O 为圆心,适当长为半径画弧,交OA 于点M ,交OB 于点N 。
(2)分别以点M 、N为圆心,大于21MN 为半径画弧,两弧在∠AOB 内部交于点C 。
(3)连射线OC ,射线OC 即为所求。
角平分线的性质:角的平分线上的点到角的两边距离相等。
符号语言:如图,已知OC 是∠AOB 的角平分线,点P 是OC 上一点,PD ⊥OA 于点D ,PE ⊥OB 于E ,则PD=PE 。
角的平分线的性质的推导:已知,如上右图,OC 是∠AOB 的角平分线,点P 是OC 上一点,PD ⊥OA 于点D ,PE ⊥OB 于E ,求证:PD=PE 。
证明:∵PD ⊥OA ,PE ⊥OB (已知) ∴∠ODP=∠OEP=900(垂直的定义) 又∵OC 平分∠AOB (已知)∴∠AOC=∠BOC (角的平分线定义) 在Rt △DOP 和Rt △EOP 中 ⎪⎩⎪⎨⎧=∠=∠∠=∠OP OP OEP ODP BOC AOC∴Rt △DOP ≌Rt △EOP (AAS )∴PD=PE (全等三角形的对应边相等)扩充:到三角形三边距离相等的点,是三条角平分线的交点。
练习:1.如图,在△ABC 中,∠C=90°,AD 是角平分线,DE ⊥AB 于E ,且BC=8cm ,BE=4cm ,则△BDE 的周长为________cm 。
2.在△ABC 中,∠C=90°,AM 平分∠CAB ,BM=6.2cm ,点M 到AB 的距离为2cm ,BC=_____3.在△ABC 中,∠C=90°,AD 平分∠BAC 交BC 于D ,若BC=32,且BD ∶CD=9∶7,则D 到AB 的距离为 .A BC DEOP(第1题) (第2题) (第3题) 【例1--1】如图,∠1=∠2,PD ⊥OA ,PE ⊥OB ,垂足分别为D ,E ,下列结论错误的是( ) A. PD =PEB. B.OD =OEC. ∠DPO =∠EPOD.PD =OD【例1--2】画图,如图是三条交叉公路,请你设计一个方案,要建一个购物中心,使它到三条公路的距离相等,这样的地址有几处?请你画出来。
(完整版)专题训练(五)角平分线的六种运用编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)专题训练(五)角平分线的六种运用)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整版)专题训练(五)角平分线的六种运用的全部内容。
(完整版)专题训练(五)角平分线的六种运用编辑整理:张嬗雒老师尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布到文库,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是我们任然希望(完整版)专题训练(五)角平分线的六种运用这篇文档能够给您的工作和学习带来便利。
同时我们也真诚的希望收到您的建议和反馈到下面的留言区,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请下载收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为〈(完整版)专题训练(五)角平分线的六种运用〉这篇文档的全部内容。
专题训练(五)角平分线的六种运用►运用一确定点的坐标和线段的长1.如图5-ZT-1所示,在平面直角坐标系中,AD是Rt△OAB的角平分线,点D到AB的距离DE=3,则点D的坐标是________.图5-ZT-12.如图5-ZT-2,在四边形ABCD中,∠A=90°,AD=4,连接BD,BD⊥CD,∠ADB=∠C.若P是BC边上一动点,则DP长的最小值为________.图5-ZT-2►运用二确定三角形的面积3.如图5-ZT-3,在△ABC中,∠A=90°,BD是角平分线.若AB=8,BC=10,S△ABD=错误!,求△BDC的面积.图5-ZT-34.如图5-ZT-4,D,E,F分别是△ABC三边上的点,AD平分∠BAC,CE=BF。
19.5角的平分线(1) 一、复习
1、角平分线的画法
2、角是图形
3、命题:在的角平分线上的点到这个角的两边的距离。
二、新课:
1、证明命题是正确的。
(画图,写已知求证,证明)
2、角平分线的性质定理:(1)文字语言:在的角平分线上的点到这个角的两边
的距离相等。
(2)图形语言
(3)符号语言:AOP BOP ∠=∠
且,PA OA PB OB ⊥⊥,垂足为A,B
PA PB ∴=(角平分线的性质定理)
(4)角平分线的性质定理的作用:证明线段相等。
3、逆命题:在一个角的内部(包括顶点),且到角的两边距离相等的点,在 这个角的平分线上。
4、证明逆命题是正确的。
(画图,写出已知求证,证明)
5、角平分线的判定定理:(1)文字语言:在一个角的内部(包括顶点),且到角的两边距离相等的点,在这个角的平分线上。
(2)图形语言:
(3)符号语言:,PA OA PB OB ⊥⊥ ,垂足为A,B
且PA PB =
AOP BOP ∴∠=∠(角平分线的判定定理)
(4)角平分线的性质定理的作用:(1)证明点在线上(2)证明角相等 6、角的平分线可以看做:在一个角的内部(包括顶点),且到角的两边距离相等
的点的集合。
7、注意:(1)点到直线的距离必须有垂直(2)可以省去证明三角形全等的过程,
直接使用。
三、例题
例题1:如图已知,点E 是AOB ∠的平分线上的一点,,EC OA ED OB ⊥⊥,垂
足分别是C,D,求证:ECD EDC ∠=∠
例题2:如图已知,ABC 中D 是BC 上一点, ,DE AB DF AC ⊥⊥,
垂足分别分别为E,F ,DEF DFE ∠=∠,求证:AD 平分BAC ∠
提示:(1)如果是外角平分线呢?
(2)三角形的三条角平分线交于一点,叫做三角形的内心。
内心一定
在三角形的内部。
例题3:已知如图设ABC 的角平分线BM,CN 交于点P ,求证:点P 在BAC
∠的角平分线上。
例题4:如图已知,OP 平分EOF ∠,,PA OE PB OF ⊥⊥,垂足分别是A,B,且
BD=AC,求证:PD=PC
B
例题5:如图已知,BN 平分ABC ∠,P 为BN 上一点,PD BC ⊥于点D ,
AB+BC=2BD,求证:0180BAP BCP ∠+∠=
例题6:如图已知,,//,AD CD CD AB AE BC ⊥⊥,且AC 是DAE ∠的平分 线,求证:AB=BC
三角形的四心:
外心:三边的垂直平分线的交点,可能在内部,外部,边上 内心:三条角平分线的交点,一定在内部 重心:三条中线的交点,一定在三角形内部
垂心:三条高或延长线的交点,可能在内部,外部,顶点
B。