8上华师大版数学练习题 作已知角的平分线
- 格式:ppt
- 大小:3.37 MB
- 文档页数:22
13.4尺规作图3. 作已知角的平分线·教学目标·1. 掌握尺规的基本作图:画角平分线;2.进一步学习解尺规作图题,会写已知、求作和作法,以及掌握准确的作图语言.·教学重难点·分析实际作图问题,运用尺规的基本作图,写出作图的主要画法.·教学过程 ·一、导入新课我们知道三角形中有三条重要线段,它们分别是:三角形的高,三角形的中线,三角形的角的平分线.值得注意的是三角形的角平分线是一条线段,而一个已知角的平分线是一条射线,这两个概念是有区别的.在以前我们是这样作出三角形的角平分线的:用量角器量出三角形的角的大小,量角器零度线与这个角的一边重合,这个角一半所对应的线就是这个角的角平分线.现在只有直尺和圆规,你能设计一个作角的平分线的操作方案吗?二、推进新课新知探究问题1:实验探索:已知∠AOB ,用直尺和圆规准确地画出已知∠AOB 的平分线.请各小组同学讨论、探索、交流、归纳出具体的作图方法.分析:讨论结果展示:作已知角的平分线的方法:已知:∠AOB .求作:∠AOB 的平分线.作法:(1)以O 为圆心,适当长为半径作弧,分别交OA 、OB 于M 、N .(2)分别以M 、N 为圆心,大于12MN 的长为半径作弧.两弧在∠AOB 内部交于点C . (3)作射线OC ,射线OC 即为所求.问题2: 在上面作法的第二步中,去掉“大于12MN 的长”这个条件行吗?所作的两弧交点一定在∠AOB 的内部吗? 分析:去掉“大于12MN 的长”这个条件,所作的两弧可能没有交点,所以就找不到角的平分线.若分别以M 、N 为圆心,大于12MN 的长为半径画两弧,两弧的交点可能在∠AOB•的内部,也可能在∠AOB 的外部,2 而我们要找的是∠AOB 内部的交点,•否则两弧交点与顶点连线得到的射线就不是∠AOB 的平分线了. 观察、概括作一个角的角平分线的理论依据是什么?【作一个角的角平分线的理论依据是全等判定方法中的“边边边”公理.】特别注意: 角的平分线是一条射线.它不是线段,也不是直线,•所以第二步中的两个限制缺一不可. 例题讲解:例 已知∠α与∠β,求作一个角,使它等于(∠α+∠β)的一半.分析:要完成这个作图,先作出等于(∠α+∠β)的角,再作平分线即可已知:求作:作法:课堂练习把一个角分成两部分,使这两部分的度数之比为1:3.分析:本题可在原角内作一个角等于原角的14,故将原角平分后再次平分即得. 答案:已知:如图,已知∠AOB.求作:射线OC,使∠AOC:∠COB=1:3作法:(1)作∠AOB 的平分线OP ;(2)作∠AOP 的平分线OC ;射线OC,将∠AOB 分成1:3的两部分.三、本课小结1. 三角形的角分线是一条线段,角的平分线是一条射线;2. 基本作图:用尺规作一个角的角平分线;3. 作一个角的角平分线的理论依据是全等判定方法中的“边边边”公理;4. 解决尺规作图问题,先作出符合条件的图形草图,再确定具体的作图方法. 百度文库是百度发布的供网友在线分享文档的平台。
2021秋华师大版八年级数学《尺规作图》专项练习一、选择题(每小题4分,共40分)1.只用无刻度直尺就能作出的是()A.延长线段AB至C,使BC=AB B.过直线L上一点A作L的垂线C.作已知角的平分线D.从点O再经过点P作射线OP 2.用尺规作图,不能作出唯一三角形的是()A.已知两角和夹边B.已知两边和其中一边的对角C.已知两边和夹角D.已知两角和其中一角的对边3.下列画图语言表述正确的是()A.延长线段AB至点C,使AB=AC B.画直线AB=5cmC.以点O为圆心,以AC长为半径画弧D.在射线OA上截取OB=a,BC=b,则有OC=a+b4.如图,在△ABC中,AB=AC,以点B为圆心,BC长为半径画弧,交AC 于点D,连接BD,则下列结论不一定成立的是()A.BC=BD B.∠BDC=∠ABCC.∠A=∠CBD D.AD=BD5.已知两角及其夹边作三角形,所用的基本作图方法是()A.作已知角的平分线B.作已知线段的垂直平分线C.过一点作已知直线的高D.作一个角等于已知角和作一条线段等于已知线段6.角平分线的作法(尺规作图)①以点O为圆心,任意长为半径画弧,交OA、OB于C、D两点;②分别以C、D为圆心,大于CD长为半径画弧,两弧交于点P;③过点P作射线OP,射线OP即为所求.角平分线的作法依据的是()A.SSS B.SAS C.AAS D.ASA7.如图,以A点为圆心,以任意长为半径作弧,分别与射线AM、AN交于B、C两点,连接BC;再分别以点B、C为圆心,以大于12BC的长为半径作弧,两弧相交于点D,连12接AD 、BD 、CD .则下列结论错误的是( ) A .AD 平分∠MAN B .DA 平分∠BDC C .BC 垂直平分AD D .AD 垂直平分BC 8.在△ABC 中,∠C =90°,按以下步骤作图:①以点A 为圆心、适当长为半径作圆弧,分别交边AC 、AB 于点M 、N ;②分别以点M 和点N 为圆心、大于MN 一半的长为半径作圆弧,在∠BAC 内,两弧交于点P ;③作射线AP交边BC 于点D ,若CD =4,AB =15,则△ABD 的面积是( ) A .15 B .30 C .45 D .60 9.△ABC 中,AB =AC ,∠ABC =72°,以B 为圆心,以任意长为半径画弧,分别交BA 、BC 于M 、N ,再分别以M 、N 为圆心,以大于12MN 为半径画弧,两弧交于点P ,射线BP 交AC 于点D ,则图中与BC 相等的线段有( ) A .BD B .CD C .BD 和AD D .CD 和AD10.已知线段a 、b 和c ,求作ABC ∆,使BC =a ,AC =b ,BC边上的中线AD =m ,作法合理的顺序依次为( ) ①延长CD 到B ,使BD =CD ; ②连接AB ;③作ADC ∆,使a DC 21=,b AC =,m AD =. A .③①②B .①②③C .②③①D .③②①二、填空题(每题4分,共24分)11.在尺规作图中,圆规的功能是________________________. 12.下列尺规作图,能判断AD 是△ABC 边上的高是 .13.如图,在△ABC 中,按以下步骤作图:①分别以B ,C 为圆心,以大于BC 的一半长为半径作弧, 两弧相交于两点M ,N ;②作直线MN 交AB 于 点D ,连结CD ,若AC =5,AB =11,则△ACD的周长为 .14.如图,已知钝角△ABC ,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧①;步骤2:以B为圆心,BA为半径画弧②,交弧①于点D;步骤3:连接AD,交BC延长线于点H.则下列结论正确的是:①BH垂直平分线段AD;②AC平分∠BAD;③S△ABC=BC•AH;④AB=BD15.如图,等边三角形ABC的边长是2,M是高CH所在直线上的一个动点,连接MB,将线段BM绕点B逆时针旋转60°得到BN,连接MN,则在点M运动过程中,线段MN长度的最小值是_____.16.如图,依据尺规作图的痕迹,计算∠α=_________.三、解答题(共86分)17.(8分)有A,B,C,D四个村庄,现要建一个水塔,则水塔应建在何处,才能使它到4个村庄的距离之和最小,说明理由.18.(8分)用直尺、圆规作图,不写作法,但要保留作图痕迹.已知:线段a,b,求作:线段AB,使AB=2b-a.19.(8分)如图,点B,C在∠SAF的两边上.且AB=AC.(1)请按下列语句用尺规画出图形(不写画法,保留作图痕迹).①AN⊥BC,垂足为N;②∠SBC的平分线交AN延长线于M;③连接CM.(2)该图中有对全等三角形.320.(8分)如图,公路AO与BO相交于点O,在OA上有一个停靠站C,在∠AOB 内有一个库房D,现请你找一观测点P,满足到C和D的距离相等,且到公路OA、OB的距离也相等.(要求:用尺规作图,保留作图痕迹,不写作法)是一块直角三角形余料21.(9分)如图,ABCACB,工人师傅要把它加工成一个正90方形零件,使C为正方形的一个顶点,其余三个顶点分别在AB、BC、AC边上.请你协助工人师傅用尺规画出裁割线(不写作法,保留作图痕迹);22.(9分)按下列要求作图并解答:如图,已知△ABC,(1)用圆规和直尺作出AB边的中线CD,并写出结论;(2)作出BC边上的高,垂足为点E,并写出结论;(3)若△ABC中,∠A=20°,∠B=40°,求∠CAE的度数.(写出说理过程)423.(10分)如图,在△ABC中,AB=AC,D是BA延长线上一点,点E是AC的中点.(1)实践与操作:利用尺规按下列要求作图,并在图中标明相应字母(保留作图痕迹,不写作法)①作∠DAC的平分线AM.②连接BE并延长交AM于点F.(2)猜想与证明:试猜想AF与BC有怎样的位置关系与数量关系,并说明理由.24.(13分)如图,∠AOB=45°,点M,N在边OA上,,点P是边OB上的点.(1)利用直尺和圆规在图1确定点P,使得PM=PN;(2)设OM=x,ON=x+4.①若x=0时,使P、M、N构成等腰三角形的点P有_______个;②若使P、M、N构成等腰三角形的点P恰好有三个,则x的值是__________.525.(13分)阅读下列材料,解决问题:学习了勾股定理后我们知道:直角三角形两条直角边的平方和等于斜边的平方.根据勾股定理我们定义:如图①,点M、N是线段AB上两点,如果线段AM、MN、NB能构成直角三角形,则称点M、N是线段AB的勾股点解决问题(1)在图①中,如果AM=2,MN=3,则NB=(2)如图②,已知点C是线段AB上一定点(AC<BC),在线段AB上求作一点D,使得C、D是线段AB的勾股点.某同学是这样做的:过点C作直线GH⊥AB,在GH上截取CE=AC,连接BE,作BE的垂直平分线交AB于点D,则C、D是线段AB的勾股点。
华东师大版八年级数学上册《作已知角的平分线》评课稿一、引言《作已知角的平分线》是华东师大版八年级数学上册的一节课,主要教授学生如何作一条已知角的平分线。
这节课的目标是让学生能够掌握作已知角的平分线的方法,并应用于实际问题中。
本评课稿将对这节课的教学内容、教学方法以及教学评价进行详细分析。
二、教学内容本节课的教学内容主要包括以下三个方面:1.已知角的概念介绍通过示意图和实例,引导学生理解什么是已知角,并与学生共同总结已知角的定义和性质。
此部分的重点是让学生对已知角有一个清晰的认识,为后续的学习打下基础。
2.作已知角的平分线的基本方法针对不同类型的已知角,通过具体的演示和解题实例,教授不同的作平分线的方法。
这些方法可以包括使用直尺、量角器等工具,或者通过几何推理进行求解。
通过实例演示和练习,加深学生对于作已知角平分线方法的理解和掌握。
3.综合运用通过综合性的问题,让学生将所学的知识应用到实际情境中,培养学生的综合运用能力。
例如,可以设计一些关于建筑设计、地图导航等方面的问题,让学生通过作已知角的平分线方法求解。
三、教学方法针对本节课的教学内容和学生的学情特点,可以采用以下教学方法:1.示范演示法通过教师的示范演示,让学生直观地感受到作已知角平分线的过程和方法。
教师可以利用黑板和标注工具进行演示,并与学生一同讨论解题思路和方法。
2.合作学习法将学生分为小组,让他们在小组内互相合作、交流、讨论。
每个小组可以设计一些练习题目,通过小组合作的方式提高学生的解题能力和团队合作意识。
3.巩固练习在课堂结束前,设置一些巩固练习题,让学生进行个人练习。
教师可以在课后对这些练习题进行批改、讲解,并对学生的解题情况进行评价。
四、教学评价对于本节课的教学效果,可以从以下几个方面进行评价:1.学生的学习情况观察学生在课堂上的参与度、反应速度和解题能力,对学生的学习情况进行评价。
可以通过课堂讨论和练习题的完成情况来评估学生的学习效果。
华东师大版八年级上册数学教学设计《作已知角的平分线、经过一已知点作已知直线的垂线、作已知线段的垂直平分线》一. 教材分析华东师大版八年级上册数学教材在引入角的平分线、直线的垂线和线段的垂直平分线概念后,本节课通过具体例题和练习,使学生掌握如何作已知角的平分线、经过一已知点作已知直线的垂线、作已知线段的垂直平分线。
教材通过实际操作和几何证明,使学生理解这些几何图形的性质和作图方法,培养学生的几何思维和动手能力。
二. 学情分析学生在学习本节课之前,已经掌握了角的分类、直线的性质等基础知识,具备一定的几何思维和动手能力。
但部分学生对几何证明的过程和逻辑推理能力仍需提高,因此,在教学过程中,需要关注这部分学生的学习情况,引导他们积极参与课堂讨论和练习。
三. 教学目标1.知识与技能:使学生掌握如何作已知角的平分线、经过一已知点作已知直线的垂线、作已知线段的垂直平分线;2.过程与方法:通过实际操作和几何证明,培养学生运用几何知识解决实际问题的能力;3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队协作和自主学习能力。
四. 教学重难点1.重点:已知角的平分线、经过一已知点作已知直线的垂线、作已知线段的垂直平分线的作图方法;2.难点:几何证明过程中逻辑推理能力的培养。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究和发现规律;2.利用几何模型和实物模型,直观展示作图过程,增强学生的空间想象力;3.通过小组讨论和合作交流,培养学生的团队协作能力;4.结合几何证明,锻炼学生的逻辑推理能力。
六. 教学准备1.准备相关的几何模型和实物模型;2.设计好课堂练习和拓展题目;3.准备好黑板和投影仪。
七. 教学过程1.导入(5分钟)通过一个简单的实例,引导学生思考如何作一个角的平分线。
例如,拿出一把剪刀,让学生观察剪刀的两个剪刃,引导学生发现剪刀的两个剪刃分别是两个角的平分线。
2.呈现(10分钟)利用几何模型和实物模型,展示如何作一个角的平分线。
华师大版数学八年级上册《角平分线》教案一、教学内容本节课选自华师大版数学八年级上册第七章第二节《角平分线》。
内容包括:角平分线的定义、性质及判定,教材第7.2节。
二、教学目标1. 知识目标:理解角平分线的概念,掌握角平分线的性质和判定方法。
2. 技能目标:能运用角平分线性质解决相关问题,提高逻辑思维能力和解题技巧。
3. 情感目标:培养学生对数学的兴趣和探索精神,增强团队合作意识。
三、教学难点与重点1. 教学难点:角平分线性质的证明和应用。
2. 教学重点:角平分线的定义和性质。
四、教具与学具准备1. 教具:三角板、量角器、直尺、圆规。
2. 学具:三角板、量角器、直尺、圆规。
五、教学过程1. 实践情景引入通过展示实际生活中角平分线的应用,如剪纸、拼接图形等,引导学生思考角平分线的意义。
2. 知识讲解(1)角平分线的定义:从角的顶点出发,将角分成两个相等的角的线段。
(2)角平分线的性质:角的平分线上的点到角的两边的距离相等。
(3)角平分线的判定:如果一个点在角平分线上,那么它到角的两边的距离相等。
3. 例题讲解例1:求证:角的平分线上的点到角的两边的距离相等。
例2:已知∠ABC=80°,点D在∠ABC的平分线上,求∠ABD和∠CBD的度数。
4. 随堂练习练习1:已知∠A=100°,求∠A的平分线上的点B到∠A的两边的距离。
练习2:判断点P是否在∠ABC的平分线上。
六、板书设计1. 定义:角的平分线2. 性质:角的平分线上的点到角的两边的距离相等3. 判定:点到角的两边的距离相等,则该点在角的平分线上七、作业设计1. 作业题目:(1)求证:角的平分线上的点到角的两边的距离相等。
(2)已知∠A=120°,求∠A的平分线上的点B到∠A的两边的距离。
2. 答案:(1)证明:略(2)答案:距离相等,均为∠A的一半,即60°。
八、课后反思及拓展延伸1. 反思:通过本节课的教学,发现学生对角平分线的性质和判定方法掌握较好,但在应用方面还有待提高。
13.4.1作一条线段等于已知线段一.选择题1.下列属于尺规作图的是()A.用量角器画∠AOB的平分线OPB.利用两块三角板画15°的角C.用刻度尺测量后画线段AB=10cmD.在射线OP上截取OA=AB=BC=a答案:D解答:根据尺规作图的定义可得:在射线OP上截取OA=AB=BC=a,属于尺规作图,故选:D.分析:根据尺规作图的定义:是指用没有刻度的直尺和圆规作图可直接选出答案.2.用一把带有刻度的直角尺,①可以画出两条平行线;②可以画出一个角的平分线;③可以确定一个圆的圆心.以上三个判断中正确的个数是()A.0个 B.1个 C.2个 D.3个答案:D解答:(1)任意画出一条直线,在直线的同旁作出两条垂线段,并且这两条垂线段相等.过这两条垂线段的另一端点画直线,与已知直线平行,正确;(2)可先在这个角的两边量出相等的两条线段长,过这两条线段的端点向角的内部应垂线,过角的顶点和两垂线的交点的射线就是角的平分线,正确;(3)可让直角顶点放在圆上,先得到直径,进而找到直径的中点就是圆心,正确.故选:D.分析:根据基本作图的方法,逐项分析,从而得出正确个数.3.下列关于作图的语句中正确的是()A.画直线AB=10厘米B.画射线OB=10厘米C.已知A,B,C三点,过这三点画一条直线D.过直线AB外一点画一条直线和直线AB平行答案:D解答:A.直线没有长度,故A选项错误;B.射线没有长度,故B选项错误;C.三点有可能在一条直线上,可画出一条直线,也可能不在一条直线上,此时可画出三条直线,故选项错误;D.正确.故选:D.分析:根据基本作图的方法,逐项分析,从而得出正确的结论.4.下列作图语句错误的是()A.过直线外的一点画已知直线的平行线B.过直线上的一点画已知直线的垂线C.过∠AOB内的一点画∠AOB的平分线D.过直线外一点画此直线的两条斜线,一条垂线答案:C解答:A.过直线外的一点画已知直线的平行线,此说法正确,故本选项错误;B.过直线上的一点画已知直线的垂线,此说法正确,故本选项错误;C.过∠AOB内的一点画∠AOB的平分线,此说法不正确,故本选项正确;D.过直线外一点画此直线的两条斜线,一条垂线,此说法正确,故本选项错误;故选C.分析:根据平行线的作法.垂线的作法.角平分线的作法进行选择即可.5.按下列条件画三角形,能唯一确定三角形形状和大小的是()A.三角形的一个内角为60°,一条边长为3cmB.三角形的两个内角为30°和70°C.三角形的两条边长分别为3cm和5cmD.三角形的三条边长分别为4cm、5cm和8cm答案:D解答:A.三角形的一个内角为60°,一条边长为3cm,既不能唯一确定三角形形状和也不能唯一确定大小,不符合题意;B.三角形的两个内角为30°和70°,能唯一确定三角形形状和但不能唯一确定大小,不符合题意;C.三角形的两条边长分别为3cm和5cm,既不能唯一确定三角形形状和也不能唯一确定大小,不符合题意;D.三角形的三条边长分别为4cm、5cm和8cm,能唯一确定三角形形状和大小,符合题意.故选D.分析:根据基本作图的方法,及唯一确定三角形形状和大小的条件可知.6.下列作图语句中,不准确的是()A.过点A、B作直线ABB.以O为圆心作弧C.在射线AM上截取AB=aD.延长线段AB到D,使DB=AB答案:B解答:A.根据直线的性质公理:两点确定一条直线,可知该选项正确;B.画弧既需要圆心,还需要半径,缺少半径长,故该选项错误;C.射线有一个端点,可以其端点截取任意线段,故选项正确;D.线段有具体的长度,可延长,正确;故选B.分析:根据基本作图的方法,逐项分析,从而得出正确的结论.7.尺规作图是指()A.用量角器和刻度尺作图B.用圆规和有刻度的直尺作图C.用圆规和无刻度的直尺作图D.用量角器和无刻度的直尺作图答案:C解答:尺规作图所用的作图工具是指不带刻度的直尺和圆规.故选:C.分析:根据尺规作图的定义:尺是不带刻度的直尺,规是圆规进而得出答案.8.下列画图语句中正确的是()A.画射线OP=5cm B.画射线OA的反向延长线C.画出A、B两点的中点 D.画出A、B两点的距离答案:B解答:A.画射线OP=5cm,错误,射线没有长度,B.画射线OA的反向延长线,正确.C.画出A、B两点的中点,错误,中点是线段的不是两点的,D.画出A、B两点的距离,错误,画出的是线段不是距离.故选:B.分析:利用射线的定义,线段中点及距离的定义判定即可.9.尺规作图的画图工具是()A.刻度尺、量角器 B.三角板、量角器C.直尺、量角器 D.没有刻度的直尺和圆规答案:D解答:尺规作图的画图工具是没有刻度的直尺和圆规.故选D.分析:根据尺规作图的定义可知.10.下列属于尺规作图的是()A.用刻度尺和圆规作△ABCB.用量角器画一个300的角C.用圆规画半径2cm的圆D.作一条线段等于已知线段答案:D解答:A.用刻度尺和圆规作△ABC,而尺规作图中的直尺是没有长度的,错误;B.量角器不在尺规作图的工具里,错误;C.画半径2cm的圆,需要知道长度,而尺规作图中的直尺是没有长度的,错误;D.正确.故选:D.分析:根据尺规作图的定义分别分析得出即可.11.下列作图语句正确的是()A.以点O为顶点作∠AOBB.延长线段AB到C,使AC=BCC.作∠AOB,使∠AOB=∠αD.以A为圆心作弧答案:C解答:A.画角既需要顶点,还需要角度的大小,错误;B.延长线段AB到C,则AC>BC,即AC=BC不可能,错误;C.作一个角等于已知角是常见的尺规作图,正确;D.画弧既需要圆心,还需要半径,缺少半径长,错误.故选C.分析:根据画角的条件判断A;根据线段延长线的等腰判断B;根据基本作图判断C;根据确定弧的条件判断D.12..已知三边作三角形,用到的基本作图是()A.作一个角等于已知角B.作已知直线的垂线C.作一条线段等于已知线段D.作一条线段等于已知线段的和答案:C解答:根据三边作三角形用到的基本作图是:作一条线段等于已知线段.故选C.分析:根据三边作三角形用到的基本作图是:作一条线段等于已知线段.13.如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是()A.同位角相等,两直线平行B.内错角相等,两直线平行C..两直线平行,同位角相等D.两直线平行,内错角相等答案:A解答:如图:∵∠DPF=∠BAF,∴AB∥PD(同位角相等,两直线平行).故选:A.分析:由已知可知∠DPF=∠BAF,从而得出同位角相等,两直线平行.14.以下作图,用一对三角尺不能办到的是()A.画一个45°的角,再把它三等分B.画一个15°的角,再把它三等分C..画一个周角,再把它三等分D.画一个平角,再把它三等分答案:C解答:A.画一个45°角,把它三等分,每一份都是15°,一副三角板可以画出15°角,可以用一副三角板办到,故此选项不合题意;B.画一个15°角,把它三等分,每一份都是5°,一副三角板不能画出5°角,不能用一副三角板办到,故此选项不符合题意;C.画一个周角,把它三等分,每一份都是120°,一副三角板可以画出120°角,可以用一副三角板办到,故此选项不合题意;D.画一个平角,把它三等分,每一份都是60°,一副三角板可以画出60°角,可以用一副三角板办到,故此选项不合题意;故选:B.分析:一幅三角板有以下几个角度:90°,60°,45°,30°;只要其中的两个角相加或者相减后能得出的角都可以用一副三角板拼出.15.下列作图属于尺规作图的是()A.画线段MN=3cmB.用量角器画出∠AOB的平分线C.用三角尺作过点A垂直于直线L的直线D.作一条线段等于已知线段答案:D解答:A.画线段MN=3cm,需要知道长度,而尺规作图中的直尺是没有长度的,错误;B.用量角器画出∠AOB的平分线,量角器不在尺规作图的工具里,错误;C.用三角尺作过点A垂直于直线L的直线,三角尺也不在作图工具里,错误;D.正确.故选D.分析:根据尺规作图的定义可知.二.填空题16.所谓尺规作图中的尺规是指:.答案:没有刻度的直尺和圆规解答:由尺规作图的概念可知:尺规作图中的尺规指的是没有刻度的直尺和圆规.分析:本题考的是尺规作图的基本概念.17.作图题的书写步骤是、、,而且要画出和,保留.答案:已知|求作|作法|图形|结论|作图痕迹解答:作图题的书写步骤是已知.求作.作法,而且要画出图形和结论,保留作图痕迹.故答案为:已知.求作.作法,图形,结论,作图痕迹.分析:根据作图题的书写步骤和尺规作图的要求作答.18.已知一条线段作等边三角形,使其边长等于已知线段,则作图的依据是.答案: SSS解答:等边三角形三边相等,依题意得使其边长等于已知线段,则按全等三角形的判定定理(SSS)可得作图.分析:等边三角形三边相等,按全等三角形的判定定理(SSS)即可作图.19.用尺规作一个直角三角形,使其两直角边分别等于已知线段,则作图的依据是.答案: SAS解答:用尺规做直角三角形,已知两直角边.可以先画出两条已知线段和确定一个直角,作图的依据为SAS.分析:隐含的条件是直角,是两直角边的夹角,即可得出作图的依据为SAS.20.如图,使用直尺作图,看图填空:延长线段到,使BC=2AB.答案:AB| C解答:延长线段AB到C,使BC=2AB.分析:延长线段AB到C,使BC=2AB.三.解答题21.已知:线段a,画出一条线段,使它等于2a.答案:解答:首先作射线,然后截取AB=BC=a,则AC=2a,即AC就是所求的线段.分析:利用直尺和圆规作一条线段等于已知线段,即可求解.22.作图:已知线段a.b,画一条线段使它等于2a+b(要求:用尺规作图,并写出已知.求作.结论,保留作图痕迹,不写作法)答案:解答:已知:线段a.b,求作:线段AC,使线段AC=2a+b.结论:AC即为所求.分析:可先画出一条线段等于2a,然后再在这条线段延长线上上截去b,即为所求线段.23.用直尺.圆规作图,不写作法,但要保留作图痕迹.已知:线段a,b求作:线段AB,使AB=a+b答案:解答:如图:线段AB就是所求的线段.分析:首先作射线,然后截取线段AC=a,CB=b,则AB即为所求.24.作图题(利用直尺与圆规画图,不写作法,保留作图痕迹):如图,已知线段a.b,作一条线段,使它等于a-2b.答案:解答:如图,BD就是所求的线段.分析:画线段AB=a,AC=b,CD=b,线段BD就是所求线段.25.已知三条线段a.b.c,用尺规作出△ABC,使BC=a,AC=b,AB=c.(不写作法,保留作图痕迹)答案:解答:如图所示:分析:作线段BC=a,以点B为圆心,c为半径画弧,再以点C为圆心,b为半径画弧两弧的交点就是点A的位置,连接AB,AC即可.。