电磁感应和力学规律的综合应用例题解析
- 格式:ppt
- 大小:1.01 MB
- 文档页数:5
电磁感应现象压轴题综合题含答案解析一、高中物理解题方法:电磁感应现象的两类情况1.如图所示,两根光滑、平行且足够长的金属导轨倾斜固定在水平地面上,导轨平面与水平地面的夹角37θ=︒,间距为d =0.2m ,且电阻不计。
导轨的上端接有阻值为R =7Ω的定值电阻和理想电压表。
空间中有垂直于导轨平面斜向上的、大小为B =3T 的匀强磁场。
质量为m =0.1kg 、接入电路有效电阻r =5Ω的导体棒垂直导轨放置,无初速释放,导体棒沿导轨下滑一段距离后做匀速运动,取g =10m/s 2,sin37°=0.6,求:(1)导体棒匀速下滑的速度大小和导体棒匀速运动时电压表的示数; (2)导体棒下滑l =0.4m 过程中通过电阻R 的电荷量。
【答案】(1)20m/s 7V (2)0.02C 【解析】 【详解】(1)设导体棒匀速运动时速度为v ,通过导体棒电流为I 。
由平衡条件sin mg BId θ=①导体棒切割磁感线产生的电动势为E =Bdv ②由闭合电路欧姆定律得EI R r=+③ 联立①②③得v =20m/s ④由欧姆定律得U =IR ⑤联立①⑤得U =7V ⑥(2)由电流定义式得Q It =⑦由法拉第电磁感应定律得E t∆Φ=∆⑧B ld ∆Φ=⋅⑨由欧姆定律得EI R r=+⑩ 由⑦⑧⑨⑩得Q =0.02C ⑪2.如图所示,竖直放置、半径为R 的圆弧导轨与水平导轨ab 、在处平滑连接,且轨道间距为2L ,cd 、足够长并与ab 、以导棒连接,导轨间距为L ,b 、c 、在一条直线上,且与平行,右侧空间中有竖直向上、磁感应强度大小为B 的匀强磁场,均匀的金属棒pq 和gh 垂直导轨放置且与导轨接触良好。
gh 静止在cd 、导轨上,pq 从圆弧导轨的顶端由静止释放,进入磁场后与gh 没有接触。
当pq 运动到时,回路中恰好没有电流,已知pq 的质量为2m ,长度为2L ,电阻为2r ,gh 的质量为m ,长度为L ,电阻为r ,除金属棒外其余电阻不计,所有轨道均光滑,重力加速度为g ,求:(1)金属棒pq 到达圆弧的底端时,对圆弧底端的压力; (2)金属棒pq 运动到时,金属棒gh 的速度大小;(3)金属棒gh 产生的最大热量。
压轴题07电磁感应规律的综合应用目录一,考向分析 (1)二.题型及要领归纳 (2)热点题型一以动生电动势为基综合考查导体棒运动的问题 (2)热点题型二以感生电动势为基综合考查导体棒运动的问题 (9)热点题型三以等间距双导体棒模型考动量能量问题 (16)热点题型四以不等间距双导体棒模型考动量定理与电磁规律的综合问题 (21)热点题型五以棒+电容器模型考查力电综合问题 (27)三.压轴题速练 (33)一,考向分析1.本专题是运动学、动力学、恒定电流、电磁感应和能量等知识的综合应用,高考既以选择题的形式命题,也以计算题的形式命题。
2.学好本专题,可以极大地培养同学们数形结合的推理能力和电路分析能力,针对性的专题强化,可以提升同学们解决数形结合、利用动力学和功能关系解决电磁感应问题的信心。
3.用到的知识有:左手定则、安培定则、右手定则、楞次定律、法拉第电磁感应定律、闭合电路欧姆定律、平衡条件、牛顿运动定律、函数图像、动能定理和能量守恒定律等。
电磁感应综合试题往往与导轨滑杆等模型结合,考查内容主要集中在电磁感应与力学中力的平衡、力与运动、动量与能量的关系上,有时也能与电磁感应的相关图像问题相结合。
通常还与电路等知识综合成难度较大的试题,与现代科技结合密切,对理论联系实际的能力要求较高。
4.电磁感应现象中的电源与电路(1)产生感应电动势的那部分导体相当于电源。
(2)在电源内部电流由负极流向正极。
(3)电源两端的电压为路端电压。
5.电荷量的求解电荷量q=IΔt,其中I必须是电流的平均值。
由E=n ΔΦΔt、I=ER总、q=IΔt联立可得q=n ΔΦR总,与时间无关。
6.求解焦耳热Q的三种方法(1)焦耳定律:Q=I2Rt,适用于电流、电阻不变。
(2)功能关系:Q=W克服安培力,电流变不变都适用。
(3)能量转化:Q=ΔE(其他能的减少量),电流变不变都适用。
7.用到的物理规律匀变速直线运动的规律、牛顿运动定律、动能定理、能量守恒定律等。
专题二:电磁感应中的力学问题电磁感应中通过导体的感应电流,在磁场中将受到安培力的作用,从而影响其运动状态,故电磁感应问题往往跟力学问题联系在一起,这类问题需要综合运用电磁感应规律和力学的相关规律解决。
一、处理电磁感应中的力学问题的思路 ——先电后力。
1、先作“源”的分析 ——分离出电路中由电磁感应所产生的电源,求出电源参数E 和r ;2、再进行“路”的分析 ——画出必要的电路图(等效电路图),分析电路结构,弄清串并联关系,求出相关部分的电流大小,以便安培力的求解。
3、然后是“力”的分析 ——画出必要的受力分析图,分析力学所研究对象(常见的是金属杆、导体线圈等)的受力情况,尤其注意其所受的安培力。
4、接着进行“运动”状态分析 ——根据力和运动的关系,判断出正确的运动模型。
5、最后运用物理规律列方程并求解 ——注意加速度a =0时,速度v 达到最大值的特点。
导体受力运动产生感应电动势→感应电流→通电导体受安培力→合外力变化→加速度变化→速度变化→周而复始地循环,循环结束时,加速度等于零,导体达到稳定运动状态,抓住a =0,速度v 达最大值这一特点。
二、分析和运算过程中常用的几个公式:1、关键是明确两大类对象(电学对象,力学对象)及其互相制约的关系.电学对象:内电路 (电源 E = n ΔΦΔt 或E = nB ΔS Δt ,E =S tB n ⋅∆∆) E = Bl υ 、 E = 12Bl 2ω .全电路 E =I (R +r )力学对象:受力分析:是否要考虑BIL F =安 .运动分析:研究对象做什么运动 .2、可推出电量计算式 Rn t R E t I q ∆Φ=∆=∆= . 【例1】磁悬浮列车是利用超导体的抗磁化作用使列车车体向上浮起,同时通过周期性地变换磁极方向而获得推进动力的新型交通工具。
如图所示为磁悬浮列车的原理图,在水平面上,两根平行直导轨间有竖直方向且等距离的匀强磁场B 1和B 2 ,导轨上有一个与磁场间距等宽的金属框abcd 。
2020年高考物理二轮温习热点题型与提分秘籍专题14 电磁感应定律及其应用题型一楞次定律和法拉第电磁感应定律的应用【题型解码】(1)理解“谁”阻碍“谁”,及如何阻碍.(2)理解楞次定律的广义形式,“结果”阻碍“原因”.【典例分析1】(2020·山东聊城模拟)航母上飞机弹射起飞是利用电磁驱动来实现的.电磁驱动原理如图所示,当固定线圈上突然通过直流电流时,线圈端点的金属环被弹射出去.现在固定线圈左侧同一位置,先后放有分别用横截面积相等的铜和铝导线制成形状、大小相同的两个闭合环,且电阻率ρ铜<ρ铝.闭合开关S的瞬间( )A.从左侧看环中感应电流沿顺时针方向B.铜环受到的安培力大于铝环受到的安培力C.若将环放置在线圈右方,环将向左运动D.电池正负极调换后,金属环不能向左弹射【参考参考答案】AB.【名师解析】:线圈中电流为右侧流入,磁场方向为向左,在闭合开关的过程中,磁场变强,则由楞次定律可知,电流由左侧看为顺时针,A正确;由于铜环的电阻较小,故铜环中感应电流较大,故铜环受到的安培力要大于铝环的,B正确;若将环放在线圈右方,根据楞次定律可得,环将向右运动,C错误;电池正负极调换后,金属环受力仍向左,故仍将向左弹出,D错误.【典例分析2】(2020·山东等级考模拟)竖直放置的长直密绕螺线管接入如图甲所示的电路中,通有俯视顺时针方向的电流,其大小按图乙所示的规律变化.螺线管内中间位置固定有一水平放置的硬质闭合金属小圆环(未画出),圆环轴线与螺线管轴线重合.下列说法正确的是( )A .t =时刻,圆环有扩张的趋势B .t =时刻,圆环有收缩的趋势T4T4C .t =和t =时刻,圆环内的感应电流大小相等D .t =时刻,圆环内有俯视逆时针方向的感应电流T 43T 43T4【参考参考答案】BC【名师解析】:.t =时刻,线圈中通有顺时针逐渐增大的电流,则线圈中由电流产生的磁场向下且逐渐增强,T4由楞次定律可知,圆环有收缩的趋势,A 错误,B 正确;t =时刻,线圈中通有顺时针逐渐减小的电流,则线圈3T4中由电流产生的磁场向下且逐渐减小,由楞次定律可知,圆环中的感应电流为顺时针,D 错误;t =和t =时T 43T4刻,线圈中电流的变化率一致,即由线圈电流产生的磁场变化率一致,则圆环中的感应电流大小相等,C 正确.【典例分析3】(2020·河北省承德二中测试)如图所示,用相同导线绕成的两个单匝线圈a 、b 的半径分别为r 和2r ,圆形匀强磁场B 的边缘恰好与a 线圈重合,若磁场的磁感应强度均匀增大,开始时的磁感应强度不为0,则( )A .任意时刻,穿过a 、b 两线圈的磁通量之比为1∶4B .a 、b 两线圈中产生的感应电动势之比为1∶2C .a 、b 两线圈中产生的感应电流之比为4∶1D .相同时间内a 、b 两线圈产生的热量之比为2∶1【参考参考答案】 D【名师解析】 任意时刻,穿过a 、b 两线圈的磁感线条数相等,磁通量相等,故穿过a 、b 两线圈的磁通量之比为1∶1,A 错误;根据法拉第电磁感应定律得E =S ,S =πr 2,因为有效面积S 相等,也相等,所以a 、bΔB Δt ΔBΔt 两线圈中产生的感应电动势相等,感应电动势之比为1∶1,B 错误;线圈a 、b 的半径分别为r 和2r ,周长之比为1∶2,电阻之比为1∶2,根据欧姆定律知I =,得a 、b 两线圈中产生的感应电流之比为2∶1,C 错误;根ER 据焦耳定律得Q =I 2Rt ,相同时间内a 、b 两线圈产生的热量之比为2∶1,D 正确。
第9课时 电磁感应的综合应用 考点 楞次定律与法拉第电磁感应定律的应用1.求感应电动势的两种方法(1)E =n ΔΦΔt,用来计算感应电动势的平均值. (2)E =Bl v 或E =12Bl 2ω,主要用来计算感应电动势的瞬时值. 2.判断感应电流方向的两种方法(1)利用右手定则,即根据导体在磁场中做切割磁感线运动的情况进行判断.(2)利用楞次定律,即根据穿过闭合回路的磁通量的变化情况进行判断.3.楞次定律中“阻碍”的四种表现形式(1)阻碍磁通量的变化——“增反减同”.(2)阻碍相对运动——“来拒去留”.(3)使线圈面积有扩大或缩小的趋势——“增缩减扩”.(4)阻碍电流的变化(自感现象)——“增反减同”.例1 (多选)(2019·全国卷Ⅰ·20)空间存在一方向与纸面垂直、大小随时间变化的匀强磁场,其边界如图1(a)中虚线MN 所示.一硬质细导线的电阻率为ρ、横截面积为S ,将该导线做成半径为r 的圆环固定在纸面内,圆心O 在MN 上.t =0时磁感应强度的方向如图(a)所示;磁感应强度B 随时间t 的变化关系如图(b)所示.则在t =0到t =t 1的时间间隔内( )图1A .圆环所受安培力的方向始终不变B .圆环中的感应电流始终沿顺时针方向C .圆环中的感应电流大小为B 0rS 4t 0ρD .圆环中的感应电动势大小为B 0πr 24t 0答案 BC解析 在0~t 0时间内,磁感应强度减小,根据楞次定律可知感应电流的方向为顺时针,圆环所受安培力水平向左,在t 0~t 1时间内,磁感应强度反向增大,感应电流的方向为顺时针,圆环所受安培力水平向右,所以选项A 错误,B 正确;根据法拉第电磁感应定律得E =ΔΦΔt =12πr 2·B 0t 0=B 0πr 22t 0,根据电阻定律可得R =ρ2πr S ,根据欧姆定律可得I =E R =B 0rS 4t 0ρ,所以选项C 正确,D 错误.变式训练1.(多选)(2020·山东等级考模拟卷·12)竖直放置的长直密绕螺线管接入如图2甲所示的电路中,通有俯视顺时针方向的电流,其大小按图乙所示的规律变化.螺线管内中间位置固定有一水平放置的硬质闭合金属小圆环(未画出),圆环轴线与螺线管轴线重合.下列说法正确的是( )图2A .t =T 4时刻,圆环有扩张的趋势 B .t =T 4时刻,圆环有收缩的趋势 C .t =T 4和t =3T 4时刻,圆环内的感应电流大小相等 D .t =3T 4时刻,圆环内有俯视逆时针方向的感应电流 答案 BC解析 t =T 4时刻,线圈中通有俯视顺时针且逐渐增大的电流,则线圈中由电流产生的磁场向下且逐渐增加.由楞次定律可知,圆环有收缩的趋势,A 错误,B 正确;t =3T 4时刻,线圈中通有俯视顺时针且逐渐减小的电流,则线圈中由电流产生的磁场向下且逐渐减小,由楞次定律可知,圆环中的感应电流为俯视顺时针,D 错误;t =T 4和t =3T 4时刻,线圈中电流的变化率一致,即由线圈电流产生的磁场变化率一致,则圆环中的感应电流大小相等,C 正确. 例2 (多选)(2019·山东枣庄市上学期期末)如图3所示,水平放置的半径为2r 的单匝圆形裸金属线圈A ,其内部有半径为r 的圆形匀强磁场区域,磁场的磁感应强度大小为B 、方向竖直向下;线圈A 的圆心和磁场区域的圆心重合,线圈A 的电阻为R .过圆心的两条虚线ab 和cd 相互垂直.一根电阻不计的直导体棒垂直于ab 放置,使导体棒沿ab 从左向右以速度v 匀速通过磁场区域,导体棒与线圈始终接触良好,线圈A 中会有感应电流通过.撤去导体棒,使磁场的磁感应强度均匀变化,线圈A 中也会有感应电流,如果使cd 左侧的线圈中感应电流大小和方向与导体棒经过cd 位置时的相同,则( )图3A .磁场一定增强B .磁场一定减弱C .磁感应强度的变化率为4B v πrD .磁感应强度的变化率为8B v πr答案 AC解析 根据右手定则,导体棒切割磁感线产生的感应电流通过cd 左侧的线圈时的方向是逆时针的,根据楞次定律,使磁场的磁感应强度均匀变化,产生同样方向的感应电流,磁场一定增强,故A 正确,B 错误;导体棒切割磁感线时,根据法拉第电磁感应定律,导体棒经过cd位置时产生的感应电动势E =2Br v ,根据欧姆定律,通过cd 左侧的线圈中感应电流大小I =E R2=4Br v R ;磁场的磁感应强度均匀变化时,根据法拉第电磁感应定律和欧姆定律,ΔB Δt ×r 2πR=4Br v R ,ΔB Δt =4B v πr,故C 正确,D 错误. 变式训练2.(2019·山东济南市3月模拟)在如图4甲所示的电路中,螺线管匝数n =1 000匝,横截面积S =20 cm 2.螺线管导线电阻r =1.0 Ω,R 1=4.0 Ω,R 2=5.0 Ω,C =30 μF.在一段时间内,垂直穿过螺线管的磁场的磁感应强度B 的方向如图甲所示,大小按如图乙所示的规律变化,则下列说法中正确的是( )图4A .螺线管中产生的感应电动势为1.2 VB .闭合K ,电路中的电流稳定后,电容器的下极板带负电C .闭合K ,电路中的电流稳定后,电阻R 1的电功率为2.56×10-2 WD .闭合K ,电路中的电流稳定后,断开K ,则K 断开后,流经R 2的电荷量为1.8×10-2 C 答案 C解析 根据法拉第电磁感应定律:E =n ΔΦΔt =nS ΔB Δt ;解得:E =0.8 V ,故A 错误;根据楞次定律可知,螺线管的感应电流盘旋而下,则螺线管下端相当于电源的正极,则电容器的下极带正电,故B 错误;根据闭合电路欧姆定律,有:I =E R 1+R 2+r=0.08 A ,根据 P =I 2R 1解得:P =2.56×10-2 W ,故C 正确;K 断开后,流经R 2的电荷量即为K 闭合时电容器一个极板上所带的电荷量Q ,电容器两端的电压为:U =IR 2=0.4 V ,流经R 2的电荷量为:Q =CU =1.2×10-5 C ,故D 错误. 考点 电磁感应中的电路与图象问题1.电磁感应现象中的电源与电路(1)产生感应电动势的那部分导体相当于电源.(2)在电源内部电流由负极流向正极.(3)电源两端的电压为路端电压.2.解图象问题的三点关注(1)关注初始时刻,如初始时刻感应电流是否为零,是正方向还是负方向.(2)关注变化过程,看电磁感应发生的过程可以分为几个阶段,这几个阶段分别与哪段图象变化相对应.(3)关注大小、方向的变化趋势,看图线斜率的大小、图线的曲直是否和物理过程对应.3.解图象问题的两个分析方法(1)排除法:定性地分析电磁感应过程中物理量的变化趋势(增大还是减小)、变化快慢(均匀变化还是非均匀变化),特别是物理量的正负,排除错误的选项.(2)函数法:根据题目所给条件定量地写出两个物理量之间的函数关系,然后由函数关系对图象作出分析和判断,这未必是最简捷的方法,但却是最有效的方法.例3 (多选)(2019·贵州部分重点中学教学质量评测卷(四))长为L 的金属棒OP 固定在顶角为2θ的塑料圆锥体侧面上,ab 为圆锥体底面直径.圆锥体绕其轴OO ′以角速度ω在磁感应强度大小为B 、方向竖直向下的匀强磁场中匀速转动,转动方向如图5所示,下列说法正确的是( )图5A .金属棒上O 点的电势高于P 点B .金属棒上O 点的电势低于P 点C .金属棒OP 两端电势差大小为12Bω2L sin θD .金属棒OP 两端电势差大小为12BωL 2sin 2 θ 答案 AD解析 由右手定则知金属棒OP 在匀速转动过程中切割磁感线产生的感应电动势方向由P 指向O ,在电源内部由电势低处指向电势高处,则金属棒上O 点的电势高于P 点,故A 正确,B 错误.金属棒OP 在匀速转动过程中切割磁感线的有效长度L ′=O ′P =L sin θ,故产生的感应电动势E =BL ′·12ωL ′=12BωL 2sin 2 θ,故C 错误,D 正确. 变式训练3.(2019·安徽宣城市期末调研测试)边界MN 的一侧区域内,存在着磁感应强度大小为B 、方向垂直于光滑水平桌面的匀强磁场.边长为l 的正三角形金属线框abc 粗细均匀,三边阻值相等,a 顶点刚好位于边界MN 上,现使线框围绕过a 点且垂直于桌面的转轴匀速转动,转动角速度为ω,如图6所示,则在ab 边开始转入磁场的瞬间ab 两端的电势差U ab 为( )图6A.13Bl 2ω B .-12Bl 2ω C .-13Bl 2ω D.16Bl 2ω 答案 A 解析 当ab 边刚进入磁场时,ab 部分在切割磁感线,切割长度为两个端点间的距离,即a 、b 间的距离为l ,E =Bl v =Bl lω2=12Bl 2ω;设每个边的电阻为R ,a 、b 两点间的电势差为:U =I ·2R =E 3R ·2R ,故U =13Bωl 2,故A 正确,B 、C 、D 错误. 例4 (多选)(2019·全国卷Ⅱ·21)如图7,两条光滑平行金属导轨固定,所在平面与水平面夹角为θ,导轨电阻忽略不计.虚线ab 、cd 均与导轨垂直,在ab 与cd 之间的区域存在垂直于导轨所在平面的匀强磁场.将两根相同的导体棒PQ 、MN 先后自导轨上同一位置由静止释放,两者始终与导轨垂直且接触良好.已知PQ 进入磁场时加速度恰好为零.从PQ 进入磁场开始计时,到MN 离开磁场区域为止,流过PQ 的电流随时间变化的图像可能正确的是( )图7答案 AD解析 根据题述,PQ 进入磁场时加速度恰好为零,两导体棒从同一位置释放,则两导体棒进入磁场时的速度相同,产生的感应电动势大小相等,若释放两导体棒的时间间隔足够长,在PQ 通过磁场区域一段时间后MN 进入磁场区域,根据法拉第电磁感应定律和闭合电路欧姆定律可知流过PQ 的电流随时间变化的图像可能是A ;若释放两导体棒的时间间隔较短,在PQ 没有出磁场区域时MN 就进入磁场区域,则两棒在磁场区域中运动时回路中磁通量不变,两棒不受安培力作用,二者在磁场中做加速运动,PQ 出磁场后,MN 切割磁感线产生感应电动势和感应电流,且感应电流一定大于I 1,受到安培力作用,由于安培力与速度成正比,则MN 所受的安培力一定大于MN 的重力沿导轨平面方向的分力,所以MN 一定做减速运动,回路中感应电流减小,流过PQ 的电流随时间变化的图像可能是D. 变式训练4.(2019·安徽合肥市第一次质量检测)如图8所示,一有界匀强磁场区域的磁感应强度大小为B ,方向垂直纸面向里,磁场宽度为L ;正方形导线框abcd 的边长也为L ,当bc 边位于磁场左边缘时,线框从静止开始沿x 轴正方向匀加速通过磁场区域.若规定逆时针方向为电流的正方向,则反映线框中感应电流变化规律的图象是( )图8答案 B解析 设导线框运动的加速度为a ,则某时刻其速度v =at ,所以在0~t 1时间内(即当bc 边位于磁场左边缘时开始计时,到bc 边位于磁场右边缘结束),根据法拉第电磁感应定律得:E=BL v =BLat ,电动势为逆时针方向.由闭合电路欧姆定律得:I =BLa R t ,电流为正.其中R 为线框的总电阻.所以在0~t 1时间内,I ∝t ,故A 、C 错误;从t 1时刻开始,ad 边开始切割磁感线,电动势大小E =BLat ,其中t 1<t ≤t 2,电流为顺时针方向,为负,电流I =BLa Rt ,t 1<t ≤t 2,其中I 0=BLa R t 1,电流在t 1时刻方向突变,突变瞬间,电流大小保持I 0=BLa R t 1不变,故B 正确,D 错误.考点电磁感应中的动力学与能量问题1.电荷量的求解电荷量q =I Δt ,其中I 必须是电流的平均值.由E =n ΔΦΔt 、I =E R 总、q =I Δt 联立可得q =n ΔΦR 总,此式不涉及时间.2.求解焦耳热Q 的三种方法(1)焦耳定律:Q =I 2Rt ,适用于电流、电阻不变; (2)功能关系:Q =W 克服安培力,电流变或不变都适用;(3)能量转化:Q =ΔE 其他能的减少量,电流变或不变都适用.3.电磁感应综合题的解题策略(1) 电路分析:明确电源与外电路,可画等效电路图.(2) 受力分析:把握安培力的特点,安培力大小与导体棒速度有关,一般在牛顿第二定律方程里讨论,v 的变化影响安培力大小,进而影响加速度大小,加速度的变化又会影响v 的变化.(3) 过程分析:注意导体棒进入磁场或离开磁场时的速度是否达到“收尾速度”.(4) 能量分析:克服安培力做的功,等于把其他形式的能转化为电能的多少.例5 (2019·湖北稳派教育上学期第二次联考)如图9所示,倾角为θ的光滑绝缘斜面上平行于底边的虚线ef 下方有垂直于斜面向下的匀强磁场,磁场的磁感应强度大小为B ,边长为L 的正方形导线框abcd 放在斜面上,线框的电阻为R ,线框的cd 边刚好与ef 重合.无初速度释放线框,当ab 边刚好要进入磁场时,线框的加速度刚好为零,线框的质量为m ,重力加速度为g ,求:图9(1)ab 边刚好要进入磁场时线框的速度大小;(2)从释放线框到ab 边进入磁场时,通过线框横截面的电荷量.答案 (1)mgR sin θB 2L 2 (2)BL 2R解析 (1)ab 边刚好要进入磁场时, mg sin θ=F A =B 2L 2v R解得:v =mgR sin θB 2L 2(2)线框进入磁场的过程中,平均电流为I =E R根据法拉第电磁感应定律有:E =ΔФΔt 通过线框横截面的电荷量q =I Δt =ΔФR =BL 2R.变式训练5.(多选)(2019·辽宁葫芦岛市第一次模拟)如图10甲所示,在MN 、OP 间存在一匀强磁场,t =0时,一正方形光滑金属线框在水平向右的外力F 作用下紧贴MN 从静止开始做匀加速运动,外力F 随时间t 变化的图线如图乙所示,已知线框质量m =1 kg 、电阻R =2 Ω,则( )图10A .线框的加速度大小为2 m/s 2B .磁场宽度为6 mC .匀强磁场的磁感应强度大小为 2 TD .线框进入磁场过程中,通过线框横截面的电荷量为22 C 答案 ACD 解析 整个线框在磁场中运动时只受外力F 作用,则加速度a =F m=2 m/s 2.由题图可知,从线框右边刚进入磁场到右边刚离开磁场,运动的时间为2 s ,磁场的宽度d =12at 12=4 m ,所以选项A 正确,B 错误;当线框全部进入磁场前的瞬间:F 1-F 安=ma ,而F 安=BIL =B 2L 2v R=B 2L 2at R ,线框的宽度L =12at 12=12×2×12 m =1 m ,联立得:B = 2 T ,所以选项C 正确;线框进入磁场过程中,通过线框横截面的电荷量为q =ΔФR =BL 2R =2×122 C =22C ,所以选项D 正确.例6 (2019 ·浙南名校联盟期末)如图11甲所示,在竖直方向上有4条间距相等的水平虚线L 1、L 2、L 3、L 4,在L 1L 2之间、L 3L 4之间存在匀强磁场,大小均为1 T ,方向垂直于虚线所在平面.现有一根电阻为2 Ω的均匀金属丝,首尾相连制成单匝矩形线圈abcd ,连接处接触电阻忽略,宽度cd =L =0.5 m ,线圈质量为0.1 kg ,将其从图示位置由静止释放(cd 边与L 1重合),速度随时间变化的关系如图乙所示,其中0~ t 1时间内图线是曲线,其他时间内都是直线;并且t 1时刻cd 边与L 2重合,t 2时刻ab 边与L 3重合,t 3时刻ab 边与L 4重合,已知t 1~t 2的时间间隔为0.6 s ,整个运动过程中线圈平面始终处于竖直方向(重力加速度g 取10 m/s 2).求:图11(1)线圈匀速运动的速度大小;(2)线圈的长度ad ;(3)在0~t 1时间内通过线圈的电荷量;(4)0~t 3时间内,线圈ab 边产生的热量.答案 (1) 8 m/s (2) 2 m (3) 0.25 C (4) 0.18 J解析 (1) t 2~t 3时间ab 边在L 3L 4内做匀速直线运动,E =BL v 2,F =B E R L ,F =mg 联立解得:v 2=mgR B 2L2=8 m/s , (2)从cd 边出L 2到ab 边刚进入L 3线圈一直做匀加速直线运动,ab 刚进上方磁场时,cd 也应刚进下方磁场,设磁场宽度是d ,由v 2=v 1+gt 得,v 1=2 m/s ,则3d =v 1+v 22t =3 m ,得:d =1 m ,有:ad =2d =2 m ,(3)0~t 1时间内,通过线圈的电荷量为q =ΔΦR =BdL R=0.25 C , (4)在0~t 3时间内由能量守恒得:线圈产生热量Q 总=mg ·5d -12m v 22=1.8 J 故线圈ab 边产生热量Q =110Q 总=0.18 J. 变式训练6.(2019·福建三明市期末质量检测)如图12所示,足够长的光滑导轨倾斜放置,导轨平面与水平面夹角θ=37°,导轨间距L =0.4 m ,其下端连接一个定值电阻R =4 Ω,其他电阻不计.两导轨间存在垂直于导轨平面向下的匀强磁场,磁感应强度B =1 T .一质量为m =0.04 kg 的导体棒ab 垂直于导轨放置,现将导体棒由静止释放,取重力加速度g =10 m/s 2,sin 37°=0.6,cos 37°=0.8.图12(1)求导体棒下滑的最大速度;(2)若导体棒从静止加速到v =4 m/s 的过程中,通过R 的电荷量q =0.2 C ,求R 产生的热量值. 答案 (1)6 m/s (2)0.16 J解析 (1)当导体棒所受的合外力为零时,速度最大,则:mg sin θ=BIL ,I =BL v R 联立解得v =6 m/s(2)设该过程中电流的平均值为I ,则q =I ΔtI =ER ,E =BLx Δt 由能量守恒定律可得:mgx sin θ=12m v 2+Q 联立解得:x =2 m ,Q =0.16 J .考点 电磁感应中的动量和能量问题1.电磁感应与动量综合问题往往需要运用牛顿第二定律、动量定理、动量守恒定律、功能关系和能量守恒定律等重要规律,并结合闭合电路欧姆定律等物理规律及基本方法求解.2.动量观点在电磁感应问题中的应用,主要可以解决变力的冲量.所以,在求解导体棒做非匀变速运动的问题时,应用动量定理可以避免由于加速度变化而导致运动学公式不能使用的麻烦,在求解双杆模型问题时,在一定条件下可以利用动量守恒定律避免讨论中间变化状态,而直接求得最终状态.例7 (2019·福建福州市期末质量检测)如图13所示,空间存在一个范围足够大的竖直向下的匀强磁场,磁场的磁感应强度大小为B ;边长为L 的正方形金属框abcd (简称方框)放在光滑的水平地面上,其外侧套着一个与方框边长相同的U 形金属框架MNQP (仅有MN 、NQ 、QP 三条边,简称U 形框),U 形框的M 、P 端的两个触点与方框接触良好且无摩擦,其他地方没有接触.两个金属框每条边的质量均为m ,每条边的电阻均为r .(1)若方框固定不动,U 形框以速度v 0垂直NQ 边向右匀速运动,当U 形框的接触点M 、P 端滑至方框的最右侧时,如图乙所示,求U 形框上N 、Q 两端的电势差U NQ ;(2)若方框不固定,给U 形框垂直NQ 边向右的水平初速度v 0,U 形框恰好不能与方框分离,求方框最后的速度v t 和此过程流过U 形框上NQ 边的电荷量q ;(3)若方框不固定,给U 形框垂直NQ 边向右的初速度v (v >v 0),在U 形框与方框分离后,经过t 时间,方框的最右侧和U 形框的最左侧之间的距离为s .求分离时U 形框的速度大小v 1和方框的速度大小v 2.图13答案 见解析解析 (1)由法拉第电磁感应定律得:E =BL v 0此时电路图如图所示由串并联电路规律,外电阻为R 外=2r +3r ×r 3r +r =114r 由闭合电路欧姆定律得:流过QN 的电流I =E R 外+r=4BL v 015r 所以:U NQ =E -Ir =1115BL v 0; (2)U 形框向右运动过程中,方框和U 形框组成的系统所受合外力为零,系统动量守恒. 依题意得:方框和U 形框最终速度相同,设最终速度大小为v t ;3m v 0=(3m +4m )v t解得:v t =37v 0 对U 形框,由动量定理得:-BL I t =3m v t -3m v 0由q =I t解得:q =12m v 07BL(3)设U 形框和方框分离时速度分别为v 1和v 2,系统动量守恒:3m v =3m v 1+4m v 2 依题意得:s =(v 1-v 2)t联立解得:v 1=37v +4s 7tv 2=37v -3s 7t. 专题突破练级保分练1.(2019·广东珠海市质量监测)如图1所示,使一个水平铜盘绕过其圆心的竖直轴OO ′转动,摩擦等阻力不计,转动是匀速的.现把一个蹄形磁铁水平向左移近铜盘,则( )图1A .铜盘转动将变快B .铜盘转动将变慢C .铜盘仍以原来的转速转动D .因磁极方向未知,无法确定答案 B解析 假设蹄形磁铁的上端为N 极,下端为S 极,铜盘顺时针转动(从OO ′方向看).根据右手定则可以确定此时铜盘中的感应电流方向是从盘心指向边缘.通电导体在磁场中要受到力的作用,根据感应电流的方向和磁场的方向,利用左手定则可以确定磁场对铜盘的作用力的方向是沿逆时针方向,其受力方向与铜盘的转动方向相反,所以铜盘的转动速度将减小.无论怎样假设,铜盘的受力方向始终与转动方向相反.同时,转动过程中,机械能转化为电能,最终转化为内能,所以转得慢了.所以B 正确,A 、C 、D 错误.2.(多选)(2019·福建泉州市期末质量检查)如图2甲所示,匀强磁场垂直穿过矩形金属线框abcd ,磁感应强度B 随时间t 按图乙所示规律变化,下列说法正确的是( )图2A.t1时刻线框的感应电流方向为a→b→c→d→aB.t3时刻线框的感应电流方向为a→b→c→d→aC.t2时刻线框的感应电流最大D.t1时刻线框ab边受到的安培力方向向右答案AD解析t1时刻穿过线框的磁通量向里增加,根据楞次定律可知,线框的感应电流方向为a→b→c→d→a,由左手定则可知,线框ab边受到的安培力方向向右,选项A、D正确;t3时刻穿过线框的磁通量向里减小,可知线框的感应电流方向为a→d→c→b→a,选项B错误;B-t图象的斜率等于磁感应强度的变化率,可知t2时刻磁感应强度的变化率为零,则线框的感应电流为零,选项C错误.3.(多选)(2019·全国卷Ⅲ·19)如图3,方向竖直向下的匀强磁场中有两根位于同一水平面内的足够长的平行金属导轨,两相同的光滑导体棒ab、cd静止在导轨上.t=0时,棒ab以初速度v0向右滑动.运动过程中,ab、cd始终与导轨垂直并接触良好,两者速度分别用v1、v2表示,回路中的电流用I表示.下列图像中可能正确的是()图3答案AC解析棒ab以初速度v0向右滑动,切割磁感线产生感应电动势,使整个回路中产生感应电流,判断可知棒ab受到与v0方向相反的安培力的作用而做变减速运动,棒cd受到与v0方向相同的安培力的作用而做变加速运动,它们之间的速度差Δv=v1-v2逐渐减小,整个系统产生的感应电动势逐渐减小,回路中感应电流逐渐减小,最后变为零,即最终棒ab和棒cd的速度相同,v 1=v 2,这时两相同的光滑导体棒ab 、cd 组成的系统在足够长的平行金属导轨上运动,水平方向上不受外力作用,由动量守恒定律有m v 0=m v 1+m v 2,解得v 1=v 2=v 02,选项A 、C 正确,B 、D 错误.4.(2019·甘肃兰州市第一次诊断)如图4所示,宽为L 的光滑导轨竖直放置,左边有与导轨平面垂直的区域足够大的匀强磁场,磁感应强度为B ,右边有两块水平放置的金属板,两板间距为d .金属板和电阻R 都与导轨相连.要使两板间质量为m 、带电荷量为-q 的油滴恰好处于静止状态,阻值也为R 的金属棒ab 在导轨上的运动情况可能为(金属棒与导轨始终接触良好,导轨电阻不计,重力加速度为g )( )图4A .向右匀速运动,速度大小为2dmg BLqB .向左匀速运动,速度大小为2dmg BLqC .向右匀速运动,速度大小为dmg 2BLqD .向左匀速运动,速度大小为dmg 2BLq答案 A解析 两板间质量为m 、带电荷量为-q 的油滴恰好处于静止状态,则qE =mg ,板间电场强度E =mg q ,方向竖直向下;两板间电压U =Ed =mgd q,且上板带正电、下板带负电.金属棒ab 切割磁感线相当于电源,两金属板与电阻R 并联后接在金属棒两端,则金属棒中电流方向由b 流向a ,U =R R +R·E =12·BL v ,则金属棒ab 在导轨上的运动速度v =2mgd qBL ;据金属棒中电流方向由b 流向a 和右手定则可得,金属棒向右运动.综上,A 正确,B 、C 、D 错误.5.(2019·北京市东城区上学期期末)如图5所示,两光滑水平放置的平行金属导轨间距为L ,直导线MN 垂直跨在导轨上,且与导轨接触良好,整个装置处于垂直于纸面向里的匀强磁场中,磁感应强度大小为B .电容器的电容为C ,除电阻R 外,导轨和导线的电阻均不计.现给导线MN 一初速度,使导线MN 向右运动,当电路稳定后,MN 以速度v 向右匀速运动时( )图5A .电容器两端的电压为零B .通过电阻R 的电流为BL v RC .电容器所带电荷量为CBL vD .为保持MN 匀速运动,需对其施加的拉力大小为B 2L 2v R答案 C解析 当导线MN 匀速向右运动时,导线所受的合力为零,说明导线不受安培力,电路中电流为零,故电阻两端没有电压.此时导线MN 产生的感应电动势恒定,根据闭合电路欧姆定律得知,电容器两板间的电压为U =E =BL v ,故A 、B 错误.电容器所带电荷量Q =CU =CBL v ,故C 正确;因匀速运动后MN 所受合力为0,而此时无电流,不受安培力,则无需拉力便可做匀速运动,故D 错误.6.(多选)(2019·湖北稳派教育上学期第二次联考)如图6甲所示,通电直导线MN 和正方形导线框在同一水平面内,ab 边与MN 平行,先给MN 通以如图乙所示的电流,然后再通以如图丙所示的正弦交流电,导线和线框始终保持静止不动,电流从N 到M 为正,已知线框中的磁通量与直导线MN 中的电流成正比,则下列说法正确的是( )图6A .通以如图乙所示的电流时,线框中产生的电流先减小后增大B .通以如图乙所示的电流时,线框中的感应电流方向始终不变C .通以如图丙所示的电流时,0~t 2时间内,线框受到的安培力方向不变D .通以如图丙所示的电流时,t 3 时刻线框受到的安培力为零答案 BD解析 由题意可知,从N 到M 的方向为电流正方向;通以如题图乙所示的电流时,在0~t 1时间内电流方向为从M 到N ,穿过线框abcd 的磁场方向垂直纸面向外,大小在减小,由楞次定律可得,感应电流方向为逆时针,即为abcda ;在t 1时刻后,电流方向为N 到M ,穿过线框abcd 的磁场方向垂直纸面向里,大小在增大,由楞次定律可得,感应电流方向为逆时针,即为abcda ,故电流的方向不变,根据法拉第电磁感应定律有:E =ΔФΔt ,则线框中的感应电流为I =E R =ΔФΔt ×1R ,因线框中的磁通量与直导线MN 中的电流成正比,即ΔФΔt ∝ΔI Δt,则由乙图可知ΔI Δt 一直保持不变,故ΔФΔt不变,则感应电流I 不变,故A 错误,B 正确;通以如题图丙所示的电流时,在0~t 22时间内,导线中电流沿正方向增大,则线框中的磁场向里增大,由楞次定律可知,感应电流方向为逆时针,即为abcda ,根据左手定则可知,ab 边受到的安培力方向向右,cd 边受到的安培力方向向左,根据F =BIL 可知,I 、L 相同,但ab 边离导线近,故ab 边所在处的磁感应强度大于cd 边所在处的磁感应强度,则此时安培力的方向向右;在t 22~t 2时间内,导线中电流沿正方向减小,则线框中的磁场向里减小,由楞次定律可知,感应电流方向为顺时针,即为adcba ;根据左手定则可知,ab 边受到的安培力方向向左,cd 边受到的安培力方向向右,根据F =BIL 可知,I 、L 相同,但ab 边离导线近,故ab 边所在处的磁感应强度大于cd 边所在处的磁感应强度,则此时安培力的方向向左,故在0~t 2时间内线框受到的安培力方向改变,故C 错误;由题图丙可知,在t 3时刻电流为零,根据F =BIL 可知,此时线框受到的安培力为零,故D 正确.7.(2019·湖北十堰市上学期期末)如图7甲所示,导体棒MN 置于水平导轨上,PQMN 所围成的矩形的面积为S ,PQ 之间有阻值为R 的电阻,不计导轨和导体棒的电阻.导轨所在区域内存在沿竖直方向的匀强磁场,规定磁场方向竖直向上为正,在0~2t 0时间内磁感应强度的变化情况如图乙所示,导体棒MN 始终处于静止状态.下列说法正确的是( )图7A .在0~2t 0时间内,导体棒受到的导轨的摩擦力方向先向左后向右,大小不变B .在0~t 0时间内,通过导体棒的电流方向为N 到MC .在t 0~2t 0时间内,通过电阻R 的电流大小为SB 0Rt 0。
高考物理电磁感应现象习题综合题含答案解析一、高中物理解题方法:电磁感应现象的两类情况1.如图所示,足够长的光滑平行金属导轨MN 、PQ 倾斜放置,两导轨间距离为L ,导轨平面与水平面间的夹角θ,所处的匀强磁场垂直于导轨平面向上,质量为m 的金属棒ab 垂直于导轨放置,导轨和金属棒接触良好,不计导轨和金属棒ab 的电阻,重力加速度为g .若在导轨的M 、P 两端连接阻值R 的电阻,将金属棒ab 由静止释放,则在下滑的过程中,金属棒ab 沿导轨下滑的稳定速度为v ,若在导轨M 、P 两端将电阻R 改接成电容为C 的电容器,仍将金属棒ab 由静止释放,金属棒ab 下滑时间t ,此过程中电容器没有被击穿,求:(1)匀强磁场的磁感应强度B 的大小为多少? (2)金属棒ab 下滑t 秒末的速度是多大? 【答案】(1)2sin mgR B L vθ=2)sin sin t gvt v v CgR θθ=+ 【解析】试题分析:(1)若在M 、P 间接电阻R 时,金属棒先做变加速运动,当加速度为零时做匀速运动,达到稳定状态.则感应电动势E BLv =,感应电流EI R=,棒所受的安培力F BIL =联立可得22B L vF R=,由平衡条件可得F mgsin θ=,解得2mgRsin B L v θ (2)若在导轨 M 、P 两端将电阻R 改接成电容为C 的电容器,将金属棒ab 由静止释放,产生感应电动势,电容器充电,电路中有充电电流,ab 棒受到安培力. 设棒下滑的速度大小为v ',经历的时间为t 则电容器板间电压为 U E BLv ='=此时电容器的带电量为Q CU = 设时间间隔△t 时间内流经棒的电荷量为Q则电路中电流Q C U CBL v i t t t ∆∆∆===∆∆∆,又va t∆=∆,解得i CBLa = 根据牛顿第二定律得mgsin BiL ma θ-=,解得22mgsin gvsin a m B L C v CgRsin θθθ==++所以金属棒做初速度为0的匀加速直线运动,ts 末的速度gvtsin v at v CgRsin θθ'==+.考点:导体切割磁感线时的感应电动势;功能关系;电磁感应中的能量转化【名师点睛】本题是电磁感应与电路、力学知识的综合,关键要会推导加速度的表达式,通过分析棒的受力情况,确定其运动情况.2.如图,垂直于纸面的磁感应强度为B ,边长为 L 、电阻为 R 的单匝方形线圈 ABCD 在外力 F 的作用下向右匀速进入匀强磁场,在线圈进入磁场过程中,求: (1)线圈进入磁场时的速度 v 。
微型专题1 楞次定律的应用例1(楞次定律的重要结论)(多选)如图所示,光滑固定导轨m、n水平放置,两根导体棒p、q平行放于导轨上,形成一个闭合回路,当一条形磁铁从高处下落接近回路时(不计空气阻力)()A.p、q将互相靠拢B.p、q将互相远离C.磁铁下落的加速度仍为gD.磁铁下落的加速度小于g答案AD例2(“三定则一定律”的综合应用)(多选)如图所示装置中,cd杆光滑且原来静止.当ab杆做如下哪些运动时,cd杆将向右移动(导体棒切割磁感线速度越大,感应电流越大)()A.向右匀速运动B.向右加速运动C.向左加速运动D.向左减速运动答案BD专题2 电磁感应中的电路、电荷量及图象问题一、电磁感应中的电路问题例3一个阻值为R、匝数为n的圆形金属线圈与阻值为2R的电阻R1、电容为C的电容器连接成如图(a)所示回路.金属线圈的半径为r1,在线圈中半径为r2的圆形区域内存在垂直于线圈平面向里的匀强磁场,磁感应强度B随时间t变化的关系图线如图(b)所示.图线与横、纵轴的截距分别为t0和B0.导线的电阻不计.求:(1)通过电阻R1的电流大小和方向;(2)0~t1时间内通过电阻R1的电荷量q;(3)t1时刻电容器所带电荷量Q.答案(1)nπB0r223Rt0,方向从b到a(2)nπB0r22t13Rt0 (3)2nπCB0r223t0三、电磁感应中的图象问题例4如图甲所示,矩形线圈abcd位于匀强磁场中,磁场方向垂直线圈所在平面,磁感应强度B 随时间t变化的规律如图乙所示.以图中箭头所示方向为线圈中感应电流i的正方向,以垂直于线圈所在平面向里为磁感应强度B的正方向,则下列图中能正确表示线圈中感应电流i随时间t变化规律的是()答案 C【例5】(多选)如图所示,光滑平行金属导轨MN、PQ放置在同一水平面内,M、P之间接一定值电阻R,金属棒cb垂直导轨水平放置,金属棒cb 及导轨电阻不计。
整个装置处在竖直向上的匀强磁场中,t=0时对金属棒施加水平向右的外力F,使金属棒由静止开始做匀加速直线运动。
高考物理:带你攻克电磁感应中的典型例题(附解析)例1、如图所示,有一个弹性的轻质金属圆环,放在光滑的水平桌面上,环中央插着一根条形磁铁.突然将条形磁铁迅速向上拔出,则此时金属圆环将()A. 圆环高度不变,但圆环缩小B. 圆环高度不变,但圆环扩张C. 圆环向上跳起,同时圆环缩小D. 圆环向上跳起,同时圆环扩张解析:在金属环中磁通量有变化,所以金属环中有感应电流产生,按照楞次定律解决问题的步骤一步一步进行分析,分析出感应电流的情况后再根据受力情况考虑其运动与形变的问题.也可以根据感应电流的磁场总阻碍线圈和磁体间的相对运动来解答。
当磁铁远离线圈时,线圈和磁体间的作用力为引力,由于金属圆环很轻,受的重力较小,因此所受合力方向向上,产生向上的加速度.同时由于线圈所在处磁场减弱,穿过线圈的磁通量减少,感应电流的磁场阻碍磁通量减少,故线圈有扩张的趋势。
所以D选项正确。
一、电磁感应中的力学问题导体切割磁感线产生感应电动势的过程中,导体的运动与导体的受力情况紧密相连,所以,电磁感应现象往往跟力学问题联系在一起。
解决这类电磁感应中的力学问题,一方面要考虑电磁学中的有关规律,如安培力的计算公式、左右手定则、法拉第电磁感应定律、楞次定律等;另一方面还要考虑力学中的有关规律,如牛顿运动定律、动量定理、动能定理、动量守恒定律等。
例2、如图1所示,两根足够长的直金属导轨MN、PQ平行放置在倾角为θ的绝缘斜面上,两导轨间距为L,M、P两点间接有阻值为R的电阻。
一根质量为m的均匀直金属杆ab放在两导轨上,并与导轨垂直。
整套装置处于磁感应强度为B的匀强磁场中,磁场方向垂直斜面向下,导轨和金属杆的电阻可忽略。
让ab杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦。
(1)由b向a方向看到的装置如图2所示,请在此图中画出ab 杆下滑过程中某时刻的受力示意图;(2)在加速下滑过程中,当ab杆的速度大小为v时,求此时ab 杆中的电流及其加速度的大小;(3)求在下滑过程中,ab杆可以达到的速度最大值。
专题九电磁感应定律及综合应用电磁感应是电磁学中最为重要的内容,也是高考命题频率最高的内容之一。
题型多为选择题、计算题。
主要考查电磁感应、楞次定律、法拉第电磁感应定律、自感等知识。
本部分知识多结合电学、力学部分出压轴题,其命题形式主要是电磁感应与电路规律的综合应用、电磁感应与力学规律的综合应用、电磁感应与能量守恒的综合应用。
复习中要熟练掌握感应电流的产生条件、感应电流方向的判断、感应电动势的计算,还要掌握本部分内容与力学、能量的综合问题的分析求解方法。
预测高考重点考查法拉第电磁感应定律及楞次定律和电路等效问题.综合试题还是涉及到力和运动、动量守恒、能量守恒、电路分析、安培力等力学和电学知识.主要的类型有滑轨类问题、线圈穿越有界磁场的问题、电磁感应图象的问题等.此除日光灯原理、磁悬浮原理、电磁阻尼、超导技术这些在实际中有广泛的应用问题也要引起重视。
知识点一、法拉第电磁感应定律法拉第电磁感应定律的内容是感应电动势的大小与穿过回路的磁通量的变化率成正比.在具体问题的分析中,针对不同形式的电磁感应过程,法拉第电磁感应定律也相应有不同的表达式或计算式.磁通量变化的形式表达式备注通过n 匝线圈内的磁通量发生变化E =n ·ΔΦΔt(1)当S 不变时,E =nS ·ΔB Δt (2)当B 不变时,E =nB ·ΔS Δt 导体垂直切割磁感线运动E =BLv 当v ∥B 时,E =0导体绕过一端且垂直于磁场方向的转轴匀速转动E =12BL 2ω线圈绕垂直于磁场方向的转轴匀速转动E =nBSω·sin ωt 当线圈平行于磁感线时,E 最大为E =nBSω,当线圈平行于中性面时,E =0知识点二、楞次定律与左手定则、右手定则1.左手定则与右手定则的区别:判断感应电流用右手定则,判断受力用左手定则.2.应用楞次定律的关键是区分两个磁场:引起感应电流的磁场和感应电流产生的磁场.感应电流产生高考物理二轮复习:电磁感应定律及综合应用知识点解析及专题练习的磁场总是阻碍引起感应电流的磁场的磁通量的变化,“阻碍”的结果是延缓了磁通量的变化,同时伴随着能量的转化.3.楞次定律中“阻碍”的表现形式:阻碍磁通量的变化(增反减同),阻碍相对运动(来拒去留),阻碍线圈面积变化(增缩减扩),阻碍本身电流的变化(自感现象).知识点三、电磁感应与电路的综合电磁感应与电路的综合是高考的一个热点内容,两者的核心内容与联系主线如图4-12-1所示:1.产生电磁感应现象的电路通常是一个闭合电路,产生电动势的那一部分电路相当于电源,产生的感应电动势就是电源的电动势,在“电源”内部电流的流向是从“电源”的负极流向正极,该部分电路两端的电压即路端电压,U =R R +rE .2.在电磁感应现象中,电路产生的电功率等于内外电路消耗的功率之和.若为纯电阻电路,则产生的电能将全部转化为内能;若为非纯电阻电路,则产生的电能除了一部分转化为内能,还有一部分能量转化为其他能,但整个过程能量守恒.能量转化与守恒往往是电磁感应与电路问题的命题主线,抓住这条主线也就是抓住了解题的关键.在闭合电路的部分导体切割磁感线产生感应电流的问题中,机械能转化为电能,导体棒克服安培力做的功等于电路中产生的电能.说明:求解部分导体切割磁感线产生的感应电动势时,要区别平均电动势和瞬时电动势,切割磁感线的等效长度等于导线两端点的连线在运动方向上的投影.高频考点一对楞次定律和电磁感应图像问题的考查例1、(多选)(2019·全国卷Ⅰ·20)空间存在一方向与纸面垂直、大小随时间变化的匀强磁场,其边界如图4(a)中虚线MN 所示.一硬质细导线的电阻率为ρ、横截面积为S ,将该导线做成半径为r 的圆环固定在纸面内,圆心O 在MN 上.t =0时磁感应强度的方向如图(a)所示;磁感应强度B 随时间t 的变化关系如图(b)所示.则在t =0到t =t 1的时间间隔内()图4A.圆环所受安培力的方向始终不变B.圆环中的感应电流始终沿顺时针方向C.圆环中的感应电流大小为B0rS4t0ρD.圆环中的感应电动势大小为B0πr24t0【举一反三】(2018年全国II卷)如图,在同一平面内有两根平行长导轨,导轨间存在依次相邻的矩形匀强磁场区域,区域宽度均为l,磁感应强度大小相等、方向交替向上向下。
电磁感应现象习题综合题含答案解析一、高中物理解题方法:电磁感应现象的两类情况1.如图,水平面(纸面)内同距为l 的平行金属导轨间接一电阻,质量为m 、长度为l 的金属杆置于导轨上,t =0时,金属杆在水平向右、大小为F 的恒定拉力作用下由静止开始运动.0t 时刻,金属杆进入磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场区域,且在磁场中恰好能保持匀速运动.杆与导轨的电阻均忽略不计,两者始终保持垂直且接触良好,两者之间的动摩擦因数为μ.重力加速度大小为g .求(1)金属杆在磁场中运动时产生的电动势的大小; (2)电阻的阻值.【答案】0F E Blt g m μ⎛⎫=- ⎪⎝⎭ ; R =220B l t m【解析】 【分析】 【详解】(1)设金属杆进入磁场前的加速度大小为a ,由牛顿第二定律得:ma=F-μmg ① 设金属杆到达磁场左边界时的速度为v ,由运动学公式有:v =at 0 ②当金属杆以速度v 在磁场中运动时,由法拉第电磁感应定律,杆中的电动势为:E=Blv ③ 联立①②③式可得:0F E Blt g m μ⎛⎫=-⎪⎝⎭④ (2)设金属杆在磁场区域中匀速运动时,金属杆的电流为I ,根据欧姆定律:I=ER⑤ 式中R 为电阻的阻值.金属杆所受的安培力为:f BIl = ⑥ 因金属杆做匀速运动,由牛顿运动定律得:F –μmg–f=0 ⑦联立④⑤⑥⑦式得: R =220B l t m2.如图所示,两平行长直金属导轨(不计电阻)水平放置,间距为L ,有两根长度均为L 、电阻均为R 、质量均为m 的导体棒AB 、CD 平放在金属导轨上。
其中棒CD 通过绝缘细绳、定滑轮与质量也为m 的重物相连,重物放在水平地面上,开始时细绳伸直但无弹力,棒CD 与导轨间的动摩擦因数为μ,最大静摩擦力等于滑动摩擦力,忽略其他摩擦和其他阻力,导轨间有一方向竖直向下的匀强磁场1B ,磁场区域的边界满足曲线方程:sin(0y L x x L Lπ=≤≤,单位为)m 。
高中物理电磁感应专题分类题型一、【电磁感应现象楞次定律】典型题1.如图所示,两个单匝线圈a、b的半径分别为r和2r.圆形匀强磁场B的边缘恰好与a线圈重合,则穿过a、b 两线圈的磁通量之比为()A.1∶1B.1∶2C.1∶4 D.4∶1解析:选A.磁通量Φ=B·S,其中B为磁感应强度,S为与B垂直的有效面积.因为是同一磁场,B相同,且有效面积相同,S a=S b,故Φa=Φb.选项A正确.2.如图所示,两个相同的轻质铝环套在一根水平光滑绝缘杆上,当一条形磁铁向左运动靠近两环时,两环的运动情况是()A.同时向左运动,间距增大B.同时向左运动,间距减小C.同时向右运动,间距减小D.同时向右运动,间距增大解析:选B.根据“来拒去留”可知,两环同时向左运动,又因两环中产生同向的感应电流,相互吸引,且右环受磁铁的排斥作用较大,故两环间距又减小,B正确.3.如图,一圆形金属环与两固定的平行长直导线在同一竖直平面内,环的圆心与两导线距离相等,环的直径小于两导线间距.两导线中通有大小相等、方向向下的恒定电流.若()A.金属环向上运动,则环上的感应电流方向为顺时针方向B.金属环向下运动,则环上的感应电流方向为顺时针方向C.金属环向左侧直导线靠近,则环上的感应电流方向为逆时针方向D.金属环向右侧直导线靠近,则环上的感应电流方向为逆时针方向解析:选D.当金属环上下移动时,穿过环的磁通量不发生变化,根据楞次定律,没有感应电流产生,选项A、B错误;当金属环向左移动时,穿过环的磁通量垂直纸面向外且增加,根据楞次定律可知,环上产生顺时针方向的感应电流,故选项C错误;当金属环向右移动时,穿过环的磁通量垂直纸面向里且增加,根据楞次定律可知,环上产生逆时针方向的感应电流,故选项D正确.4.如图,在一根竖直放置的铜管的正上方某处从静止开始释放一个强磁体,在强磁体沿着铜管中心轴线穿过铜管的整个过程中,不计空气阻力,那么()A.由于铜是非磁性材料,故强磁体运动的加速度始终等于重力加速度B.由于铜是金属材料,能够被磁化,使得强磁体进入铜管时加速度大于重力加速度,离开铜管时加速度小于重力加速度C.由于铜是金属材料,在强磁体穿过铜管的整个过程中,铜管中都有感应电流,加速度始终小于重力加速度D.由于铜是金属材料,铜管可视为闭合回路,强磁体进入和离开铜管时产生感应电流,在进入和离开铜管时加速度都小于重力加速度,但在铜管内部时加速度等于重力加速度解析:选C.铜是非磁性材料,不能够被磁化,B错误;铜是金属材料,在强磁体穿过铜管的整个过程中,铜管始终切割磁感线,铜管中都有感应电流,强磁体受到向上的磁场力,加速度始终小于重力加速度,C正确,A、D错误.5.(多选)如图所示,两个线圈绕在同一根铁芯上,其中一线圈通过开关与电源连接,另一线圈与远处沿南北方向水平放置在纸面内的直导线连接成回路.将一小磁针悬挂在直导线正上方,开关未闭合时小磁针处于静止状态.下列说法正确的是()A.开关闭合后的瞬间,小磁针的N极朝垂直纸面向里的方向转动B.开关闭合并保持一段时间后,小磁针的N极指向垂直纸面向里的方向C.开关闭合并保持一段时间后,小磁针的N极指向垂直纸面向外的方向D.开关闭合并保持一段时间再断开后的瞬间,小磁针的N极朝垂直纸面向外的方向转动解析:选AD.由电路可知,开关闭合瞬间,右侧线圈环绕部分的电流向下,由安培定则可知,铁芯中产生水平向右的磁场,由楞次定律可知,左侧线圈环绕部分产生向上的电流,则直导线中的电流方向由南向北,由安培定则可知,直导线在小磁针所在位置产生垂直纸面向里的磁场,则小磁针的N极朝垂直纸面向里的方向转动,A正确;开关闭合并保持一段时间后,穿过左侧线圈的磁通量不变,则左侧线圈中的感应电流为零,直导线不产生磁场,则小磁针静止不动,B、C错误;开关闭合并保持一段时间再断开后的瞬间,穿过左侧线圈向右的磁通量减少,则由楞次定律可知,左侧线圈环绕部分产生向下的感应电流,则流过直导线的电流方向由北向南,直导线在小磁针所在处产生垂直纸面向外的磁场,则小磁针的N极朝垂直纸面向外的方向转动,D正确.6.(多选)如图a,螺线管内有平行于轴线的外加匀强磁场,以图中箭头所示方向为其正方向.螺线管与导线框abcd相连,导线框内有一小金属圆环L,圆环与导线框在同一平面内.当螺线管内的磁感应强度B随时间按图b 所示规律变化时()A.在t1~t2时间内,L有收缩趋势B.在t2~t3时间内,L有扩张趋势C.在t2~t3时间内,L内有逆时针方向的感应电流D.在t3~t4时间内,L内有顺时针方向的感应电流解析:选AD.L收缩还是扩张取决于螺线管中产生感应电流的变化情况,t1~t2磁通量的变化率增大,感应电流变大,abcd线框内磁通量变大,L有收缩的趋势,A选项正确;t2~t3时间内磁通量的变化率为常数,产生的感应电流恒定不变,abcd线框内磁感应强度不变,L没有电流,也就没有扩张趋势,B、C选项错误;根据楞次定律,t3~t4时间内由于螺线管内磁通量变化引起的感应电流在线框中为dcba方向并减小,L线圈中原磁场的方向垂直于纸面向里且磁感应强度大小减小,根据楞次定律得L中的感应电流方向为顺时针方向,D选项正确.7.如图为一种早期发电机原理示意图,该发电机由固定的圆形线圈和一对用铁芯连接的圆柱形磁铁构成,两磁极相对于线圈平面对称,在磁极绕转轴匀速转动过程中,磁极中心在线圈平面上的投影沿圆弧XOY运动,(O是线圈中心).则()A.从X到O,电流由E经G流向F,线圈的面积有收缩的趋势B.从X到O,电流由F经G流向E,线圈的面积有扩张的趋势C.从O到Y,电流由F经G流向E,线圈的面积有收缩的趋势D.从O到Y,电流由E经G流向F,线圈的面积有扩张的趋势解析:选D.在磁极绕转轴从X到O匀速转动中,穿过线圈平面的磁通量向上增大,根据楞次定律可知线圈中产生顺时针方向的感应电流,电流由F经G流向E;线圈的每部分受到指向圆心的安培力,线圈的面积有收缩的趋势,故A、B项错误;在磁极绕转轴从O到Y匀速转动中,穿过线圈平面的磁通量向上减小,根据楞次定律可知线圈中产生逆时针方向的感应电流,电流由E经G流向F;线圈的每部分受到背离圆心的安培力,所以线圈的面积有扩张的趋势,故C项错误,D项正确.8.如图甲所示,水平面上的平行导轨MN、PQ上放着两根导体棒ab、cd,两棒中间用绝缘丝线系住.开始时匀强磁场垂直于纸面向里,磁感应强度B随时间t的变化如图乙所示,I和F T分别表示流过导体棒中的电流和丝线的拉力(不计电流之间的相互作用力),则在t0时刻()A.I=0,F T=0 B.I=0,F T≠0C.I≠0,F T=0 D.I≠0,F T≠0解析:选C.t0时刻,磁场变化,磁通量变化,故I≠0;由于B=0,故ab、cd所受安培力均为零,丝线的拉力为零,C项正确.9.如图所示,AOC是光滑的金属导轨,电阻不计,AO沿竖直方向,OC沿水平方向;PQ是金属直杆,电阻为R,几乎竖直斜靠在导轨AO上,由静止开始在重力作用下运动,运动过程中P、Q端始终在金属导轨AOC上;空间存在着垂直纸面向外的匀强磁场,则在PQ杆从开始滑动到P端滑到OC的过程中,PQ中感应电流的方向()A.始终是由P→QB.始终是由Q→PC.先是由P→Q,后是由Q→PD.先是由Q→P,后是由P→Q解析:选C.在PQ杆滑动的过程中,△POQ的面积先增大后减小,穿过△POQ的磁通量先增加后减少,根据楞次定律可知,感应电流的方向先是由P→Q,后是由Q→P,C正确.10.如图所示,质量为m的铜质小闭合线圈静置于粗糙水平桌面上.当一个竖直放置的条形磁铁贴近线圈,沿线圈中线由左至右从线圈正上方等高、匀速经过时,线圈始终保持不动.则关于线圈在此过程中受到的支持力F N 和摩擦力F f的情况,以下判断正确的是()A.F N先大于mg,后小于mgB.F N一直大于mgC.F f先向左,后向右D.线圈中的电流方向始终不变解析:选A.当磁铁靠近线圈时,穿过线圈的磁通量增加,线圈中产生感应电流,线圈受到磁铁的安培力作用,根据楞次定律可知,线圈受到的安培力斜向右下方,则线圈对桌面的压力增大,即F N大于mg,线圈相对桌面有向右运动趋势,受到桌面向左的静摩擦力.当磁铁远离线圈时,穿过线圈的磁通量减小,同理,根据楞次定律可知,线圈受到的安培力斜向右上方,则线圈对桌面的压力减小,即F N小于mg,线圈相对桌面有向右运动趋势,受到桌面向左的静摩擦力.综上可知,F N先大于mg,后小于mg,F f始终向左,故选项B、C错误,A正确;当磁铁靠近线圈时,穿过线圈向下的磁通量增加,线圈中产生感应电流从上向下看是逆时针方向;当磁铁远离线圈时,穿过线圈向下的磁通量减小,线圈中产生感应电流从上向下看是顺时针方向,故选项D错误.11.自1932年磁单极子概念被狄拉克提出以来,不管是理论物理学家还是实验物理学家都一直在努力寻找,但迄今仍然没能找到它们存在的确凿证据.近年来,一些凝聚态物理学家找到了磁单极子存在的有力证据,并通过磁单极子的集体激发行为解释了一些新颖的物理现象,这使得磁单极子艰难的探索之路出现了一丝曙光.如果一个只有N极的磁单极子从上向下穿过如图所示的闭合超导线圈,则从上向下看,这个线圈中将出现()A.先是逆时针方向,然后是顺时针方向的感应电流B.先是顺时针方向,然后是逆时针方向的感应电流C.逆时针方向的持续流动的感应电流D.顺时针方向的持续流动的感应电流解析:选C.N极磁单极子穿过超导线圈的过程中,当磁单极子靠近线圈时,穿过线圈的磁通量增加,且磁场方向从上向下,所以由楞次定律可知感应电流方向为逆时针;当磁单极子远离线圈时,穿过线圈的磁通量减小,且磁场方向从下向上,所以由楞次定律可知感应电流方向为逆时针.因此线圈中产生的感应电流方向不变.由于超导线圈中没有电阻,因此感应电流将长期维持下去,故A、B、D错误,C正确.12. (多选)如图是生产中常用的一种延时继电器的示意图,铁芯上有两个线圈A和B(构成电磁铁),线圈A跟电源连接,线圈B的两端接在一起,构成一个闭合回路.下列说法正确的是()A.闭合开关S时,B中产生与图示方向相同的感应电流B.闭合开关S时,B中产生与图示方向相反的感应电流C.断开开关S时,电磁铁会继续吸住衔铁D一小段时间D.断开开关S时,弹簧K立即将衔铁D拉起解析:选BC.由题意可知,闭合S后,线圈A中产生磁场,穿过线圈B的磁通量要增加,根据楞次定律及右手螺旋定则可知,B中产生与图示方向相反的感应电流,故A错误,B正确;断开S,回路电流减小,铁芯中磁场减小,由楞次定律及右手螺旋定则可知,线圈B产生图示方向的电流,减缓磁场减小的趋势,电磁铁会继续吸住衔铁D 一小段时间,故C 正确,D 错误.13.(山东省2020等级考试)(多选)竖直放置的长直密绕螺线管接入如图甲所示的电路中,通有俯视顺时针方向的电流,其大小按图乙所示的规律变化.螺线管内中间位置固定有一水平放置的硬质闭合金属小圆环(未画出),圆环轴线与螺线管轴线重合.下列说法正确的是( )A .t =T 4时刻,圆环有扩张的趋势B .t =T 4时刻,圆环有收缩的趋势 C .t =T 4和t =3T 4时刻,圆环内的感应电流大小相等 D .t =3T 4时刻,圆环内有俯视逆时针方向的感应电流 解析:选BC .t =T 4时刻,线圈中通有顺时针逐渐增大的电流,则线圈中由电流产生的磁场向下且逐渐增加.由楞次定律可知,圆环有收缩的趋势.A 错误,B 正确;t =3T 4时刻,线圈中通有顺时针逐渐减小的电流,则线圈中由电流产生的磁场向下且逐渐减小,由楞次定律可知,圆环中的感应电流为顺时针,D 错误;t =T 4和t =3T 4时刻,线圈中电流的变化率一致,即由线圈电流产生的磁场变化率一致,则圆环中的感应电流大小相等,C 正确.14.如图所示,在一有界匀强磁场中放一电阻不计的平行金属导轨,虚线为有界磁场的左边界,导轨跟圆形线圈M 相接,图中线圈N 与线圈M 共面、彼此绝缘,且两线圈的圆心重合,半径R M <R N .在磁场中垂直于导轨放置一根导体棒ab ,已知磁场垂直于导轨所在平面向外.欲使线圈N 有收缩的趋势,下列说法正确的是( )A .导体棒可能沿导轨向左做加速运动B .导体棒可能沿导轨向右做加速运动C .导体棒可能沿导轨向左做减速运动D .导体棒可能沿导轨向左做匀速运动解析:选C .导体棒ab 加速向左运动时,导体棒ab 中产生的感应电动势和感应电流增加,由右手定则判断知ab 中电流方向由b →a ,根据安培定则可知M 产生的磁场方向垂直纸面向外,穿过N 的磁通量增大,线圈面积越大抵消的磁感线越多,所以线圈N 要通过增大面积以阻碍磁通量的增大,故A 错误;导体棒ab 加速向右运动时,导体棒ab 中产生的感应电动势和感应电流增加,由右手定则判断知ab 电流方向由a →b ,根据安培定则判断可知M 产生的磁场方向垂直纸面向里,穿过N 的磁通量增大,同理可知B 错误;导体棒ab 减速向左运动时,导体棒ab中产生的感应电动势和感应电流减小,由右手定则判断知ab 中电流方向由b →a ,根据安培定则判断可知M 产生的磁场方向垂直纸面向外,穿过N 的磁通量减小,线圈面积越大抵消的磁感线越多,所以线圈N 要通过减小面积以阻碍磁通量的减小,故C 正确;导体棒ab 匀速向左运动时,导体棒ab 产生的感应电动势和感应电流恒定不变,线圈M 产生的磁场恒定不变,穿过线圈N 中的磁通量不变,没有感应电流产生,则线圈N 不受磁场力,没有收缩的趋势,故D 错误.二、【法拉第电磁感应定律 自感和涡流】典型题1. (多选)如图所示,闭合金属导线框放置在竖直向上的匀强磁场中,匀强磁场的磁感应强度随时间变化.下列说法正确的是( )A .当磁感应强度增加时,线框中的感应电流可能减小B .当磁感应强度增加时,线框中的感应电流一定增大C .当磁感应强度减小时,线框中的感应电流一定增大D .当磁感应强度减小时,线框中的感应电流可能不变解析:选AD .线框中的感应电动势为E =ΔB ΔtS ,设线框的电阻为R ,则线框中的电流I =E R =ΔB Δt ·S R ,因为B 增大或减小时,ΔB Δt可能减小,也可能增大,也可能不变.线框中的感应电动势的大小只和磁通量的变化率有关,和磁通量的变化量无关.故选项A 、D 正确.2.如图所示,一正方形线圈的匝数为n ,边长为a ,线圈平面与匀强磁场垂直,且一半处在磁场中.在Δt 时间内,磁感应强度的方向不变,大小由B 均匀地增大到2B .在此过程中,线圈中产生的感应电动势为( )A .Ba 22ΔtB .nBa 22ΔtC .nBa 2ΔtD .2nBa 2Δt解析:选B .磁感应强度的变化率ΔB Δt =2B -B Δt =B Δt ,法拉第电磁感应定律公式可写成E =n ΔΦΔt =n ΔB ΔtS ,其中磁场中的有效面积S =12a 2,代入得E =n Ba 22Δt,选项B 正确,A 、C 、D 错误. 3.如图所示,长为L 的金属导线弯成一圆环,导线的两端接在电容为C 的平行板电容器上,P 、Q 为电容器的两个极板.磁场方向垂直于环面向里,磁感应强度以B =B 0+kt (k >0)随时间变化.t =0时,P 、Q 两极板电势相等,两极板间的距离远小于环的半径.经时间t ,电容器的P 极板( )A .不带电B .所带电荷量与t 成正比C .带正电,电荷量是kL 2C 4πD .带负电,电荷量是kL 2C 4π解析:选D .磁感应强度均匀增加,回路中产生的感应电动势的方向为逆时针方向,Q 板带正电,P 板带负电,A 错误;由L =2πR ,得R =L 2π,感应电动势E =ΔB Δt ·S =k ·πR 2,解得E =kL 24π,电容器上的电荷量Q =CE =kL 2C 4π,B 、C 错误,D 正确.4.在一空间有方向相反,磁感应强度大小均为B 的匀强磁场,如图所示,垂直纸面向外的磁场分布在一半径为a 的圆形区域内,垂直纸面向里的磁场分布在除圆形区域外的整个区域,该平面内有一半径为b (b >2a )的圆形线圈,线圈平面与磁感应强度方向垂直,线圈与半径为a 的圆形区域是同心圆.从某时刻起磁感应强度在Δt 时间内均匀减小到B 2,则此过程中该线圈产生的感应电动势大小为( )A .πB (b 2-a 2)2ΔtB .πB (b 2-2a 2)ΔtC .πB (b 2-a 2)ΔtD .πB (b 2-2a 2)2Δt解析:选D .磁感线既有垂直纸面向外的,又有垂直纸面向里的,所以可以取垂直纸面向里的方向为正方向.磁感应强度大小为B 时线圈磁通量Φ1=πB (b 2-a 2)-πBa 2, 磁感应强度大小为B 2时线圈磁通量Φ2 =12πB (b 2-a 2)-12πBa 2,因而该线圈磁通量的变化量的大小为ΔΦ=|Φ2-Φ1|=12πB (b 2-2a 2).根据法拉第电磁感应定律可得线圈中产生的感应电动势的大小为E =ΔΦΔt =πB (b 2-2a 2)2Δt.故选项D 正确. 5.在如图所示的电路中,两个灵敏电流表G 1和G 2的零点都在刻度盘中央,当电流从“+”接线柱流入时,指针向右摆;电流从“-”接线柱流入时,指针向左摆.在电路接通后再断开的瞬间,下列说法中符合实际情况的是( )A .G 1表指针向左摆,G 2表指针向右摆B .G 1表指针向右摆,G 2表指针向左摆C .G 1、G 2表的指针都向左摆D .G 1、G 2表的指针都向右摆解析:选B .电路接通后线圈中电流方向向右,当电路断开时,线圈L 中电流减小,产生与原方向同向的自感电动势,与G 2和电阻组成闭合回路,所以G 1中电流方向向右,G 2中电流方向向左,即G 1指针向右摆,G 2指针向左摆,B 正确.6.如图所示,水平“U 形”导轨abcd 固定在匀强磁场中,ab 与cd 平行,间距L 1=0.5 m ,金属棒AB 垂直于ab 且和ab 、cd 接触良好,AB 与导轨左端bc 的距离为L 2=0.8 m ,整个闭合回路的电阻为R =0.2 Ω,磁感应强度为B 0=1 T 的匀强磁场竖直向下穿过整个回路.金属棒AB 通过滑轮和轻绳连接着一个质量为m =0.04 kg 的物体,不计一切摩擦,现使磁场以ΔB Δt=0.2 T/s 的变化率均匀地增大.求:(1)金属棒上电流的方向;(2)感应电动势的大小;(3)物体刚好离开地面的时间(g 取10 m/s 2).解析:(1)由楞次定律可以判断,金属棒上的电流由A 到B .(2)由法拉第电磁感应定律得E =ΔΦΔt =S ΔB Δt=0.08 V . (3)物体刚好离开地面时,其受到的拉力F =mg而拉力F 又等于棒所受的安培力,即mg =F 安=BIL 1 其中B =B 0+ΔB Δtt I =E R解得t =5 s.答案:(1)由A 到B (2)0.08 V (3)5 s7. (多选)如图所示的电路中,L为一个自感系数很大、直流电阻不计的线圈,D1、D2是两个完全相同的电灯,E是内阻不计的电源.t=0时刻,闭合开关S.经过一段时间后,电路达到稳定,t1时刻断开开关S.I1、I2分别表示通过电灯D1和D2的电流,规定图中箭头所示方向为电流正方向,以下各图中能定性描述电流I随时间t变化关系的是()解析:选AC.当S闭合时,L的自感作用会阻碍其中的电流变大,电流从D1流过;当L的阻碍作用变小时,L中的电流变大,D1中的电流变小至零;D2中的电流为电路总电流,电流流过D1时,由于线圈L自感的影响,D2的电流较小,当D1中电流为零时,电流流过L与D2,总电阻变小,电流变大至稳定;当S再断开时,D2马上熄灭,D1与L组成回路,由于L的自感作用,D1慢慢熄灭,电流反向且减小;综上所述知选项A、C正确.8.如图所示,三个灯泡L1、L2、L3的阻值关系为R1<R2<R3,电感线圈L的直流电阻可忽略,D为理想二极管,开关S从闭合状态突然断开时,下列判断正确的是()A.L1逐渐变暗,L2、L3均先变亮,然后逐渐变暗B.L1逐渐变暗,L2立即熄灭,L3先变亮,然后逐渐变暗C.L1立即熄灭,L2、L3均逐渐变暗D.L1、L2、L3均先变亮,然后逐渐变暗解析:选B.开关S处于闭合状态时,由于R1<R2<R3,则分别通过三个灯泡的电流大小I1>I2>I3,开关S 从闭合状态突然断开时,电感线圈产生与L中电流方向一致的自感电动势,由于二极管的反向截止作用,L2立即熄灭,电感线圈、L1、L3组成闭合回路,L1逐渐变暗,通过L3的电流由I3变为I1,再逐渐减小,故L3先变亮,然后逐渐变暗,选项B正确.9. (多选)如图所示,一导线弯成直径为d的半圆形闭合回路,虚线MN右侧有磁感应强度为B的匀强磁场,方向垂直于回路所在的平面.回路以速度v向右匀速进入磁场,直径CD始终与MN垂直.从D点到达边界开始到C 点进入磁场为止,下列说法中正确的是()A .感应电流方向为逆时针方向B .CD 段直导线始终不受安培力C .感应电动势的最大值E =Bd vD .感应电动势的平均值E -=18πBd v解析:选AD .线圈进磁场过程,垂直平面向里的磁通量逐渐增大,根据楞次定律“增反减同”,感应电流方向为逆时针方向,选项A 正确;CD 端导线电流方向与磁场垂直,根据左手定则判断,安培力竖直向下,选项B 错误;线圈进磁场切割磁感线的有效长度是初、末位置的连线,进磁场过程,有效切割长度最长为半径,所以感应电动势最大值为Bd v 2,选项C 错误;感应电动势的平均值E -=ΔΦΔt =B ·12π⎝⎛⎭⎫d 22d v=Bd πv 8,选项D 正确.10. (多选)如图所示,水平面上固定一个顶角为60°的光滑金属导轨MON ,导轨处于磁感应强度大小为B 、方向竖直向下的匀强磁场中,质量为m 的导体棒CD 与∠MON 的角平分线垂直,导轨与棒单位长度的电阻均为r .t =0时刻,CD 在水平外力F 的作用下从O 点以恒定速度v 0沿∠MON 的角平分线向右滑动,在滑动过程中始终保持与导轨良好接触.若棒与导轨均足够长,则( )A .流过导体棒的电流I 始终为B v 03rB .F 随时间t 的变化关系为F =23B 2v 209r tC .t 0时刻导体棒的发热功率为23B 2v 3027r t 0D .撤去F 后,导体棒上能产生的焦耳热为12m v 20解析:选ABC .导体棒的有效切割长度L =2v 0t tan 30°,感应电动势E =BL v 0,回路的总电阻R =(2v 0t tan 30°+2v 0t cos 30°)r ,通过导体棒的电流I =E R =B v 03r ,选项A 正确;导体棒受力平衡,则外力F 与安培力平衡,即F =BIL ,得F =23B 2v 209r t ,选项B 正确;t 0时刻导体棒的电阻为R x =2v 0t 0tan 30°·r ,则导体棒的发热功率P 棒=I 2R x =23B 2v 3027r t 0,选项C 正确;从撤去F 到导体棒停下的过程,根据能量守恒定律有Q 棒+Q 轨=12m v 20-0,得导体棒上能产生的焦耳热Q 棒=12m v 20-Q 轨<12m v 20,选项D 错误. 11.如图所示,abcd 为水平放置的平行“匚”形光滑金属导轨,导轨间距为l ,电阻不计.导轨间有垂直于导轨平面向上的匀强磁场,磁感应强度大小为B .金属杆放置在导轨上,与导轨的接触点为M 、N ,并与导轨成θ角.金属杆以ω 的角速度绕N 点由图示位置匀速转动到与导轨ab 垂直,转动过程中金属杆与导轨始终接触良好,金属杆单位长度的电阻为r .则在金属杆转动过程中( )A .M 、N 两点电势相等B .金属杆中感应电流的方向由N 流向MC .电路中感应电流的大小始终为Bl ω2rD .电路中通过的电荷量为Bl2r tan θ解析:选A .根据题意可知,金属杆MN 为电源,导轨为外电路,由于导轨电阻不计,外电路短路,M 、N 两点电势相等,故选项A 正确;根据右手定则可知金属杆中感应电流的方向是由M 流向N ,故选项B 错误;由于切割磁感线的金属杆长度逐渐变短,E =12B ⎝⎛⎭⎫l sin θ2ω,R =l sin θ r ,I =E R =Bl ω2r sin θ,θ增大,回路中的感应电流逐渐变小,故选项C 错误;由于金属杆在电路中的有效切割长度逐渐减小,所以接入电路的电阻逐渐减小,R >lr ,根据法拉第电磁感应定律有q =I Δt =ΔΦΔt ·R·Δt =ΔΦR <Bl2r tan θ,故选项D 错误.12.如图所示,足够长的平行光滑金属导轨水平放置,宽度L =0.4 m ,一端连接R =1 Ω的电阻.导轨所在空间存在竖直向下的匀强磁场,磁感应强度B =1 T .导体棒MN 放在导轨上,其长度恰好等于导轨间距,与导轨接触良好.导轨和导体棒的电阻均可忽略不计.在平行于导轨的拉力F 作用下,导体棒沿导轨向右匀速运动,速度v =5 m/s.求:(1)感应电动势E 和感应电流I ; (2)在0.1 s 时间内,拉力冲量I F 的大小;(3)若将MN 换为电阻r =1 Ω的导体棒,其他条件不变,求导体棒两端的电压U . 解析:(1)由法拉第电磁感应定律可得,感应电动势 E =BL v =1×0.4×5 V =2 V , 感应电流I =E R =21 A =2 A .(2)拉力大小等于安培力大小 F =BIL =1×2×0.4 N =0.8 N ,冲量大小I F =F Δt =0.8×0.1 N ·s =0.08 N ·s. (3)由闭合电路欧姆定律可得,电路中电流。
电磁感应经典例题及解析电磁感应是电磁学中的重要概念,也是我们日常生活中常常会遇到的现象。
在电磁感应的过程中,磁场的变化会导致电场的产生,进而引发电流的产生。
这一原理广泛应用于发电机、变压器等电磁设备中。
下面我们来看一些经典的电磁感应例题,并对其进行解析。
例题1:一个磁感强度为0.2 T的匀强磁场,以2 m/s的速度向垂直于磁场的方向移动,求导体中感应电动势的大小。
解析:根据电磁感应的原理,导体中感应电动势的大小等于磁感强度与导体的速度的乘积,即E = Bv。
将已知数据代入计算,E = 0.2 T × 2 m/s = 0.4 V。
例题2:一个圆形线圈的半径为10 cm,磁感强度为0.5 T的磁场垂直于线圈的平面,在0.2 s内磁场的强度从0.2 T增加到0.6 T,求线圈中感应电流的大小。
解析:根据电磁感应的原理,感应电流的大小等于感应电动势与电阻的比值,即I = ε/R。
感应电动势可以通过磁场的变化率来计算,即ε = -dφ/dt。
其中,φ表示磁通量。
磁通量的大小等于磁感强度与线圈面积的乘积,即φ = Bπr^2。
将已知数据代入计算,φ = 0.2 T ×π× (0.1 m)^2 = 0.02π Tm^2。
对磁通量关于时间的导数,即dφ/dt,可以计算为(0.6 T - 0.2 T)/0.2 s = 2 T/s。
因此,感应电动势的大小为ε = -2 T/s。
线圈的电阻需要另外给定,才能计算感应电流的大小。
通过以上例题的解析,我们可以看到,在电磁感应问题中,需要根据已知条件来计算磁通量的变化率,从而得到感应电动势的大小。
最后,根据电路中的电阻情况,可以计算出感应电流的大小。
电磁感应是电磁学中的重要概念,掌握电磁感应的原理和应用,对于理解和应用电磁学的知识具有重要意义。
通过解析经典的电磁感应例题,可以加深对电磁感应原理的理解,提高解决实际问题的能力。
电磁感应综合问题1.掌握应用动量定理处理电磁感应问题的思路。
2.掌握应用动量守恒定律处理电磁感应问题的方法。
3.熟练应用楞次定律与法拉第电磁感应定律解决问题。
4.会分析电磁感应中的图像问题。
5.会分析电磁感应中的动力学与能量问题。
电磁感应中的动力学与能量问题1(2024·河北·模拟预测)如图甲所示,水平粗糙导轨左侧接有定值电阻R =3Ω,导轨处于垂直纸面向外的匀强磁场中,磁感应强度B =1T ,导轨间距L =1m 。
一质量m =1kg ,阻值r =1Ω的金属棒在水平向右拉力F 作用下由静止开始从CD 处运动,金属棒与导轨间动摩擦因数μ=0.25,金属棒的v -x 图像如图乙所示,取g =10m/s 2,求:(1)x =1m 时,安培力的大小;(2)从起点到发生x =1m 位移的过程中,金属棒产生的焦耳热;(3)从起点到发生x =1m 位移的过程中,拉力F 做的功。
【答案】(1)0.5N ;(2)116J ;(3)4.75J 【详解】(1)由图乙可知,x =1m 时,v =2m/s ,回路中电流为I =E R +r =BLv R +r=0.5A安培力的大小为F 安=IBL =0.5N (2)由图乙可得v =2x金属棒受到的安培力为F A =IBL =B 2L 2v R +r=x2(N )回路中产生的焦耳热等于克服安培力做的功,从起点到发生x =1m 位移的过程中,回路中产生的焦耳热为Q =W 安=F A x =0+0.52×1J =0.25J金属棒产生的焦耳热为Q 棒=r R +rQ =116J(3)从起点到发生x =1m 位移的过程中,根据动能定理有W F -W 安-μmgx =12mv 2解得拉力F 做的功为W F =4.75J1.电磁感应综合问题的解题思路2.求解焦耳热Q 的三种方法(1)焦耳定律:Q =I 2Rt ,适用于电流恒定的情况;(2)功能关系:Q =W 克安(W 克安为克服安培力做的功);(3)能量转化:Q =ΔE (其他能的减少量)。
专题:电磁感应规律综合应用 命题人:彭小阳电磁感应规律综合应用的四种题型 1、电磁感应中的力学问题 2、电磁感应中的电路问题 3、电磁感应中的能量问题 4、电磁感应中的图象问题题型一:电磁感应中的力学问题这类问题覆盖面广,题型也多种多样;但解决这类问题的关键在于通过运动状态的分析来寻找过程中的临界状态,如速度、加速度取最大值或最小值的条件等,基本思路是:例1:如图所示,电阻不计的平行金属导轨MN 和OP 放置在水平面内.MO 间接有阻值为R=3Ω的电阻.导轨相距d=lm ,其间有竖直向下的匀强磁场,磁感强度B=0.5T.质量为m=0.1kg ,电阻为r=l Ω的导体棒CD 垂直于导轨放置,并接触良好,现用平行于 MN 的恒力F=1N 向右拉动CD ,CD 受摩擦阻力f 恒为0.5N.求(1)CD 运动的最大速度是多少?(2)当CD 达到最大速度后,电阻R 消耗的电功率是多少?(3)当CD 的速度为最大速度的一半时,CD 的加速度是多少?解析:(1)对于导体棒CD ,由安培定则得:F 0 = BId ,根据法拉第电磁感应定律有:E = Bdv ,在闭合回路CDOM 中,由闭合电路欧姆定律得:I = E/ (R + r )。
当v = v max 时,有:F = F 0 + f ,上各式可解得m/s 。
(2)当CD 达到最大速度时有E = Bdv max ,则可得I max = E max /(R + r ),由电功率公式可得,F=BIL 界状态v 与a 方向关系运动状态的分析a 变化情况 F=ma 合外力感应电流 确定电源(E ,r ) rR EI +=由以上各式可得电阻R 消耗的电功率是:。
(3)当CD 的速度为最大速度的一半时,回路中电流强度为:I ′=E ′/(R + r ),CD 受到的安培力大小F ′=BI ′d ,由牛顿第二定律得:F 合 = F -F ′-f = ma ,代入数据可解得:a = 2.5m/s 2。