解一元一次方程移项
- 格式:ppt
- 大小:682.50 KB
- 文档页数:10
一元一次方程的解法移项
一元一次方程(也称为一次方程)是指方程中只含有一个未知数,并
且该未知数的最高次数为1的方程。
解一元一次方程的常见方法之一
是移项。
移项是通过改变方程中的项的位置,将含有未知数的项移到一边,并
将不含未知数的项移到另一边,从而得到一个更简化的形式。
以下是解一元一次方程的移项步骤:
1. 首先,将方程中的所有常数项(即不含未知数的项)移到方程的另
一边。
例如,如果方程为2x - 5 = 1,则将-5移到等号的另一边,得
到2x = 1 + 5,即2x = 6。
2. 接下来,将方程中的系数项(即含有未知数的项)移到方程的另一边。
在该步骤中,要根据项的正负情况进行不同的处理。
如果未知数
项的系数为正数,则将该项移到等号的另一边应将符号取反。
如果未
知数项的系数为负数,则将该项移到等号的另一边时符号不变。
由于
系数项移动到等号的另一边时,影响其符号的是移动前的正负情况。
例如,将2x = 6中的2x移动到等号的另一边,由于2x的系数为正数,所以2x移动后需要变为-2x,得到-2x = 6。
3. 最后,根据需要计算未知数的值,将方程进行求解。
可以通过除以
未知数的系数来解得未知数的值。
在这个例子中,通过除以-2,得到x = 6 ÷ -2,即x = -3。
综上所述,移项是解一元一次方程的常见方法,通过改变方程中项的位置,将含有未知数的项移到一边,从而得到最终的解。
一元一次方程的解法及应用一元一次方程是初中数学中最基础的一种方程形式,它的形式可以表示为ax+b=0,其中a和b为实数,且a不等于0。
解一元一次方程可以通过运用一些基本的解法和技巧来实现。
在本文中,将介绍一些常见的解一元一次方程的方法,并探讨一些实际应用场景。
一、解法一:移项法移项法是解一元一次方程最常用的方法之一。
其基本思想是将方程中的未知数项移至一边,常数项移至另一边,使方程变为形如x=c的简单形式。
例如,解方程2x+3=7:首先,我们将方程中的常数项3移至右边:2x+3-3=7-3化简后得到:2x=4最后,将方程两边同除以2,得到解:x=2二、解法二:消元法消元法是解一元一次方程的另一种常见方法。
其基本思想是通过相互抵消未知数项或常数项,从而使方程变为形如x=c的简单形式。
例如,解方程3x+2=2x+5:首先,我们将方程中的常数项2移至左边,将未知数项3x移至右边:3x-2x=5-2化简后得到:x=3最终得到解x=3。
三、解法三:代入法代入法通常用于解决一元一次方程组,它的基本思想是将一个方程的某个变量用另一个方程中的变量表示,然后代入到另一个方程中,进而求解未知数的值。
例如,解方程组:2x+y=7x-y=3首先,根据第二个方程可得x=y+3将x的表达式代入第一个方程中:2(y+3)+y=7化简后得到:3y+6=7继续化简可得:3y=1最终得到解y=1/3,代回x的表达式可得x=10/3。
应用:一元一次方程在实际生活中有广泛的应用。
以下是一些常见的应用场景:1. 价格计算:在商业活动中,一元一次方程常用于求解价格。
例如,在打折优惠时,我们可以通过一元一次方程求解最终价格。
2. 时间计算:一元一次方程也可用于时间计算。
例如,在计算速度、时间和距离之间的关系时,我们可以建立一元一次方程来求解未知数。
3. 购物优惠:商场常常会进行满减优惠活动,我们可以通过一元一次方程求解购买满足条件所需的最低金额。
人教版七年级数学上册:3.2《解一元一次方程(一)——移项》教案一. 教材分析《人教版七年级数学上册》第三单元《解一元一次方程(一)——移项》是学生在学习了方程与方程的解、一元一次方程的定义及解法的基础上进行学习的。
本节课的主要内容是让学生掌握移项的方法,并能运用移项法解一元一次方程。
教材通过例题和练习题的安排,使学生能够逐步掌握移项的方法,并能够灵活运用。
二. 学情分析学生在学习本节课之前,已经掌握了方程与方程的解、一元一次方程的定义及解法等知识,具备了一定的数学基础。
但是,对于移项的方法,学生可能还不太熟悉,需要通过例题和练习题的讲解和练习,才能够掌握。
三. 教学目标1.让学生掌握移项的方法,能够将方程中的项移动到等号的同一边。
2.能够运用移项法解一元一次方程。
3.培养学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.教学重点:移项的方法和解一元一次方程的方法。
2.教学难点:如何引导学生理解和掌握移项的方法,并能够灵活运用。
五. 教学方法采用讲解法、示例法、练习法、讨论法等教学方法,通过教师的讲解和示范,学生的练习和讨论,使学生能够理解和掌握移项的方法,并能够灵活运用。
六. 教学准备1.PPT课件七. 教学过程1.导入(5分钟)教师通过复习方程与方程的解、一元一次方程的定义及解法等知识,引出本节课的主题——移项。
2.呈现(10分钟)教师通过PPT课件,展示移项的方法,并通过示例进行讲解和示范。
示例中,教师引导学生观察方程的两边,找出需要移动的项,并说明移动的方向和规则。
3.操练(10分钟)教师给出一些练习题,让学生独立完成。
教师在学生完成练习的过程中,进行巡视指导,帮助学生理解和掌握移项的方法。
4.巩固(5分钟)教师通过PPT课件,给出一些巩固题,让学生进行练习。
教师在学生完成练习的过程中,进行巡视指导,帮助学生巩固理解和掌握移项的方法。
5.拓展(5分钟)教师通过PPT课件,给出一些拓展题,让学生进行练习。
解一元一次方程的步骤
一元一次方程:指只含有一个未知数、未知数的最高次数为1且两边都为整式的等式。
一元一次方程只有一个根。
因此,解一元一次方程的步骤如下:
第一步:去分母。
即方程两边同时乘各分母的最小公倍数。
第二步:去括号。
一般先去小括号,再去中括号,最后去大括号。
第三步:移项。
把方程中含有未知数的项移到方程的另一边,其余各项移到方程的另一边。
移项时别忘记了要变号。
例如:3x=2x+6得到3x-2x=6,把未知数移到一起。
第四步:合并同类项。
将原方程化为ax=b(a≠0)的形式。
第五步:将含有未知数的系数变成1。
方程两边同时除以未知数的系数。
第六步:得出方程的解。
一元一次方程的解法一元一次方程是数学中最基础也是最常见的一类方程。
它的一般形式为ax + b = 0,其中a和b是已知数,x是未知数。
解一元一次方程的目的是找出使等式成立的x的值。
在本文中,我将介绍几种常用的解一元一次方程的方法。
方法一:移项法移项法是解一元一次方程最常用的方法之一。
首先,将方程的项重新排列,使得未知数x的系数为1。
例如,对于方程2x + 3 = 7,我们可以将方程转化为2x = 7 - 3。
接下来,将常数项移到等号的另一边,得到2x = 4。
最后,继续化简方程,得到x = 4/2,也就是x = 2。
所以,方程2x + 3 = 7的解为x = 2。
方法二:因式分解法当一元一次方程的系数a和b都是整数,并且方程可以因式分解时,我们可以使用因式分解法来解方程。
例如,对于方程2x - 6 = 0,我们可以因式分解为2(x - 3) = 0。
根据零乘法,可以得到等式的解为x - 3 = 0,即x = 3。
所以,方程2x - 6 = 0的解为x = 3。
方法三:代入法代入法是一种直接将x的值代入方程中验证是否成立的方法。
例如,对于方程3x + 5 = 14,我们可以先猜测一个x的值,例如x = 3。
把x = 3代入方程中,得到3(3) + 5 = 14。
将方程简化后,可以发现等式两边相等。
所以,方程3x + 5 = 14的解为x = 3。
方法四:图像法图像法是通过绘制方程的函数图像来寻找方程的解。
对于一元一次方程ax + b = 0,可以将方程表示为y = ax + b的形式。
通过画出y = ax + b的图像,我们可以观察到方程与x轴的交点,这些交点即为方程的解。
例如,对于方程2x - 3 = 0,我们可以绘制y = 2x - 3的直线,然后观察直线与x轴交点的横坐标,即为方程的解。
方法五:消元法消元法是通过变换方程,使其中一个未知数的系数为零,从而降低方程的次数。
例如,对于方程3x + 2y = 7,我们可以通过消元法将方程转化为x = (7 - 2y)/3。
《解一元一次方程一移项》教学设计洛峪镇喜集九年制赵如意二、合作交流,解读探究:(一)、移项1、思考:方程3x +20 = 4x -25 的两边都有含x的项(3x与4x) 和不含字母的常数项(20与-25),怎样才能使它向x= a(常数)的形式转化呢2、观察:(1) 、上述演变过程中,方程的哪些项改变了在原方程中的位置?怎样变的?(2) 、改变的项有什么变化?3、归纳:把等式一边的某项改变符号后移到另一边,叫移项。
4、应用新知:1 )、慧眼找错:(1 )、6 + x = 8 ,移项,得x = 8+ 6(2 )、3x = 8- 2x ,移项,得3x +2x = -8(3 )、5x - 2 = 3x + 7 ,移项,得5x + 3x = 7 + 22 )、抢答:将含有未知数的项放在方程的一边,常数项放在方程的另一边,对方程进行移项变形。
(1 )、2x -3 = 6(2 )、5x = 3x -1(3)、2.4y +2 = -2y(4 )、8 - 5x = x + 23)判断改错:下面的移项对不对?如果不对,错在哪里?应当怎样改正?(1 )、从7+ x = 13.得到x=13 +7(2 )、从5x=4x +8,得到5x-4x=8(3 )、从3x +5= -2x -8 ,得到3x 教师引导学生观察,学生讨论、交流后,教师说明:像这样把等式一边的某项改变符号后移到另一边,叫移项。
学生分小组讨论。
分析:解方程的目的是什么?如何向目的前进?利用等式的基本性质可以实现向目的的转化:为了使方程的右边没有含x 的项,等号的两边同减4x ;为了使左边没有常数项,等号两边同减20。
利用等式的基本性质1 ,得3x +20 -20 -4x=4x-25 -20 -4x 3x -4x = -25 -20学生分组讨论这里渗透转化、化归的思想方法。
通过学生的思考、观察和教师的讲解得出什么是移项,便于学生理解。
教学中应注意提醒学生注意:方程中的项是连同它前面的符号的。