川崎主泵构造原理及调试
- 格式:ppt
- 大小:5.28 MB
- 文档页数:10
川崎液压系统的设计原理分析分析挖掘机中应用广泛的川崎系统,介绍其系统结构原理和关键功能,并对挖掘机液压故障提出故障诊断步骤探讨,能对挖掘机液压系统普遍性故障排查有指导作用。
标签:川崎系统;液压;挖掘机近年来,国内港口矿物码头虽然频繁有许多高效率、环保节能的新型工程机械如堆取料机、全自动皮带系统等亮相,但液压挖掘机仍是矿物码头不可替代的主力机械,它负责码头堆场矿物的堆垛、加高、转堆以及联合门吊或卸船机交叉卸船作业,其工作内容和范围十分广泛。
而针对不同品牌和型号的挖掘机,其结构和设计上都存在一定的共性,以湛江港三分公司为例,早年投入使用的日立ZAXIS200,近年引进的现代R220、R330的7系列和9系列挖掘机,其液压系统特点均使用川崎液压设计,因此,研究分析川崎液压系统,对于一般性故障如何能快速判断、检测、故障排除有着重要意义。
1 川崎液压系统功能设计分析川崎液压系统因其结构简单,系统响应快,维护方便等优点在挖掘机结构体系中被广泛使用,以现代R225LC-7为例,结构可简单概括为“一泵一阀四缸三马达”,其中一泵是指液压主泵,它是驱动整个液压系统的动力源;一阀是指主控阀,也称多路分配阀,是将来自于泵的高压油根据先导控制油路信号再分配到工作制动器。
四缸三马达则是挖掘机的动力输出装置,主要负责行走、旋转和油缸臂动作。
因此,从功能上看,整个液压系统包含了三大油路:(1)先导控制油路;(2)基础油路;(3)工作辅助油路。
1.1 先导控制油路先导控制油路由先导泵供油,经过滤油器和先导溢流阀(3.5kgf/cm2),然后大致分为三条线路:(1)是向主要液压器件提供常压油,如液压主泵EPPR阀提供私服压力(35bar)、回转马达驻车制动常压供油、主控阀行走信号测压点常压油等。
(2)是通过安全锁定电磁阀向操作手柄和踏板提供控制油,再反馈到主控阀相应的阀芯控制基础油路实现动作。
(3)是向电磁阀组件提供压力信号油。
1.2 基础油路基础油路是川崎系统的核心部分,它包括吸油油路(主泵端)、分配油路(主控阀端)和回油泄漏油路三部分,三种油路形成闭环控制。
川崎K3V系列斜盘式轴向柱塞泵使用说明书川崎重工业株式会社液压泵一、概述:液压泵将原动机的机械能转换成工作液体的压力能。
按其职能系统,属于液压能源元件,又称为动力元件。
液压传动中使用的液压泵都是靠密闭的工作空间的容积变化进行工作的,所以又称为容积式液压泵。
液压泵可分为齿轮泵,叶片泵,柱塞泵(按结构来分)本节主要介绍挖掘机上常用的齿轮泵、柱塞泵的基本概念、工作原理、结构特点、运用原理和维修知识。
1、液压泵的基本性能参数液压泵的主要性能参数是压力P 和流量Q(1)压力泵的输出压力由负载决定。
当负载增加时,泵的压力升高,当负载减小,泵的压力降低,没有负载就没有压力。
所以,在液压系统工作的过程中,泵的压力是随着负载的变化而变化的。
如果负载无限制的增长。
泵的压力也无限制的增高。
直至密封或零件强度或管路被破坏。
这是容积式液压泵的一个重要特点。
因此在液压系统中必须设置安全阀。
限制泵的最大压力,起过载保护作用。
在位置的布置上,安全阀越靠近泵越好。
液压泵说明书对压力有两种规定:额定压力和最大压力。
额定压力——是指泵在连续运转情况下所允许使用的工作压力,并能保证泵的容积效率和使用寿命。
最大压力——泵在短时间内起载所允许的极限压力,为液压系统的安全阀的调定值不能超过泵的最大压力值,最好的是等于或小于额定压力值。
(2)流量Q流量是指泵在单位时间输出液体的体积。
流量有理论流量和实际流量之分理论流量Q0,等于排量q 与泵转数的乘积:Q0=q*n*10-3(L/min)泵的排量是指泵每转一周所排出液体的体积。
泵的排量取决于泵的结构参数。
不同类型泵的排量记算方法也不同。
排量不可变的称为定量泵,排量可变的称为变量泵。
泵的实际流量Q小于理论流量Q0(因为泵的各密封间隙有泄漏)Q= Q0ηV = q.n.ηV /1000(L/min)式中ηV----泵的容积效率ηV =(Q(实际流量)/ Q0(理论流量))*100%齿轮泵的容积效率,ηV≥92%,柱塞泵ηV≥95%泵的泄漏量(漏损)与泵的输出压力有关,压力升高泄漏量(Q0-Q)即ΔQ增加,所以泵的实际流量是随泵的输出压力变化而变化的,而液压泵的理论流量与泵的输出压力无关。
川崎K3V系列斜盘式轴向柱塞泵使用说明书川崎重工业株式会社液压泵一、概述:液压泵将原动机的机械能转换成工作液体的压力能。
按其职能系统,属于液压能源元件,又称为动力元件。
液压传动中使用的液压泵都是靠密闭的工作空间的容积变化进行工作的,所以又称为容积式液压泵。
液压泵可分为齿轮泵,叶片泵,柱塞泵(按结构来分)本节主要介绍挖掘机上常用的齿轮泵、柱塞泵的基本概念、工作原理、结构特点、运用原理和维修知识。
1、液压泵的基本性能参数液压泵的主要性能参数是压力P 和流量Q(1)压力泵的输出压力由负载决定。
当负载增加时,泵的压力升高,当负载减小,泵的压力降低,没有负载就没有压力。
所以,在液压系统工作的过程中,泵的压力是随着负载的变化而变化的。
如果负载无限制的增长。
泵的压力也无限制的增高。
直至密封或零件强度或管路被破坏。
这是容积式液压泵的一个重要特点。
因此在液压系统中必须设置安全阀。
限制泵的最大压力,起过载保护作用。
在位置的布置上,安全阀越靠近泵越好。
液压泵说明书对压力有两种规定:额定压力和最大压力。
额定压力——是指泵在连续运转情况下所允许使用的工作压力,并能保证泵的容积效率和使用寿命。
最大压力——泵在短时间内起载所允许的极限压力,为液压系统的安全阀的调定值不能超过泵的最大压力值,最好的是等于或小于额定压力值。
(2)流量Q流量是指泵在单位时间输出液体的体积。
流量有理论流量和实际流量之分理论流量Q0,等于排量q 与泵转数的乘积:Q0=q*n*10-3(L/min)泵的排量是指泵每转一周所排出液体的体积。
泵的排量取决于泵的结构参数。
不同类型泵的排量记算方法也不同。
排量不可变的称为定量泵,排量可变的称为变量泵。
泵的实际流量Q小于理论流量Q0(因为泵的各密封间隙有泄漏)Q= Q0ηV = q.n.ηV /1000(L/min)式中ηV----泵的容积效率ηV =(Q(实际流量)/ Q0(理论流量))*100%齿轮泵的容积效率,ηV≥92%,柱塞泵ηV≥95%泵的泄漏量(漏损)与泵的输出压力有关,压力升高泄漏量(Q0-Q)即ΔQ增加,所以泵的实际流量是随泵的输出压力变化而变化的,而液压泵的理论流量与泵的输出压力无关。
日本川崎K5V泵变量原理及故障排出方法开场白:德国人问:为什么产品使用没有达到更长的使用寿命时间,而日本人会问产品到了设计寿命的时间为什么产品不坏呢。
德国人注重产品的可维修性,零件可更换性。
日本人注重一次性使用,坏了那就更换新总成件吧。
日本川崎公司在2008年向市场推出最新产品K5V系列泵,型号及排量从63cc/rpm到280cc/rpm,K5V泵与K3V泵从外观及内部都有重大改变,外观的改变那就是整台泵的体积变的更小,另一项是前后两泵的8根连接螺栓变成内藏式,这一改变是把泵壳的强度提高,减少泵的噪声8%。
川崎公司为了把泵的体积变小,泵的内部零件不可模仿性制造,可是费尽心机。
把不可能变成可能,那就是把缸体外径变小,柱塞外径变粗变短。
缸体的外径变小就是缸体上的柱塞孔与孔之间隔达到2.2mm。
从金属的抗液压力变形理论是不可能的,但川崎就做出了这类产品。
这一改变,川崎人说:10年内世界上要能模仿制造是不可能的。
新型配流盘,使生压各降压的过度渐变更平稳,将输送液体的压力波动减少到最小,配流窗口交变引起的力偶更平稳。
K5V泵的变量形式还是与K3V泵一样,没有大的改变,下面利用插图作一个简要的介绍。
首先要对这个既不符合机械制图标准,也不完全照液压标准图形符号绘制的变量泵原理图做一点介绍。
世界上的各式柱塞式变量泵的变量方式都是靠一个内藏式液压缸作为变量的主机构,内藏式液压缸中的“活塞”两端在压力油的作用下,或向左或向右方向移动(或者不移动),活塞上带有一个销轴,这个销轴插在变量斜盘上耳孔中(日立泵插在配流盘的中心孔中),活塞在移动中带动斜盘或配流盘向不同的方向移动。
那么K5V泵的变量是靠图中的“变量活塞”的位移来带动斜盘左右移动的。
⒈从图上看变量活塞有大小两端及容量腔,小端处的容量腔总是与泵的出口相通,变量活塞小端上总是作用着泵的出口压力。
变量活塞大端容腔比较听话,是与泵的出口压力相通,还是与油箱相通,或是关闭自守,自己没有主见,完全听命于泵控调节器(也叫提升器)控制阀的安排。
03890312川崎斜板形K3V系列轴向活塞泵使用说明书株式会社川崎精機目录1. 型号表示 22. 规格 33. 构造和动作原理 44. 使用上的注意事项 64-1 安装 6 4-2 配管上的注意事项 7 4-3 关于过滤网 9 4-4 动作油和温度范围 11 4-5 使用上的注意事项 12 4-6 注满油和排气 12 4-7 开始运转时的注意事项 135 故障的原因及处理 145-1 一般的注意事项 14 5-2 泵体异常的检查方法 14 5-3 马达的过载 15 5-4 泵流量的过低,排出压力不能升高时 16 5-5 异常音,异常振动 16附图,附表附图1. 泵的构造图 17 附图2. 泵的展开图 18 附表1. 泵体装紧扭矩一览表 1911.型号表示K3V 112 DT - 1CE R - 9C32 – 1B22.规格*1. 闭路规格的最高旋转数使用闭路规格时,请预先商谈。
*2. 吸入压力 0 kgf/cm 时的旋转数。
33. 构造及动作原理该泵的构造是两台泵以花键接头(114)相连接的,马达的旋转被传递到前部的驱动轴F(111),同时驱动两台泵。
油的吸入和排出口在二台泵的连接部即阀块(312)处汇集,前泵和后泵共用吸入口。
因为前,后泵的构造原理和动作原理是相同的,故以前泵为例,进行说明。
此泵大致由以下几个部分组成,进行泵的旋转运动的旋转机构,调整吐出流量的斜板机构,交替进行油的吸入—吐出动作的阀盖机构。
旋转机构由驱动轴F(111),油缸体(141),活塞瓦(151,152),压板(153), 球面缸衬(156), 垫片(158),油缸弹簧(157)组成。
驱动轴的两端由轴承(123,124)支持。
活塞瓦装于活塞上,形成球接头,同时减轻由负荷压力产生的推力,有一个把活塞瓦(211)上轻轻扇以调整油压平衡的壳部。
为了使活塞瓦的副机构能在支撑板上圆滑的动作,通过押板和球面缸衬,使活塞瓦被油压弹簧压在支撑板之上。
川崎K3V泵调节器动作1)通过泵的控制压力控制之与操作杆行程成比例的二级先导压力,在选择器阀中转化成压力Pi 后,进入泵的调节器。
泵调节器得知操作杆的状态,从而控制泵的斜盘角度。
控制结果有流量增加和流量减少两种。
2)通过自身或另一泵输油压力控制(恒扭矩控制)通过自身输油压力和另一泵输油压力进行泵控制,具有一下两种功能:流量减少(防过载)功能,流量增加(流量恢复)功能。
流量减少(防过载)功能,当负载(压力)增加时,泵流量减少,因此发动机不会过载。
流量增加(流量恢复)功能,当负载(压力)减少时,泵流量增加,因此发动机输出功率可得到有效利用。
3)通过来自功率控制电磁阀的先导压力控制(转速传感控制)当扭矩控制电磁阀(位于泵2的调节器上)提供扭矩控制压力P时,f泵流量减少。
4)通过来自泵最大流量限制电磁阀的先导压力控制(泵最大流量控制)通过来自泵最大流量限制电磁阀的先导压力控制的操作,与通过泵控制压力控制相同。
油路中的泵最大流根据来自MC(主控制器)的信号,泵控制压力Pi量限制电磁阀器起作用。
泵最大流量限制电磁阀起减压作用,限制泵控制压力Pi5)通过最大流量转换电磁阀控制(仅限泵1)当泵1最大流量转换电磁阀起作用时,作用在制动器上的泵1最大流进入液压邮箱,由于止动器向右移动,先导柱塞向右量转换压力Pic移动得要比一般情况下更多,使泵的最大流量增加。
6)较小斜盘角度或较小流量信号优先控制当泵流量增加和减少信号同时到达时,泵调节器动作,使流量减少信号优先。
由泵控制器提供泵排量角度控制信号,扭矩控制电磁阀提供先导压力,通过杆A和杆B上的孔以及销6传递到反馈杆和伺服阀芯上,销6与杆A或杆B上的流量减少侧与孔相接触,使流量和功率减少控制优先。
现在的挖掘机多为斜盘式变量双液压泵,所谓变量泵就是泵的排量可以改变,它是通过改变斜盘的摆角来改变柱塞的行程从而实现泵排出油液容积的变化。
变量泵的优点是在调节范围之内,可以充分利用发动机的功率,达到高效节能的效果,但其结构和制造工艺复杂,成本高,安装调试比较负责。
按照变量方式可分为手动变量、电子油流变量、负压油流变量、压力补偿变量、恒压变量、液压变量等多种方式。
现在的挖掘机多采用川崎交叉恒功率调节系统,多为反向流控制,功率控制,工作模式控制(电磁比例减压阀控制)这三种控制方式复合控制。
下载(44.84 KB)前天21:51调节器代码对应的调节方式下载(64.54 KB)前天21:51调节器内部结构各种控制都是通过调节伺服活塞来控制斜盘角度,达到调节液压泵流量的效果。
大家知道在压强相等的情况下,受力面积的受到的作用力就大。
下载(25.52 KB)前天21:52调节器就是运用这一原理,通过控制伺服活塞的大小头与液压泵出油口的联通关闭来控制伺服活塞的行程。
在伺服活塞大小头腔都有限位螺丝,所以通过调节限位螺丝可以调节伺服活塞最大或最小行程,达到调节液压泵的最大流量或者最小流量的效果。
下载(55.63 KB)前天21:51向内调整限制伺服活塞最大和最小行程及限制最大流量和最小流量要谈谈反向流控制,就必须要弄明白反向流是如何产生的。
在主控阀中有一条中心油道,当主控阀各阀芯处于中位时(及手柄无操作时)或者阀芯微动时(及手柄微操作时)液压泵的液压油通过中心油道到达主控阀底部溢流阀,经过底部溢流阀的增压产生方向流(注当发动机启动后无动作时液压回路是直通油箱,液压系统无压力)。
下载(57.08 KB)昨天00:30所以方向流控制的功能是减少操作控制阀在中位时,泵的流量,使泵流量随司机操作所属流量变化,改善调速性能,避免了无用能耗。
大家注意方向流控制并非交叉控制,一个泵对应一个主控阀块(一般主控阀都为双阀块)。
如果单边手柄动作速度很慢特别是回转和铲斗奇慢,复合动作正常一般就是反向流油管安装反了。
主泵的工作原理
主泵是工业生产中常用的一种泵,它的工作原理是通过电机驱动叶轮旋转,从而将液体吸入泵体内部,然后通过压力将液体推出泵体,实现液体的输送。
主泵的工作原理可以分为三个步骤:吸入、压缩和排出。
首先,当电机启动时,叶轮开始旋转,形成一定的负压,使液体从进口处进入泵体内部。
其次,随着叶轮的旋转,液体被压缩,增加了液体的压力。
最后,当液体被压缩到一定程度时,它会被推出泵体,流向管道或其他设备中。
主泵的工作原理与其他泵的工作原理有所不同。
例如,离心泵是通过离心力将液体推出泵体,而排污泵则是通过机械压缩将液体推出泵体。
相比之下,主泵的工作原理更加简单,且适用于各种不同的液体输送场景。
在实际应用中,主泵的工作原理还需要考虑一些其他因素。
例如,泵的设计和材料选择需要考虑液体的性质和输送要求,以确保泵的性能和寿命。
此外,泵的安装和维护也需要注意一些细节,以确保泵的正常运行和安全使用。
主泵是一种常用的液体输送设备,其工作原理是通过电机驱动叶轮旋转,从而将液体吸入泵体内部,然后通过压力将液体推出泵体。
在实际应用中,需要考虑液体的性质和输送要求,以及泵的设计、
材料选择、安装和维护等因素,以确保泵的正常运行和安全使用。