§1.6 波函数的统计解释 量子力学课件
- 格式:ppt
- 大小:537.50 KB
- 文档页数:26
波函数的统计解释在经典力学中,我们可以准确地跟踪粒子的位置和速度,因此可以明确地描述粒子的位置和运动。
然而,量子力学表明,在微观尺度上,粒子不能准确地同时拥有确定的位置和动量。
代替位置和动量,我们用波函数来描述粒子的状态。
波函数是一个复数函数,它包含了有关粒子的全部信息。
波函数本身并没有实际物理意义,而是通过它的平方来得到概率分布。
具体来说,波函数的模方给出了在不同位置或状态上找到粒子的概率。
设想一个简单的例子,一个自由粒子在一维空间中运动。
我们可以用一个波函数ψ(x)来描述粒子在不同位置x处的概率分布。
在这种情况下,波函数的模方,ψ(x),²表示在位置x处找到粒子的概率。
在量子力学中,我们用概率波给出了粒子的运动方式。
当我们对粒子进行测量时,波函数会坍缩到一个确定的状态上,这个状态是与测量结果相对应的。
比如,在上述自由粒子的例子中,当我们在一些位置x处进行测量时,波函数会坍缩到只在这个位置上有非零值的状态上。
这就意味着,在测量后,我们可以确定粒子在这个位置x上。
波函数的统计解释也包括了不确定性原理的概念。
根据不确定性原理,位置和动量不能同时被准确地测量。
如果我们知道粒子的位置,我们对其动量的测量将有不确定性,并且相反地,如果我们知道粒子的动量,我们对其位置的测量也将是不确定的。
这是由于波函数的局域性和不连续性导致的。
值得注意的是,波函数的统计解释并不是唯一的解释。
历史上,有多种对波函数的解释,如哥本哈根解释和波函数坍缩解释等。
而且,波函数的实际物理意义仍然是一个有待深入研究的问题。
总结起来,波函数的统计解释是量子力学中一种描述粒子概率分布的工具。
通过波函数的模方,我们可以得到粒子在不同位置或状态上的概率分布。
波函数的统计解释还涉及到不确定性原理,指出了位置和动量不能同时被准确地测量的事实。
然而,波函数的具体物理意义仍然是一个待解决的问题。
一、波函数的统计解释在量子力学中,我们用波函数),(t x ψ来描述一个微观粒子的状态,从这个波函数我们可以得到微观粒子的所用信息。
如何从波函数得到微观粒子的信息是量子力学的一个主要内容。
波恩的统计解释:{}2.(,)baa b x t dx t ψ=⎰在时刻发现粒子处于和之间的几率也就是说,ψψ=ψ*2),(t x 是几率密度,它给出在t 时刻粒子处于x 处单位体积内的几率。
由于这个性质,波函数必须满足1. 是归一化的1),(2=ψ⎰∞∞-dx t x(或者说是可归一化的,dx t x ⎰∞∞-ψ2),( 积分为有限值)2. 满足波函数的标准条件:有限性(不排除在个别点上,ψ和它的微商在保持平方模可积条件下可以趋于无限大。
);单值性(ψ应该是坐标和时间的单值函数,这样才能使粒子的几率密度在时刻t ,坐标x 有唯一确定值);连续性(由于几率密度应当连续,波函数和它的微商也必须连续,不排除微商在势能为无限大处不连续)。
由波函数的统计解释,对处于ψ态的一个粒子,对其坐标多次测量的平均值(期待值)是dx x 2⎰ψ是你所得到结果的平均值。
而是相反:第一次测量(其结果是不确定的)将使波函数坍塌至位于实际获得的测量值处的一个尖峰,以后的测量(如果它们立即进行)将得到同样的结果。
.测量引起波函数的坍塌而x是所有测量都是对处在ψ态的粒子所进行的平均值,这意味着你要么发现某种方法使测量后粒子的状态回到ψ态,要么你准备一个系综,其中每个粒子都处在ψ态,然后测量每个粒子的位置, x是所有结果的平均值。
(你们可以想象在一个书架上放一行瓶子,每个瓶子中放一个处在ψ态(相对瓶子的中心)的粒子,每一个学生被分配拿一把尺子测量一个瓶子中粒子的位置,一声令下他们同时开始测量自己瓶子中粒子的位置。
计算平均值,它应该符合x。
简短而言,期待值是对含有相同体系的一个系综中不同体系的重复测量的平均值,而不是对同一个体系的重复测量的平均值。