2016年秋八年级数学上册 13.4 作已知角的平分线(第2课时)(新版)华东师大版
- 格式:ppt
- 大小:6.16 MB
- 文档页数:6
华东师大版八年级上册数学教学设计《13.4尺规作图(2)》一. 教材分析华东师大版八年级上册数学《13.4尺规作图(2)》这一节,是在学生已经掌握了尺规作图的基本方法和思想之后进行的一节课程。
在本节课中,学生需要进一步学习如何利用尺规作图来解决一些实际问题,如作一条线段等于已知线段,作一个角等于已知角等。
本节课的内容在数学几何学习中占有重要的地位,不仅可以帮助学生巩固尺规作图的基本技能,还可以培养学生的逻辑思维能力和空间想象能力。
二. 学情分析学生在学习本节课之前,已经掌握了尺规作图的基本方法和步骤,对尺规作图有一定的了解和认识。
但是,学生在实际操作中,可能对一些细节问题把握不好,如作图的精确度、作图过程中的注意事项等。
此外,学生在解决实际问题时,可能缺乏思路和方法,需要老师在教学中进行引导和启发。
三. 教学目标1.知识与技能目标:使学生掌握尺规作图的基本方法和步骤,能够独立完成尺规作图的任务。
2.过程与方法目标:通过尺规作图的实际操作,培养学生的逻辑思维能力和空间想象能力。
3.情感态度与价值观目标:让学生体验数学学习的乐趣,增强学生学习数学的自信心和积极性。
四. 教学重难点1.教学重点:尺规作图的基本方法和步骤。
2.教学难点:如何利用尺规作图解决实际问题。
五. 教学方法采用问题驱动法、启发式教学法和小组合作学习法。
通过提出问题,引导学生思考和探索,激发学生的学习兴趣和积极性。
同时,通过小组合作学习,培养学生的团队协作能力和沟通能力。
六. 教学准备1.教具准备:尺规作图的工具,如直尺、圆规等。
2.教学素材:一些关于尺规作图的实际问题,用于引导学生进行思考和操作。
七. 教学过程1.导入(5分钟)教师通过提出一个问题,如“如何用尺规作图作出一条线段等于已知线段?”来引导学生进入本节课的学习主题。
2.呈现(10分钟)教师通过讲解和示范,向学生讲解尺规作图的基本方法和步骤,如如何用尺规作图作出一条线段等于已知线段,如何用尺规作图作出一个角等于已知角等。
作已知角的平分线-华东师大版八年级数学上册教案知识点概述在初中数学中,作已知角的平分线是一个比较重要的几何知识点。
它是指在平面内,已知一个角,要求作出过这个角的平分线的过程。
这个知识点不仅在初中数学中会出现,它在高中数学、大学数学以及各种考试中均会涉及。
因此,掌握作已知角的平分线是越早越好的。
本文旨在介绍如何作出已知角的平分线,让读者能够对这个知识点有一个更加深入的了解,并在需要时能够灵活运用。
知识点详解概念作已知角的平分线,是指在平面内,已知一个角ABC,要求作出一个通过角ABC的平分线CD的过程。
需要的工具作已知角的平分线需要用到的工具有:直尺、圆规、角度量器。
步骤作已知角的平分线的步骤如下:1.用直尺画出线段AB,表示已知角ABC;2.以点A为圆心,以AB为半径画一个圆弧,将角ABC所在直线与圆弧交点标记为点D;3.以点B为圆心,以AB为半径画一个圆弧,将角ABC所在直线与圆弧交点标记为点E;4.以点D和E为圆心,以DE为半径画一个圆弧,它与角ABC所在直线交于点F;5.连接点F和角ABC的顶点C,线段CF就是角ABC的平分线。
示例作已知角的平分线示例图注意事项在作已知角的平分线时,需要注意以下事项:1.用直尺时要保持水平或垂直,否则很容易出现误差;2.用圆规作圆弧时,要拿稳,否则圆弧会不规则;3.画圆弧时,在角ABC所在直线的两侧都要画,这样才能确保两个圆弧交于同一直线;4.连接点F和角ABC的顶点C时,要保证直线CF与线段AB的交点为角ABC。
总结作已知角的平分线是初中数学中比较常见的几何知识点,它需要用到直尺、圆规和角度量器。
它的步骤是:先在已知角的两侧画圆弧,再求出圆弧的交点,并连接这个交点和已知角的顶点的连线,这条连线就是已知角的平分线。
掌握作已知角的平分线是很有用的,它不仅在初中数学中会用到,在高中数学、大学数学以及各种考试中也会有用到。
华师大版数学八年级上册第十三章第四节13.4.2作一个角等于已知角课时练习一、单选题(共15题)1.作一个角等于已知角用到下面选项的哪个基本事实()A.SSS B.SAS C.ASA D.AAS答案:A解析:解答:作“一个角等于已知角”用到了全等三角形的判定方法是:边边边选A分析: 根据作一个角等于已知角可直接得到答案2.用直尺和圆规作一个角等于已知角,如图,能得出的依据是()A.边边边 B.边角边 C.角边角 D.角角边答案:A解析:解答:作图的步骤:①以O为圆心,任意长为半径画弧,分别交OA、OB于点C、D;②作射线O′B′,以O′为圆心,OC长为半径画弧,交O′B′于点C′;③以C′为圆心,CD长为半径画弧,交前弧于点D′;④过点D′作射线O′A′.所以∠A′O′B′就是与∠AOB相等的角.在△O′C′D′与△OCD中,O′C′=OCO′D′=ODC′D′=CD∴△O′C′D′≌△OCD(SSS),∴∠A′O′B′=∠AOB,显然运用的判定方法是边边边选:A.分析:通过分析作图的步骤,发现△OCD与△O′C′D′的三条边分别对应相等,于是利用边边边,判定△OCD≌△O′C′D′,根据全等三角形对应角相等得出∠A′O′B′=∠AOB.3.用尺规作图,已知三边作三角形,用到的基本作图是()A.作一个角等于已知角B.作已知直线的垂线C.作一条线段等于已知线段D.作角的平分线答案:C解析:解答: 根据三边作三角形用到的基本作图是:作一条线段等于已知线段.故选C选C.分析: 根据三边作三角形用到的基本作图是:作一条线段等于已知线段4.下列属于尺规作图的是()A.用刻度尺和圆规作△ABCB.用量角器画一个300的角C.用圆规画半径2cm的圆D.作一条线段等于已知线段答案:D解析:解答: A.用刻度尺和圆规作△ABC,而尺规作图中的直尺是没有长度的,错误;B.量角器不在尺规作图的工具里,错误;C.画半径2cm的圆,需要知道长度,而尺规作图中的直尺是没有长度的,错误;D.正确.选D.分析: 根据尺规作图的定义分别分析5.已知两角及其夹边作三角形,所用的基本作图方法是()A.平分已知角B.作已知直线的垂线C.作一个角等于已知角及作一条线段等于已知线段D.作已知直线的平行线答案:C解析:解答: 已知两角及其夹边作三角形,可先作一条线段等于已知线段,再在线段的两个端点分别作两个角等于已知角,故所用的基本作图方法是作一个角等于已知角及作一条线段等于已知线段选C.分析:看利用ASA是怎么作三角形的6.在学习“用直尺和圆规作一个角等于已知角”时,教科书介绍如图:对于“想一想”中的问题,下列回答正确的是()A.根据“边边边”可知,△C′O′D′≌△COD,所以∠A′O′B′=∠AOBB.根据“边角边”可知,△C′O′D′≌△COD,所以∠A′O′B′=∠AOBC.根据“角边角”可知,△C′O′D′≌△COD,所以∠A′O′B′=∠AOBD.根据“角角边”可知,△C′O′D′≌△COD,所以∠A′O′B′=∠AOB答案:A解析:解答: 由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依据SSS可判定△COD≌△C'O'D' 选A.分析: 根据圆的半径相等可得出两个三角形的边长相同,由SSS可得到三角形全等7.下列作图语句正确的是()A.以点O为顶点作∠AOBB.延长线段AB到C,使AC=BCC.作∠AOB,使∠AOB=∠αD.以A为圆心作弧答案:C解析:解答:A.画角既需要顶点,还需要角度的大小,错误;B.延长线段AB到C,则AC>BC,即AC=BC不可能,错误;C.作一个角等于已知角是常见的尺规作图,正确;D.画弧既需要圆心,还需要半径,缺少半径长,错误选:C.分析: 根据画角的条件判断A;根据线段延长线的等腰判断B;根据基本作图判断C;根据确定弧的条件判断D8.下列画图语句中,正确的是()A.画射线OP=3cm B.连接A,B两点C.画出A,B两点的中点 D.画出A,B两点的距离答案:B解析:解答: A.射线没有长度,错误;B.连接A,B两点是作出线段AB,正确;C.画出A,B两点的线段,量出中点,错误;D.量出A,B两点的距离,错误选B.分析: 根据基本作图的方法,逐项分析,从而得出正确的结论9.下列属于尺规作图的是()A.用刻度尺和圆规作△ABCB.用量角器画一个30°的角C.用圆规画半径2cm的圆D.作一条线段等于已知线段答案:D解析:解答: A.用刻度尺和圆规作△ABC,而尺规作图中的直尺是没有长度的,错误;B.量角器不在尺规作图的工具里,错误;C.画半径2cm的圆,需要知道长度,而尺规作图中的直尺是没有长度的,错误;D.正确选:D.分析: 根据尺规作图的定义分别分析10.下列画图语句中正确的是()A.画射线OP=5cm B.画射线OA的反向延长线C.画出A、B两点的中点 D.画出A、B两点的距离答案:B解析:解答: A.画射线OP=5cm,错误,射线没有长度,B.画射线OA的反向延长线,正确.C.画出A、B两点的中点,错误,中点是线段的不是两点的,D.画出A、B两点的距离,错误,画出的是线段不是距离选:B.分析:利用射线的定义,线段中点及距离的定义判定11.下列关于几何画图的语句正确的是()A.延长射线AB到点C,使BC=2ABB.点P在线段AB上,点Q在直线AB的反向延长线上C.将射线OA绕点O旋转180°,终边OB与始边OA的夹角为一个平角D.已知线段a,b满足2a>b>0,在同一直线上作线段AB=2a,BC=b,那么线段AC=2a-b答案:C解析:解答: A.延长射线AB到点C,使BC=2AB,说法错误,不能延长射线;B.点P在线段AB上,点Q在直线AB的反向延长线上,说法错误,直线本身是向两方无限延长的,不能说延长直线;C.将射线OA绕点O旋转180°,终边OB与始边OA的夹角为一个平角,说法正确;D.已知线段a,b满足2a>b>0,在同一直线上作线段AB=2a,BC=b,那么线段AC=2a-b,说法错误,AC也可能为2a+b选:C.分析: 根据射线、直线、以及角的定义可判断出正确答案12.尺规作图是指()A.用量角器和刻度尺作图B.用圆规和有刻度的直尺作图C.用圆规和无刻度的直尺作图D.用量角器和无刻度的直尺作图答案:C解析:解答: 尺规作图所用的作图工具是指不带刻度的直尺和圆规选:C.分析: 根据尺规作图的定义:尺是不带刻度的直尺,规是圆规进而得出答案13.下列有关作图的叙述中,正确的是()A.延长直线ABB.延长射线OMC.延长线段AB到C,使BC=ABD.画直线AB=3cm答案:C解析:解答: A.直线本身是向两方无限延伸的,故不能延长直线AB,故此选项错误;B.射线本身是向一方无限延伸的,不能延长射线OM,可以反向延长,故此选项错误;C.延长线段AB到C,使BC=AB,说法正确,故此选项正确;D.直线本身是向两方无限延伸的,故此选项错误;选:C分析:根据直线、射线和线段的特点分别进行分析14.下列作图语句中,不准确的是()A.过点A、B作直线ABB.以O为圆心作弧C.在射线AM上截取AB=aD.延长线段AB到D,使DB=AB答案:B解析:解答:A.根据直线的性质公理:两点确定一条直线,可知该选项正确;B.画弧既需要圆心,还需要半径,缺少半径长,故该选项错误;C.射线有一个端点,可以其端点截取任意线段,故选项正确;D.线段有具体的长度,可延长,正确选:B.分析: 根据基本作图的方法,逐项分析,从而得出正确的结论15.按下列条件画三角形,能唯一确定三角形形状和大小的是()A.三角形的一个内角为60°,一条边长为3cmB.三角形的两个内角为30°和70°C.三角形的两条边长分别为3cm和5cmD.三角形的三条边长分别为4cm、5cm和8cm答案:D解析:解答:A.三角形的一个内角为60°,一条边长为3cm,既不能唯一确定三角形形状和也不能唯一确定大小,不符合题意;B.三角形的两个内角为30°和70°,能唯一确定三角形形状和但不能唯一确定大小,不符合题意;C.三角形的两条边长分别为3cm和5cm,既不能唯一确定三角形形状和也不能唯一确定大小,不符合题意;D.三角形的三条边长分别为4cm、5cm和8cm,能唯一确定三角形形状和大小,符合题意选:D.分析: 根据基本作图的方法,及唯一确定三角形形状和大小的条件可知二、填空题(共5题)16.尺规作图“作一个角等于已知角“的依据是三角形全等的判定方法___答案: SSS解析:解答: 在尺规作图中,作一个角等于已知角是通过构建三边对应相等的全等三角形来证,因此由作法知其判定依据是SSS,即边边边公理分析: 通过对尺规作图过程的探究,找出三条对应相等的线段,判断三角形全等.因此判定三角形全等的依据是边边边公理17.用直尺和圆规作一个角等于已知角的示意图如图所示,则说明△DOC≌△D'O'C'的依据是__________.答案:SSS解析:解答: OC=O′C′,OD=O′D′,CD=C′D′,从而可以利用SSS判定其全等分析: 1.以O为圆心,任意长为半径用圆规画弧,分别交OA、OB于点C、D;2.任意画一点O′,画射线O'A',以O'为圆心,OC长为半径画弧C'E,交O'A'于点C';3.以C'为圆心,CD长为半径画弧,交弧C'E于点D';4.过点D'画射线O'B',∠A'O'B'就是与∠AOB相等的角.则通过作图我们可以得到OC=O′C′,OD=O′D′,CD=C′D′,从而可以利用SSS判定其全等18.已知,∠AOB.求作:∠A′O′B′,使∠A′O′B′=∠AOB.作法:(1)以_________为圆心,_________为半径画弧.分别交OA,OB于点C,D.(2)画一条射线O′A′,以_________为圆心,_________长为半径画弧,交O′A′于点C′,(3)以点_________为圆心_________长为半径画弧,与第2步中所画的弧交于点D′.(4)过点_________画射线O′B′,则∠A′O′B′=∠AOB.答案::O | 任意长 |O′|OC | C | CD |D′解析:解答: 已知,∠AOB.求作:∠A′O′B′,使∠A′O′B′=∠AOB.作法:(1)以O为圆心,任意长为半径画弧.分别交OA,OB于点C,D.(2)画一条射线O′A′,以O′为圆心,OC长为半径画弧,交O′A′于点C′,(3)以点C为圆心,CD长为半径画弧,与第2步中所画的弧交于点D′.(4)过点D′画射线O′B′′,则∠AO′B′=∠AOB分析: 利用作一个角等于已知角的基本方法19.所谓尺规作图中的尺规是指:________.答案:没有刻度的直尺和圆规解析:解答:由尺规作图的概念可知:尺规作图中的尺规指的是没有刻度的直尺和圆规分析: 本题考的是尺规作图的基本概念20.用直尺和圆规画一个角等于已知角,是运用了“全等三角形的对应角相等”这一性质,其运用全等的方法是________答案:SSS解析:解答: ①设已知角的顶点为O,以O为圆心,任意长度为半径画圆,交角两边为A,B两点;②用直尺画一条射线,端点为M,以M为圆心,用同样的半径画圆,该圆为圆M,交射线为C点;③以A为圆心,以AB为半径画圆,然后以C点为圆心,以同样的半径画圆,交圆M于D,E两点,随意连MD或者ME;得到的∠CMD就是所求的角;由以上作角过程不难看出有三个对应边相等.∴证明全等的方法是SSS分析: 根据用直尺和圆规画一个角等于已知角的过程很容易看出所得两个三角形三边对应相等三、解答题(共5题)21.如图,作一个角等于已知角的一半答案:解答: ①以O为圆心,任意长为半径画弧,交OA、OB于M、N,②分别以M、N为圆心,大于12MN长为半径画弧,两弧交于一点P,③画射线OP,∠POB就是∠AOB的一半分析: 根据作角平分线的方法画出∠AOB的平分线即可22.作图题(保留作图痕迹)作一个角等于已知角.答案:解答: 如图所示:∠DEF即为所求分析: 利用作一角等于已知角的作法得出即可23.作一个角等于已知角α(0<α<180°)的补角答案:解答:如图所示:∠DEF即为所求分析:反向延长BO,得到α的补角∠AOC,再作∠FED=∠AOC24.尺规作图:如图,作一个角等于已知角.(要求:写出已知、求作,保留作图痕迹,不写作法).已知:求作:答案:解答:已知:∠AOB,求作:∠ECF等于∠AOB,如图所示:∠ECF即为所求分析: 首先画射线CF;再以O为圆心,任意长为半径画弧交OA、OB于E、D;以C为圆心,OD长为半径画弧,然后再以N为圆心ED长为半径画弧,交前弧于M,过M作射线AE可得∠ECF25.已知:∠1和∠2,作一个角,使它等于∠1-∠2答案:解答:作∠CAB=∠1,∠DAB=∠2,∠CAD就是所求的角分析: 利用尺规作图,作一个角等于已知角,即可解答.初中数学试卷。
作已知角的平分线-华东师大版八年级数学上册教案一、知识点概述本节课主要学习作已知角的平分线,要求学生掌握如下几个方面:1.了解什么是角的平分线。
2.学习作已知角的平分线的基本步骤和操作方法。
3.能够熟练运用所学知识解决问题。
二、教学重点和难点教学重点:•掌握作已知角的平分线的基本步骤和操作方法。
教学难点:•能够独立完成作已知角的平分线的练习题。
三、教学内容和方法教学内容:1.什么是角的平分线2.作已知角的平分线的基本步骤和操作方法3.练习题解析教学方法:1.讲解法:通过教师的讲解,让学生了解角的平分线的定义,掌握作已知角的平分线的基本步骤和操作方法。
2.演示法:教师通过示范,让学生学会如何作已知角的平分线。
3.练习法:通过练习题,巩固所学知识,培养学生的解题能力。
四、教学过程1. 角的平分线的简介通过教师的讲解,让学生了解什么是角的平分线。
步骤如下:1.教师引导学生想象一个圆。
2.教师通过图示,让学生了解什么是角的平分线,即连接圆内任意两点,使之与圆心的连线形成的角等于原来的角的1/2。
2. 作已知角的平分线的基本步骤和操作方法通过教师的讲解和示范,让学生了解作已知角的平分线的基本步骤和操作方法。
步骤如下:1.作已知角。
2.作原角的平分线的两个垂直平分线。
3.两个垂直平分线相交的点即是所求的角平分线的交点。
教师要注意让学生掌握操作方法,并及时纠正学生的错误。
3. 练习题解析通过练习题解析,让学生巩固所学知识,培养学生的解题能力。
五、教学评价本节课教学应当注重以下几个方面的评价:1.学生对于角的平分线的定义是否清晰。
2.学生能否掌握作已知角的平分线的基本步骤和操作方法。
3.学生在练习题中是否能够独立完成作已知角的平分线的求解。
六、教学参考1.华东师大版八年级数学上册。
2.孙永强等编。
《九年级数学》。
北京:人民教育出版社,2009。
13.4尺规作图1~3作线段、角、角平分线(第1课时)一、基本目标使学生了解尺规作图的含义,学会用尺规作图作一条线段等于已知线段、一个角等于已知角、已知角的平分线.二、重难点目标【教学重点】用尺规作图作一条线段等于已知线线、一个角等于已知角、已知角的平分线.【教学难点】用尺规作图作已知角的平分线.环节1自学提纲,生成问题【5 min阅读】阅读教材P85~P87的内容,完成下面练习.【3 min反馈】1.尺规作图是指(C)A.用量角器和刻度尺作图B.用圆规和有刻度的直尺作图C.用圆规和无刻度的直尺作图D.用量角器和无刻度的直尺作图2.下列作图语句正确的是(B)A.作射线AB,使AB=aB.作∠AOB=∠αC.延长直线AB到点C,使AC=BCD.以点O为圆心作弧环节2合作探究,解决问题活动1小组讨论(师生对学)1.作一条线段等于已知线段讨论1:已知MN为已知线段,你能用直尺和圆规准确地作一条与MN相等的线段吗?作图步骤:(1)画一条射线AC;(2)以点A为端点,在射线上用圆规截取AC=MN.线段AC即为所求.2.作一个角等于已知角讨论2:这是我们在七年级已经学习过的作一个角等于已知角的方法,你能用所学的知识说明为什么∠A′O′B′=∠AOB吗?【教师点拨】因为OC=OC′,OD=OD′,CD=C′D′,所以△ODC≌△O′D′C′(S.S.S.),所以∠A′O′B′=∠AOB.3.作已知角的平分线讨论3:如图,∠AOB为已知角,试按下列步骤用直尺和圆规准确地作出∠AOB的平分线.作图步骤:第一步:在射线OA 、OB 上,分别截取OD 、OE ,使OD =OE ;第二步:分别以点D 和点E 为圆心、适当长(大于线段DE 长的一半)为半径作圆弧,在∠AOB 内,两弧交于点C ;第三步:作射线OC .射线OC 就是所求作的∠AOB 的平分线.【教师点拨】OC 就是所求作的∠AOB 的平分线的证明过程见教材P87. 讨论4:想想看,如何将∠AOB 四等分?【教师点拨】在讨论3的基础上,再按上述作角平分线的方法分别作出∠COB 、∠AOC 的平分线OG 、OH ,即可将∠AOB 四等分.活动2 巩固练习(学生独学)1.如图,在△ABC 中,∠C =90°,∠CAB =60°,按以下步骤作图: ①以点A 为圆心,小于AC 长为半径画弧,分别交AB 、AC 于点E 、F ; ②分别以点E 、F 为圆心,大于12EF 长为半径画弧,两弧相交于点G ;③作射线AG ,交BC 边于点D . 则∠ADC 的度数为( C )A .30°B .50°C .60°D .70°2.如图,以∠AOB 的顶点为圆心,取适当长为半径画弧,交OA 于点C ,交OB 于点D ,再分别以点C 、D 为圆心,大于12CD 长为半径画弧,两弧在∠AOB 内部交于点E ,过点E 作射线OE ,连结CD .下列说法错误的是( B )A .射线OE 是∠AOB 的平分线 B .O 、E 两点关于CD 所在直线对称C .△COD 是等腰三角形D .C 、D 两点关于OE 所在直线对称 3.完成教材P86“练习”第1~2题. 略4. 完成教材P88“练习”第1~2题.略环节3课堂小结,当堂达标(学生总结,老师点评)请完成本课时对应练习!4~5作直线的垂线、线段的垂直平分线(第2课时)一、基本目标进一步了解尺规作图的含义,学会用尺规作图经过一已知点作已知直线的垂线、作已知线段的垂直平分线.二、重难点目标【教学重点】用尺规作图作直线的垂线、线段的垂直平分线.【教学难点】用尺规作图作线段的垂直平分线.环节1自学提纲,生成问题【5 min阅读】阅读教材P88~P90的内容,完成下面练习. 【3 min 反馈】1.下列作图语言规范的是( D ) A .过点P 作线段AB 的中垂线 B .过点P 作∠AOB 的平分线C .在直线AB 的延长线上取一点C ,使AB =ACD .过点P 作直线AB 的垂线 2.阅读下面材料:数学课上,老师提出如下问题:尺规作图:经过已知直线上一点作这条直线的垂线. 已知:直线AB 和AB 上一点C . 求作:AB 的垂线,使它经过点C .小艾的作法如下:如图,(1)在直线AB 上取一点D ,使点D 与点C 不重合,以点C 为圆心,CD 长为半径作弧,交AB 于D ,E 两点;(2)分别以点D 和点E 为圆心,大于12DE 长为半径作弧,两弧相交于点F ;(3)作直线CF .直线CF 就是所求作的垂线.老师表扬了小艾的作法是对的.请回答:小艾这样作图的依据是等腰三角形的“三线合一”.环节2合作探究,解决问题活动1小组讨论(师生互学)1.经过一已知点作已知直线的垂线已知点与已知直线可以有两种不同的位置关系:点在直线上,点在直线外,因此要分别作这两种情况下已知直线的垂线.(1)经过已知直线上一点作已知直线的垂线.讨论1:已知直线AB和AB上一点C,试按下列步骤用直尺和圆规准确地经过点C作出直线AB的垂线.作图步骤:如图,由于点C在直线AB上,因此所作的垂线正好是平角ACB的平分线.第一步:作平角ACB的平分线;第二步:反向延长射线CD.直线CD就是要求作的垂线.(2)经过已知直线外一点作已知直线的垂线.讨论2:已知直线AB和AB外一点C,试按下列步骤用直尺和圆规准确地经过点C作出直线AB的垂线.作图步骤:如图,若以点C为圆心,作能与直线AB相交于D、E两点的弧,则△CDE 为等腰三角形.由“等腰三角形顶角的平分线就是底边上的高”可知,只需作出∠DCE的平分线,则该平分线所在的直线就是要求作的垂线.讨论3:你能说说讨论2中为什么“只需作出∠DCE的平分线,则该平分线所在的直线就是要求作的垂线”吗?【教师点拨】等腰三角形“三线合一”的性质.2.作已知线段的垂直平分线讨论4:如图,已知直线l是线段AB的垂直平分线,则直线l是线段AB的对称轴,对l上的任意两点C、D,通过对折可以发现,总有CA=CB,DA=DB.由此,你能发现作垂直平分线的方法吗?【教师点拨】见教材P90“试一试”.活动2巩固练习(学生独学)1.如图,在Rt△ABC中,∠BAC=90°,依下列步骤尺规作图,并保留痕迹.步骤1:以B为圆心,BA长为半径画弧;步骤2:以C为圆心,CA为半径画弧,交前弧交于点D;步骤3:连结AD,交BC于点E.下列叙述不正确的是(B)A.BC垂直平分AD B.AD平分∠BACC.∠B=∠CAE D.∠C=∠BAE2.下列尺规作图,能判断AD是△ABC边上的高是(B)3. 如图,AE∥BF,AC平分∠BAE,交BF于点C.(1)尺规作图:过点B作AC的垂线,交AC于点O,交AE于点D:(保留作图痕迹,不写作法)(2)求证:AD=BC.(1)解:如图,OB即为所求.(2)证明:∵AE∥BF,∴∠EAC=∠BCA.∵AC平分∠BAE,∴∠EAC=∠BAC,∴∠BCA=∠BAC,∴BA=BC.∵BD⊥AO,AO平分∠BAD,∴AB=AD,∴AD=BC.活动3拓展延伸(学生对学)【例题】如图,在△ABC中,AB=AC,D为AC上一点(不与A、C重合).(1)用直尺和圆规作DE⊥BC于点E,延长ED交BA的延长线于点F;(保留作图痕迹,不写画法)(2)判断△ADF的形状并加以证明.【互动探索】根据经过已知直线外一点作已知直线垂线的方法作图,再判断△ADF的形状.【解答】(1)如图所示,点E、F即为所求.(2)△ADF为等腰三角形.理由如下:∵AB=AC,∴∠ABC=∠ACB.∵FE⊥BC,∴∠FEC=∠FEB=90°,∴∠BFE+∠B=90°,∠EDC+∠ACB=90°.∵∠ADF=∠EDC,∠ABC=∠ACB,∴∠AFD=∠ADF,∴AF=AD,∴△ADF为等腰三角形.【互动总结】(学生总结,老师点评)解本题的关键是熟练掌握基本作图,灵活运用所学知识解决问题.环节3课堂小结,当堂达标(学生总结,老师点评)请完成本课时对应练习!。
第2课时 角的平分线的判定01 基础题知识点1 角的平分线的判定1.如图,OC 是∠AOB 内部的一条射线,P 是射线OC 上任意点,PD ⊥OA ,PE ⊥OB.下列条件中:①∠AOC =∠BOC ;②PD =PE ;③OD =OE ;④∠DPO =∠EPO ,能判定OC 是∠AOB 的角平分线的有(D )A .1个B .2个C .3个D .4个2.如图,∠AOB =70°,QC ⊥OA 于点C ,QD ⊥OB 于点D ,若QC =QD ,则∠AOQ =35°.3.如图,BE =CF ,DE ⊥AB 的延长线于点E ,DF ⊥AC 于点F ,且DB =DC ,求证:AD 是∠BAC 的平分线.证明:∵DE ⊥AB ,DF ⊥AC ,∴∠BED =∠DFC =90°.在Rt △DEB 和Rt △DFC 中,⎩⎨⎧BE =CF ,DB =DC ,∴Rt △DEB ≌Rt △DFC.∴DE =DF.∴AD 是∠BAC 的平分线.4.如图,CD ⊥AB 于点D ,BE ⊥AC 于点E ,BE ,CD 相交于点O.求证:(1)当∠1=∠2时,OB =OC ;(2)当OB =OC 时,∠1=∠2.证明:(1)∵∠1=∠2,OD ⊥AB ,OE ⊥AC ,∴OE =OD ,∠ODB =∠OEC =90°.在△BOD 和△COE 中,⎩⎨⎧∠BOD =∠COE ,OD =OE ,∠ODB =∠OEC ,∴△BOD ≌△COE(ASA ).∴OB =OC.(2)在△BOD 和△COE 中,⎩⎨⎧∠ODB =∠OEC ,∠BOD =∠COE ,OB =OC ,∴△BOD ≌△COE(AAS ).∴OD =OE.又∵OD ⊥AB ,OE ⊥AC ,∴AO 平分∠BAC ,即∠1=∠2.知识点2 三角形的角平分线5.到△ABC 的三条边距离相等的点是△ABC 的(B )A .三条中线的交点B .三条角平分线的交点C .三条高的交点D .以上均不对6.如图,△ABC 的三边AB ,BC ,CA 的长分别为40,50,60,其三条角平分线交于点O ,则S △ABO ∶S △BCO ∶S △CAO =4∶5∶6.知识点3 角的平分线的性质与判定的实际应用7.如图,铁路OA 和铁路OB 交于O 处,河道AB 与铁路分别交于A 处和B 处,试在河岸上建一座水厂M ,要求M 到铁路OA ,OB 的距离相等,则该水厂M 应建在图中什么位置?请在图中标出M 点的位置.解:图略.提示:∠AOB的平分线与AB的交点即为点M的位置.8.如图,某市有一块由三条公路围成的三角形绿地,现准备在其中建一小亭子,供人们休息,而且要使小亭中心到三条公路的距离相等,试确定小亭的中心位置.解:△ABC的角平分线的交点就是小亭的中心位置,图略.02中档题9.(永州中考)如图,在四边形ABCD中,AB=CD,BA和CD的延长线交于点E,若点P使得S△=S△PCD,则满足此条件的点P(D)PABA.有且只有1个B.有且只有2个C.组成∠E的角平分线D.组成∠E的角平分线所在的直线(E点除外)10.如图,已知△ABC的周长是20 cm,BO,CO分别平分∠ABC和∠ACB,OD⊥BC于点D,若OD=3 cm,则△ABC的面积为30_cm2.11.如图,∠ABC的平分线与∠ACB的外角平分线相交于点D,连接AD.求证:AD是∠BAC的外角平分线.证明:过点D分别作DE⊥AB,DG⊥AC,DF⊥BC,垂足分别为E,G,F.又∵BD平分∠ABC,CD平分∠ACF,∴DE=DF,DG=DF.∴DE=DG.∴AD平分∠EAC,即AD是∠BAC的外角平分线.12.如图所示,△ABC中,∠B=∠C,D是BC边上一动点,过D作DE⊥AB,DF⊥AC,E,F分别为垂足,则当D移动到什么位置时,AD恰好平分∠BAC,请说明理由.解:当D移动到BC的中点时,AD恰好平分∠BAC.理由:∵D是BC的中点,∴BD=CD.∵DE⊥AB,DF⊥AC,∴∠DEB=∠DFC=90°.又∵∠B=∠C,∴△DEB≌△DFC(AAS).∴DE=DF.又∵DE⊥AB,DF⊥AC,∴AD平分∠BAC.03综合题13.如图,在四边形ABDC中,∠D=∠B=90°,O为BD的中点,且AO平分∠BAC.求证:(1)CO平分∠ACD;(2)OA⊥OC;(3)AB+CD=AC.证明:(1)过点O 作OE ⊥AC 于点E , ∵∠B =90°,AO 平分∠BAC , ∴OB =OE.∵点O 为BD 的中点,∴OB =OD.∴OE =OD.又∵∠D =90°,∠OEC =90°. ∴CO 平分∠ACD.(2)在Rt △ABO 和Rt △AEO 中, ⎩⎨⎧AO =AO ,OB =OE ,∴Rt △ABO ≌Rt △AEO(HL ). ∴∠AOB =∠AOE =12∠BOE.同理,∠COD =∠COE =12∠DOE.∵∠AOC =∠AOE +∠COE , ∴∠AOC =12∠BOE +12∠DOE =12×180°=90°.∴OA ⊥OC.(3)∵Rt △ABO ≌Rt △AEO ,∴AB =AE.同理可得CD =CE.∵AC =AE +CE ,∴AB +CD =AC.。
第2课时尺规作图(2)【基本目标】1.进一步掌握并熟练尺规作图的方法及一般步骤;2.介绍另两种基本作图,明确尺规作图的意义;3.熟练掌握基本作图语言.【教学重点】掌握过一点作已知直线的垂线,作线段的垂直平分线,掌握画一个角的角平分线.【教学难点】理解作图的理论依据以及利用基本作图画一些其他图形.一、创设情景,引入新课复习提问:(1)什么是尺规作图?基本作图?(2)我们已经学习了哪两种基本作图?(3)在练习本上画出这两个基本作图,并准确写出作法.圆规和直尺除了可以画出上述两个图形外,还可以画出哪些图形呢,这节课我们再介绍两个基本作图.二、师生互动,突破难点画线段的垂直平分线.分析:线段的垂直平分线上的点到线段两端点的距离相等;反过来,到线段两端点距离相等的点在线段的垂直平分线上.因此如果能找到两个到线段两端点的距离相等的点,那么过这两点就可以画出线段的垂直平分线.已知:线段AB.求作:线段AB的垂直平分线.作法:1.分别以点A和点B为圆心,大于12AB的长为半径画弧,两弧相交与点M和N.2.画直线MN.所以直线MN就是线段AB的垂直平分线.注:1.若半径等于或小于12AB,两弧就没有交点.2.直线MN与线段AB的交点,就是AB的中点,所以我们也可以用这种方法作线段的中点.引导学生思考:(1)已知直线上的一点作这条直线的垂线;(2)已知直线外的一点作这条直线的垂线.三、随堂练习,巩固新知完成练习册中本课时对应的课后作业部分,教师及时点评.四、典例精析,拓展新知例如图,过点P画∠O两边的垂线.【分析】角的两边可看作两条直线,点在直线外,故可归结为经过直线外一点作这条直线的垂线.解:【教学说明】通过本例旨在基本作图在几何作图题中的运用,注意先画草图,找出作图顺序再操作.五、运用新知,深化理解完成教材P91第4、5题.六、师生互动,课堂小结通过对基本作图的学习,掌握作图的一般步骤,熟练叙述一些作图的规范语句,主要有:(1)过点×、点×作直线××;或作直线××,或作射线××;(2)连结两点×、×;或连结××;(3)在××上截取××=××;(4)以点×为圆心,××为半径画弧(或圆);(5)以点×为圆心,××为半径画弧,交××于点×;(6)分别以点×、点×为圆心,以××、××为半径画弧,两弧相交于点×、×.完成练习册中本课时对应的课后作业部分.这节课内容较多,前三个基本作图较简单,主要是学生自学后独立操作,教师演示的目的是规范作图语言,搞清其中的几何道理.后两个作图实际上用到了转化思想,较为复杂,要让学生搞明白作图的原理,是掌握作图步骤的关键.运用基本作图解作图题时,应让学生先分析作图顺序后,再完成.对于作图语言应逐步规范.学习资料八年级数学下册第六章平行四边形 1 平行四边形的性质第1课时平行四边形的边角特征教案(新版)北师大版班级:科目:1 平行四边形的性质第1课时平行四边形的边角特征【知识与技能】探索并掌握平行四边形的性质,并能简单应用.【过程与方法】经历探索平行四边形有关概念和性质的过程,在活动中发展学生的探究意识和合作交流的习惯。
尺规作图
已知直线的垂线和作已知线段的垂1. 掌握尺规的基本作图:画线段的垂直平分线,画直线的垂线;
我们知道三角形中有三条重要线段,它们分别是:三角形的高,三角形的中线,
一个已知点与一条已知直线的位置关系有两种:
分析:点和直线有两种位置关系,①点在直线上;②点在直线外
(1)
这条直线垂线”实质上就是以这点为顶点的平角的角平分线
等腰三角形的三线合一,高线就是顶角的平分线,利用这个性质你能
的垂直平分线上的任意两点C、,总
由此,你能发现作垂直平分线的方法吗?说说你的作法
为半径画弧,两弧交于点和
①“经过已知直线上一点作这条直线垂线”的本质是什么?②“经过已知直线【①的实质就是作平角的角平分线并反向延长;
如何证明直线AB
利用直尺和圆规作一个等于迹,并写出作法)
要完成这个作图,先作出一直角,再作平分线即可
已知底边及底边上
的垂线,下列作法中正确的是( )
所在的直线上求作一点P
1.
学生。